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Abstract. Indicating the imminent battery depletion of wireless sensor
nodes is beneficial for many applications. But corresponding depth of
discharge estimation approaches are either complex, constraint or rather
imprecise. We present, implement and evaluate a novel approach which is
to observe the battery’s overpotential — the change of the voltage under
a load in comparison to the unloaded battery — which increases toward
the end of a battery’s lifetime. Experimental evidence that the battery’s
overpotential is a better “end-of-life” indicator than the commonly used
operating voltage is provided. Also, it does neither require any additional
circuitry in typical sensor nodes nor significant processing overhead.

Keywords: Battery, Overpotential, WSN, End-of-Life Indication, Esti-
mation.

1 Introduction

The vast majority of contemporary wireless sensor networks consist of nodes
powered by batteries (this pertains equally to many other devices — including
cell phones). Energy harvesting is the promising alternative, but also in these
systems, storage is needed to bridge the gap between energy supply and demand
due to fluctuation in the ambient physical systems and changing consumption of
the node. Here, rechargeable batteries are often preferred over super capacitors
due to their smaller size, higher capacity, lower self-discharge and lower price.

Knowing the battery discharge state is essential for energy management. In
most use-cases it is, however, most important to predict early enough the ap-
proaching node failure due to energy shortage. Such knowledge can be efficiently
used to tune the communication protocols so as to ”unload” the critical node,
it might also trigger reduction of the sensing/ computing activity of the node,
e.g. its usage only under critical circumstances.

The established approach to indicate end-of-life of a battery is to measure
its voltage and compare it to a predefined threshold value. The voltage curve
is, however, dependent on the battery chemistry, details of its design, operation
temperature and discharge characteristics. Therefore, for an accurate end-of-life
indication, choosing an appropriate threshold requires good knowledge of all the
above, which might be hard to obtain in real applications.
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In this work, we are going to present a novel approach to end-of-life indication
in duty-cycled wireless sensor nodes. It is based on observing the overpotential,
i.e. the decrease of the voltage under a load in comparison to the unloaded bat-
tery. Measurements of the overpotential in common batteries has lead us to the
conclusion that overpotential is less prone to variations due to construction and
operation parameters than the pure operating voltage, usually used for battery
end-of-life prediction. Thus, our approach enables a more precise detection of
the imminent battery depletion.

The remaining paper is organized as follows: In Section 2, we discuss the pre-
vious work on discharge state estimation, introduce the concept of overpotential
and formulate our research hypothesis. In Section 3, we describe our experimen-
tal setup. In Section 4, we present and discuss our results. Finally, in Section 5,
we conclude the paper and outline some open questions.

2 Previous Work and the Working Hypothesis

During the discharge of an electrochemical battery, its voltage decreases with
increasing depth of discharge (DoD) until it falls below the cutoff voltage which
defines the battery’s end-of-life. Thus, it is quite obvious to derive the DoD
from the voltage level. But the actual voltage during a battery’s discharge also
depends on the time profile of the discharge, the temperature and the cell’s
past [16, p. 3.1 ff.]. Therefore, in order to obtain good DoD estimation results,
purely operating-voltage based estimation requires known and stable battery and
discharge characteristics. Different approaches exist to support the consideration
of a wider range of discharge rates and patterns, often combined with lifetime
prediction, as e.g. in [21].

Those approaches differ firstly in their complexity regarding the used battery
models: For example, fixed voltage values have been used as thresholds for DoD
categorization in the commercially available Archrock wireless sensor nodes [1].
Polynomial fitting of discharge curves obtained at constant load has been ex-
amined in [21] and was further developed in [2]. More accurate, but also more
complex are advanced electrochemical [6], analytical [15] and stochastical [4]
models.

The methods furthermore depend on a different amount of runtime parame-
ters: Purely bookkeeping of the performed instructions on the software level is
performed in [22]. Continuous monitoring of voltage, current and temperature is
needed in [14]. The approach aims for accurate replication of the electrochemi-
cal processes inside the battery during discharge. The underlying mathematical
model is based on more than thirty battery parameters. Those have to be ei-
ther known or determined by numerical fitting of data obtained by charge and
discharge experiments at different modes.

