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Abstract. Wireless Sensor Networks (WSNs) are becoming the most widely 
used applications in monitoring environment and military operations. However, 
in such applications sensors are deployed in harsh environments and sometimes 
are inaccessible once deployed making them vulnerable to both physical and 
software attacks. Malicious nodes can send misleading data to the controller 
affecting monitoring results. Sophisticated security applications cannot be used 
to overcome this problem due to the limited power of the sensors.  A new 
mechanism is needed which first identifies malicious nodes in an accurate 
manner and offers indispensible characteristics namely, resiliency and 
reliability to the WSN. In this paper, we develop a malicious and 
malfunctioning node detection scheme using a resilient double weighted trust 
evaluation technique in a hierarchical sensor network. Our system evaluates all 
sensor nodes, increases and decreases trust value accordingly and excludes 
nodes having under threshold trust values. The simulation results show that our 
approach is very efficient even in harsh environments.  

Keywords: Wireless sensor networks, malicious node detection, weighted trust, 
resiliency. 

1 Introduction 

The field of Wireless Sensor Networks (WSNs) is now in a stage where serious 
applications of societal and economical importance are in reach.  Examples such as 
landslide, forest fire and underground mines advocate the use of wireless sensing 
technology as a new scientific instrument for environmental monitoring under 
extreme conditions. In such applications, reliability, availability, and maintainability 
are indispensible characteristics. 

When an environment needs to be monitored, a large number of sensor nodes are 
usually deployed in a random fashion. The main purpose of the sensor nodes in this 
case is to take measurements and to forward this data to the sink node where it is 
processed and necessary action is taken. 

Being used in very critical applications, data has to be transmitted accurately. 
However, WSNs have limited capacity and energy resources and hence are likely to 
be influenced by unpredictable failures occurring in the harsh sensor field. So the 
system requires a routing protocol to deliver event packets from source nodes to sink 
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nodes in a fault-tolerant and energy efficient way regardless of node failures and 
attacks such as, HELLO flooding attacks, sink hole attacks, black hole attacks, worm 
hole attacks, or DDoS attacks [1]. Sybil attacks are when a malicious node behaves as 
if it were a large number of nodes. In the worst case scenario, an attacker may 
generate an arbitrary number of node identities using only one identity [15]. In 
application layer, attackers may take control over nodes and make them send false 
data in a very intelligent manner to fool data aggregators and hence lead to an 
incorrect decision, facing a byzantine problem [14].  This is one of the worst attacks, 
which when solved can also solve many types of WSN node problems. Some 
solutions depending on trust value of the sensor are reported to detect these attacks so 
that the influence of the malicious node is minimized and finally removed from the 
network. However, all of these approaches assume that only sensor nodes that are 
placed at the lowest level in the hierarchical network are prone to attacks and failure. 
Forwarding nodes and access points are assumed to be trustful and won’t be 
compromised. In reality, all sensor nodes have similar properties since they are 
situated in the same environment making them all equally prone to attacks and 
failures.  

Since sensors have very limited resources (memory, storage and power) therefore, 
dimensionality reduction, code and task minimization are other indispensable factors 
to be considered. In fact, a sensor is a tiny device with only a small amount of 
memory and storage space for the code, so the overall code for detection, aggregation 
and security has to be small. Furthermore, the power consumption needed for 
transmission dominates processing energy consumption. Hence, communication 
should be minimized as much as possible. To meet these stringent bandwidth and 
power constraints, especially when considering real-time data monitoring, the high-
dimensional sensor observation should be converted into low-dimensional data by 
carrying out local data dimensionality reduction. 

Several techniques like, Discrete Wavelet Transform (DWT) and Discrete Fourier 
Transform (DFT) were used for dimensionality reduction. However, most of these 
techniques require lots of storage space. Recently, Lin and Keogh et al. [13] proposed 
the Symbolic Aggregate approximation (SAX), the first symbolic representation for 
time series that allows for dimensionality reduction and indexing with a lower-
bounding distance measure, based on Piecewise Aggregate Approximation (PAA) and 
assumes normality of the resulting aggregated values. When using SAX, the data is 
first transformed into the PAA representation and then symbolized into a sequence of 
discrete strings. The symbolization region is determined by looking up in statistical 
tables since the time series represent a Gaussian distribution. Breakpoints are 
represented as a sorted list of numbers such that the area under a Gaussian curve from ߚ௜ to ߚ௜ିଵ ൌ ଵఈ. These breakpoints are determined by statistical tables. All PAA 

coefficients that are below the smallest breakpoint are mapped to the symbol “a”, all 
coefficients greater than or equal to the smallest and less than the second smallest 
breakpoint are mapped to the symbol “b”, etc.[13]. 