Depending on the chosen approach, voltage, current and/or temperature there-
fore has to be monitored, often at a highly granular basis. Simultaneously, the
obtained values have to be applied to the battery model in order to obtain the
DoD estimation. To our knowledge, a comprehensive performance comparison
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of existing estimation techniques is pending. Nevertheless, a higher prediction
accuracy, respectively a larger flexibility in terms of the application scenario
and constraints can be achieved by using the more sophisticated approaches.
This challenges an actual implementation on resource-constrained wireless sen-
sor nodes. With [23] and [10] commercially available hardware components per-
forming similar estimation approaches as discussed above are presented. Those
are, however, limited to lithium-ion batteries and do also require extensive ap-
plication and battery characterization (e.g. 13 parameters for [10]).

Thus, accurate DoD estimation is only possible at the cost of high overhead
(see e.g. also [13]). In many use cases, there is no need to have a complete DoD
estimate — in contrary, it is sufficient to know whether the end-of-life is about
to occur in the near future or not. Exactly for this purpose we suggest a novel
approach delivering such a binary indication with a higher precision.

Before explaining our a approach let us introduce some basic notions. The
voltage of a cell when no load is applied, is the open-circuit voltage, while the
operating voltage is the voltage when a usually drawn current is running through
the cell [16, p. 3.2]. The overpotential (also: overvoltage or polarization) [16, p.
2.1 f.],[9,11] is the difference between those two voltages. It reflects the electro-
chemical and physical processes inside the battery and is therefore not constant
over time. When charging the operating voltage is higher, when discharging it
is lower than the open-circuit voltage. The factors which contribute most to the
observable voltage differences are the following: Activation polarization occurs
due to limitations of the chemical reactions and the charge transition between
the electrolyte and the electrode surface, while concentration polarization arises
from concentration differences of the active species in the electrolyte. On the
other hand, adsorption polarization, crystallization polarization and reaction
polarization do not play this role.

As it is an important effect in electrochemistry, the phenomenon of overpoten-
tial is also covered by the earlier mentioned detailed battery models (e.g. [14]).
However, we are targeting for one interesting aspect of the overpotential, which
is its increase toward the end of the battery’s life [3, p.220], [16, p. 2.17]. We in-
vestigate the possibility of utilizing this effect for accurate end-of-life indication
in a simple manner.

Indication of end-of-life by detecting a voltage drop in continuous discharge
as well as the exertion of artificial testing pulses has been proposed for lithium
thionyl chloride cells in [18]. However, the motivation for this work comes from
the observation that in wireless sensor networks batteries always work in a pulsed
discharge mode due to the duty cycling of the nodes. This seems to offer inher-
ently very favorable conditions for the appearance of the overpotential. In this
work we first investigate the possibility of measuring the overpotential in com-
modity WSN nodes. Afterwards we investigate to what extent so achieved values
can be used for reliable prediction of the end-of-life for alkaline, nickel-metal hy-
dride an lithium-ion batteries.



Overpotential-Based Battery End-of-Life Indication in WSN Nodes 37

V
OP

V
OV

V0

t

t

Current (schematic):

Voltage (schematic):

V0 V
OV

V0

Y X

LISTENINGSLEEP SLEEP

t

(TX)

only once per minute
Activity (schematic):

Fig. 1. Duty cycling mote application

3 Experimental Setup

Our investigations are aimed at the usage in typical wireless sensor networks.
Nodes are selected to be Tmote Sky motes [12] running under the TinyOS 2.1
operating system. The measurements are sent to a PC-attached base station.

We will compute VOP as the voltage difference between states where low
and high current is drawn from the battery. Instead of inducing these changes
artificially, we exploit the inherent current pulsing of duty cycling wireless sensor
nodes. The mote is running a scheme which is shown in Figure 1. A duty cycle of
D = X

X+Y is performed: X seconds with the radio in listening mode are followed
by a period of Y seconds with switched-off radio. Once per minute, the gathered
voltage and temperature data is sent to the base station.

Our aim is to obtain the battery’s overpotential VOP . As introduced in the
previous section, it is the difference between the open-circuit voltage and the
operating voltage: VOP = V0 − VOV . At V0, by definition no current is running
through the cell. It is therefore rather challenging to have an embedded system
measure its open-circuit voltage. Thus, in this work we take the voltage at a
very low current as approximation for V0. Furthermore, we want to maximize
the time for the battery voltage to relax to the open-circuit voltage. As illustrated
in Figure 1, we therefore take the V0 measurements shortly before each upcoming
current pulse. Due to similar considerations, the VOV measurements are taken
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as late as possible during the active phases in order to maximize electrochemical
diffusion [16, p. 2.2].

We choose X = Y = 10 s resulting in a duty cycle of D = 50%. These values
do not reflect a typical WSN scenario, but enable us to obtain total lifetimes
of several days up to a couple of weeks using commercially available batteries.
However, even longer rest periods at smaller duty cycles would not reduce the
difference between our measured V0 the real open circuit voltage significantly,
since the relaxation occurs logarithmically (see [16, p. 3.12], illustrated in Figure
1). We also assume the duration of current pulses to be long enough to sufficiently
release the exponentially growing overpotential effect. Still, it is an important
open question to identify a lower bound on the pulse duration and the discharge
current.

We use different types of batteries with different nominal voltages and capac-
ities as shown in Table 1.

Table 1. Battery Types which are used in this work

type name nom. voltage nom. capacity rechargable ref.

Alkaline Varta 4106 1.5V 2600mAh no [19]
NiMH1100 Conrad NiMH 1100 1.2V 1100mAh yes [5]
NiMH800 Varta 46736 1.2V 800mAh yes [20]
LiIon Emmerich LiFePho 18650 3.3V 1100mAh yes [8]

While it is sufficient to use a single LiIon cell, Alkaline and the NiMH batteries
are used pairwise in order to obtain a voltage level usable for the Tmote Sky.
During our experiments, we use 8 (12, 4, 3) pieces of the Alkaline (NiMH1100,
NiMH800, LiIon) batteries. NiMH1100 cells are charged with the ELV ALM
7003 charger [7] using a current of 100mA (NiHM800: 80mA). LiIon cells are
charged with the iMAX B6AC [17] at 1500mA.

Most of the experiments are run at temperatures of 20 ◦C to 25 ◦C. A fridge
is used to perform experiments at temperatures of about −10 ◦C to 0 ◦C. The
unused space is filled with styrofoam in order to reduce the temperature variation
due to the thermostat cycling. We use a halogen lamp to run experiments at
about 35 ◦C to 40 ◦C.

Tmote Sky allows to measure half of the battery voltage in either a range from
0.75V to 1.5V or from 1.25V to 2.5V. Our used batteries operate in the range
from about 1.5V to 3.4V resulting in a needed measuring range from 0.75V to
1.7V. We therefore perform all voltage measurements with both references. The
proper range is finally evaluated offline.

4 Evaluation

We present results of evaluating the battery discharge curves obtained during
82 experiments each running from 3 to 14 days. In order to aggregate the indi-
vidual runs and to enable comparison of the different durations, all curves are
normalized to DoD.
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Due to various reasons (e.g. human failure on starting the data logging, power
cut but also when reaching operating voltages too close to the lower measurement
reference of 1.5V) there are occasional holes in the individual voltage traces. An
important aspect of our evaluation is going to be the estimation of confidence in-
tervals (CIs). Those are quite sensitive to changes in the number of observations.
Therefore, in order to prevent distortion, such periods with a reduced number of
valid traces are excluded by our data processing. They can easily be identified
as gaps in the presented curves which have data points for all DoD ∈ [0, 1] in
the absence of such holes.

If not stated otherwise, we are commenting the experiments which have been
performed at room temperature. All presented calculations and presented curves
are based on a moving average on the raw voltage measurements of 30min.

4.1 Overpotential toward End-of-Life

To give a first overview, Figure 2 shows the average operating voltage VOV and
the overpotential VOP of the evaluated battery types. Most notably, this proves
that it is possible to observe overpotential without adding further measuring
circuitry in duty cycled sensor nodes.

Figure 3 highlights the last 10% of the batteries’ lifetimes, as we are mainly
interested in this phase. As a first result we find that toward the end of the
batteries’ lifetimes VOV decreases as commonly known. But also, as predicted in
Section 2, we can verify that VOP strongly increases when approaching DoD of
1.