In this paper, we will be using SAX with some modifications for data 
dimensionality, code and task reduction. Furthermore, by considering the real case of 
all nodes being prone to attack, we propose in this paper a dual weighted trust scheme 
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for detecting and removing compromised nodes. Whenever a controller node is 
detected as malicious, the network will perform modifications by assigning a new 
controller so that the system will not be affected and continue to provide valid reports 
even under harsh environmental conditions. 

The rest of the paper is organized as follows: Section two summarizes previous 
work related to fault detection schemes. Section 3 explains the proposed 
dimensionality reduction scheme. Section 4 describes the network topology to be used 
throughout the paper. Our resilient double trust based scheme is presented in section 5 
and the experimental tests and results are shown in section 6. Finally, section 7 
concludes the paper. 

2 Related Work 

The goal of fault detection is to verify that the services being provided are functioning 
properly, and in some cases to predict if they will continue to function properly in the 
near future. Fault detection techniques are classified as: self-diagnosis where the node 
itself can identify faults in its components, group- detection where several nodes 
monitor the behavior of another node, and hierarchical detection. The approach used 
in [3] which performs diagnosis based on accelerometers to determine if the node 
suffers from an impact that could lead to hardware malfunctions, the approaches used 
in [4], [5] and [12] which use voltage and signal strength anomaly and the approach 
used by [10] which use localization anomaly are all self-diagnosis techniques. Some 
of the drawbacks of these techniques are the incapability of sudden crash failures and 
the reliability on single node in decision making which can be already compromised.  

The approaches used by Iyengar in [7] and Cheng et al. in [6], which are based on 
the idea that sensors from the same region should have similar values unless a node is 
at the boundary to calculate the probability of the node being faulty, and the approach 
used by Loureiro et al. in [11] which is based on nodes reading sensors signal strength  
measured by neighboring nodes and comparing  its compatibility with the node's 
geographical position to detect malfunction are group-detection techniques. Group 
detection schemes are applicable. However, they have several drawbacks. They 
require large overhead needed for transmitting data which is a problem both for 
sending and processing, they are not energy efficient and the use of encryption is 
often impracticable, since this would hamper other nodes observing the contents of 
messages [8].  

Hierarchical detection techniques use data aggregation techniques in their scheme. 
In [9], the authors proposed mechanism which uses a hierarchical network topology 
where cluster heads monitor ordinary nodes, and the base station monitors the cluster 
heads. To perform the monitoring, the base station and the cluster heads constantly 
ping those nodes that still have battery power left and that are under their direct 
supervision. If a node does not respond, it is marked as a failure. Lately a special type 
of attack where the compromised nodes behave normally but report false readings to 
lead to an incorrect decision has been investigated by Atakli. Et al. [1] this is a 
straightforward hierarchical detection approach and incurs less overhead since there is 
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no expensive calculation involved. They proposed the scheme of weighted trust 
evaluation (WTE) to detect malicious nodes. The weights of nodes are updated after 
each cycle by reflecting the ratio of the number of incorrectly reporting nodes to the 
total number of nodes. However, as explained by [2] the aggregated result of their 
scheme, calculated by the forwarding node cannot reflect the real situation, and the 
update of weight value cannot reflect change of credibility of the node itself. So they 
proposed a weighted-trust application (WTA) scheme. The weight of each sensor 
node in this scheme is updated based on the behavior of the node itself, making  the 
node’s weight value more accurate and misdetection ratio  distinctly lower. OH et al. 
in [14] found that both schemes proposed by Atakeli et al’s and  Ju et al, are likely to 
detect malicious nodes by sacrificing some normal nodes. The loss of normal nodes 
might be problematic due to the resulting lack of network connectivity and sensing 
coverage. In addition, faults are only partially taken into account in detecting 
malicious nodes. They proposed a dual weighted trust evaluation scheme (DWE) in 
an environment where noise, natural faults and malicious nodes coexist. Each sensor 
node is assigned two trust values. The trust values are increased or decreased 
depending on the reading and aggregation result at the forwarding node.  An efficient 
updating policy is used to keep mis-detection rate low while achieving high malicious 
node detection rate [14].  

3 Dimensionality Reduction 

Depending on the application, each sensor node will be equipped with a special type 
of sensor. In general, the sensor data can be divided into three categories: normal 
(sensor is unharmed and the condition is normal, e.g. no fire), critical (sensor is 
unharmed while the condition is critical, e.g. fire) and abnormal (sensor is 
compromised, malfunctioned or dead). Even though the data is divided into three 
regions, each region may include a large number of data points. It is assumed that 
each sensor node knows its location, which will be sent to the parent node each time a 
symbol is sent. We will first normalize these data points making the normal value 
assigned equal to zero. In addition to dimensionality reduction purpose, we will be 
using the symbols from SAX to determine the deviation of a sensor from the normal. 
So, we proposed a new symbol conversion scheme by performing some modifications 
on SAX’s look up table. SAX considers only positive values. However, in our case 
sensor readings can deviate from the normal from both sides (higher or lower) and 
should be penalized in the same manner. We have proposed a new look up table to 
perform the needed task. Table 1 is our proposed generalized look up table where the 
user is able to specify the complexity of the calculation. Increasing the number of 
breakpoints increases the number of levels (symbols). Although this would increase 
the accuracy of the system but it will increase the required discretization time. 