For simple end-of-life indication, we seek a proper threshold value. Such a
value could reasonably be chosen in the region where VOP is rising (e.g., here,
DoD> 0.99). Assuming a constant variability, one can expect more precise indi-
cation at higher slopes of VOP . Whereas defining a similar lower threshold based
on operating voltage would require more effort due to the flatter curves, higher
and different offsets.

4.2 Overpotential versus Operating Voltage Variability

In order to compare the variability of VOP and VOV , we plot the width of the
95% CI assuming Student’s t-distribution in Figure 4. In Table 2 the average
widths of the CIs are summarized. For all evaluated battery types the overpo-
tential’s CI is smaller than the corresponding value for the operating voltage.
Therefore we claim that our experiment indicates the superiority of the end-of-
life indication for the given battery types if overpotential thresholds are used
rather than operating voltage thresholds. For example, with 25mV, VOP ’s CI at
90% DoD is only half as wide as VOV ’s 50mV.

As VOV is the actual seen battery voltage, its variability defines a lower bound
on the accuracy of the battery voltage models introduced in Section 2.
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Fig. 2. Operating voltage and overpotential during the discharge of the different bat-
teries (average over n individual runs, nAlkaline = 4, nNiMH1100 = 20, nNiMH800 =
7, nLiIon = 7)

4.3 Temperature Dependency

We evaluate the robustness of VOV and VOP on the variation of the ambient
temperature. For each battery type, the average curves for normal, high and low
temperature of both, VOV and VOP are plotted jointly in Figure 5. As we are
mainly interested in the end phase of the batteries’ lifetimes, we use an exponen-
tial scale on the x-axes. The y-axes on each subfigure use the same scale. This
enables direct comparison of the two approaches as both values are technically
obtained by the same voltage measuring circuit. VOP , which we propose in this
work, is less influenced by changes in the ambient temperature than VOV . Also,

Table 2. Average width of operating voltage’s and overpotential’s 95% confidence
interval

entire lifetime last 10%
VOV [V ] VOP [V ] VOV [V ] VOP [V ]

Alkaline 0.070 0.008 0.129 0.019
NiMH1100 0.065 0.004 0.038 0.011
NiMH800 0.188 0.002 0.121 0.011
LiIon 0.044 0.005 0.108 0.007
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Fig. 3. Operating voltage and overpotential during the last 10% of battery lifetime

for warm and cold ambient conditions, VOP varies less than VOV as summarized
in Table 3.

End-of-life indication based on obtaining the battery’s overpotential is thus
more robust to temperature variations than operating voltage based indication.

Table 3. Average CI-widths in warm and cold environment

warm (35 − 40 ◦C) cold (−10− 0 ◦C)
VOV [V ] VOP [V ] VOV [V ] VOP [V ]

Alkaline 0.059 0.012 0.164 0.040
NiMH1100 0.063 0.026 0.076 0.017
NiMH800 0.148 0.008 0.025 0.003
LiIon 0.045 0.002 0.057 0.004

4.4 End-of-Life Indication without Knowledge of the Battery Type

Whenever a WSN node’s battery is not integral with the device, it is quite likely
that other than the initially deployed batteries are eventually used. Especially,
as consumer market sensor nodes like [1] come with standard battery holders.

We therefore evaluate VOV and VOP for their ability to indicate the approach-
ing end-of-life in the absence of knowledge of the battery type.
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Fig. 4. Width of operating voltage’s and overpotential’s 95% confidence interval as-
suming a Student’s t-distribution

In Figure 2 and 3, the operating voltages of all evaluated battery types have
been shown jointly. The curves differ in position and slope which impedes to
define a common voltage threshold that could be established as end-of-life indi-
cator. For LiIon, a threshold higher than 2.4V would be suitable, NiMH required
a little below 2.4V and Alkaline a value less than 2.0V.

Also the observed overpotential curves have been presented in Figure 2. For
each battery type, VOP increases toward the end of the lifetime. A threshold of
0.1V is crossed within the last 90% of three of the batteries’ lifetimes. However,
the LiIon battery never reaches that value.

In Figure 2, for most of the battery types different, but rather constant offsets
can be identified. To eliminate these, we extend our approach by dividing VOP by
the minimal value that has been observed until then during each measurement.
This normalization does increase only minimal overhead and could be easily
implemented on a resource constrained WSN node. The obtained curve is shown
in Figure 6. While Alkaline still shows an earlier but slower rise than the other, it
nevertheless is possible to establish a ratio of about 6 as a threshold to indicate
that at least 90% (but less than 100%) of the battery’s capacity is spent without
knowing the chosen battery type. We want to highlight, that a similar statement
is not to obtain by sole monitoring of the operation voltage.

To prove that also a threshold resulting in indication at DoD levels of close to
1 can be still useful, we consider a simple temperature monitoring application.
When choosing a VOP /MIN(VOP ) ratio of 6, the mote including the radio can be
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Fig. 5. Operating voltage (left, declining) and overpotential (right, rising) during
the discharge at room temperature, warm and cold conditions, Alkaline: (nnormal =
4, nwarm = 4, ncold = 4); NiMH1100: (20, 8, 11); NiMH800: (7, 3, 5); LiIon: (7, 5, 4)

operated continuously for about 0.2 h when using the LiIon battery (NiMH1100:
0.5 h, NiMH800: 0.8 h, Alkaline: several hours) after crossing this threshold. As
these durations can be expanded by duty cycling, this amount of remaining
lifetime should be sufficient to e.g. request for battery exchange or in more
complex applications to reconfigure the network or to complete any pending
operations safely.

We also evaluate the robustness of VOP /MIN(VOP ) on the variation of the
ambient temperature. To obtain the same 90% DoD indication we find that
for warm batteries the same threshold ratio of 6 can be used, while this value
has to be reduced to 4 for cold batteries. Thus, this approach is not temperature
agnostic which consists with our findings in Section 4.3. However, with additional
temperature knowledge the approach can also be used in this case.

5 Conclusions

We introduced a novel approach for indicating the end-of-life of batteries oper-
ated in a duty cycled mode — the overpotential-based end-of-life indication. The
approach has been implemented and evaluated in 82 experiments using Tmote
Sky sensor nodes and 4 different types of batteries at different ambient tem-
peratures. Firstly we showed that for any known battery type it is possible to
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Fig. 6. Overpotential divided by its so far minimal value

observe and utilize overpotential in duty cycled sensor node applications without
additional circuitry. The sharp increase of the overpotential toward the end of
the batteries’ life recommends its utilization for end-of-life indication. The ex-
periments then proved that the overpotential varies less over depth of discharge
than the operating voltage which allows to select overpotential thresholds in a
way assuring more precise end-of-life indication than by using operating voltage
thresholds. This does also hold at increased and reduced ambient temperature.

Consider the following use-case: A cluster head node is supposed to initiate
the election of a successor shortly before its end-of-life. It would be possible to
apply one of the arbitrary complex operating voltage based models mentioned
in Section 2 or perform some measurements in order to define a proper op-
erating voltage threshold. Alternatively, some measurements could be used to
identify a suitable overpotential threshold. As shown in this work, the overpo-
tential based indication would result in higher accuracy. However — and that is
our approach’s limitation — due to the flat overpotential curve, it is not possible
to use overpotential for indication of random DoD levels.

In addition we have addressed the issue of end-of-life indication without knowl-
edge of the battery type. Pure operating voltage based indication is hardly pos-
sible at all for this case. We have demonstrated that the overpotential based
approach can be applied successfully also in this case. This opportunity is best
used by putting overpotential into relation to the minimum level observed dur-
ing the operation in the given operational environment. Albeit the prediction
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achieved without battery type knowledge is not really precise, we claim that
this indication might be useful in practical cases.

As the increase of the overpotential toward the battery’s complete depletion
is a know effect, similar results for other than the evaluated battery types and
chemistries can be expected.

We have focused here on the end-of-life estimation only, as we consider this
information to be most important for reliable usage of the WSNs in many ap-
plications. Obviously, if some information about the ongoing level of discharge
might be needed, a combination of our approach for end-of-life detection with
the observation of the operational voltage for the sake of the ongoing discharge
monitoring might be attractive.
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