For example, if we consider three regions in the table 1, the normalized sensor 
readings between [-0.43 and 0.43] will be converted to symbol “b” and the rest to 
symbol “a”. However, if SAX is used in this scenario, then the symbols would be “a” 
if the value is less than -0.43, “b” from [-0.43 and 0.43] and “c” if greater than 0.43.  
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Table 1. Digit to symbol conversion table 

 

4 Network Topology 

Our proposed system will have a four-layer architectural design, consisting of four 
types of sensor nodes: Simple Sensor Nodes (SS), Cluster Nodes (CL), Base Station 
(BS) nodes and the Sink Node (SN). SS nodes communicate directly with their CL 
nodes which in turn send their data to their BS parents, which finally send their data 
to the sink node. We shall assume that the SN has no limitations and is not vulnerable 
to any attacks. It receives the obtained readings, saves them for future use and takes 
the appropriate action in severe cases. 

 

 

Fig. 1. Architecture of REDWEST 
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Based on the four-layered architecture, the deployed sensors must be divided into 
these types depending on their positions. At launch, sensor nodes are randomly 
distributed on a given terrain which is divided into a  ݈ כ ݈  predefined grid by the user.  
Each grid will have one CL node. Several neighboring nodes (depending on the grid 
dimension) will have one common BS node. So at first all sensors are assumed to be 
SS nodes. In order to select the CL and BS nodes, the system accomplishes the 
following steps: 

 
1. Determines the nearest sensor node to the intersection of the neighboring grids and 

designates it as BS. Each sensor node designated as BS will use its higher 
transmission capabilities to be able to communicate with all its children. This 
process is performed by the SN.  
 

2. Determines the nearest sensor node from the center of the grid and designates it as 
a CL node. Each sensor node designated as CL will also use its higher transmission 
capabilities as well. This process is performed by the BSs. 

 
It is assumed that this process is only performed using security measures. In this 

way, the location of BS and CL children is provided securely. This is important so 
that parent nodes can detect Sybil attacks by the number of children they have and the 
mismatch in the position information sent by each sensor when transmitting its data. 

Whenever a CL or a BS node has consumed its power, or is detected as malicious, 
Redwest will be able to find that due to its ability to find malicious and 
malfunctioning sensors and replace it by using the above conditions. 

5 REDWEST 

5.1 Proposed Algorithm 

• Simple Sensor (SS) Node Layer: Sensor nodes (SSs), will read the data sensed by 
the sensor, perform the conversion from digit to symbol using our proposed SAX 
algorithm and send the data and its position through its antenna.  

• Cluster Control (CL) Node Layer: After receiving the data from its children SS 
nodes, the CL node will validate the position information and find the letter which 
has the maximum occurrence and designate it as the normal value. Then, it will 
calculate the deviation of each node from the normal and penalize those nodes by 
decreasing their weight. In addition to deviation from normal, REDWEST 
considers the performance system as another important factor in the evaluation 
process. If an SS node sends five consecutive correct values with respect to the 
normal, the CL node will increase the weight of that SS node. Having the weight of 
each sensor, data aggregation will be performed by multiplying the data sent by 
their weight and finding the average. In this way, sensors being suspected as 
malicious will have less impact on the system and sensors that were giving wrong 
results in one occasion will have the chance to be considered as an important factor 
in the system. After aggregating the data, the CL node will send the result to the 
BS node.  



 REsilient Double WEighted TruST Based (REDWEST) WSN Using SAX 23 

 

• Base Station (BS) Node Layer:  As we go up in the hierarchy, the number of 
children decreases, meaning that the received data will be reduced making the 
impact of a single node higher since the influence caused by an erroneous sensor 
will be higher. So we proposed to take firmer actions by performing two types of 
weight calculation schemes. In the first scheme, the algorithm adopted by the CLs 
utilizes harsher conditions: the tolerance of accepting wrong readings will be 
changed. In the second scheme, BSs will compare the average of data of sensors 
CLx1 found at a certain distance from the edge with its neighboring CLx2. Since the 
data sensed at the adjacent edges should be the same, then wrong results sent by 
two adjacent CLs would cause further decrease or increase in their weight. 

5.2 Simulation Program and Adopted Formulas 

The Symbol representations of each sensor in addition to its own reading will be 
collected by the CL node. If an SS node fails to send an accredited symbol or simply 
does not send any data due to battery failure or physical/software damage, the CL will 
consider its letter grade to be the last letter in the range. With the number of readings 
matching the number of children and the location sent by the sensor matching the one 
in its table, the CL node will determine the total count of each letter and designate the 
letter having the highest count as the normal value in the grid. In Table 2 the list of 
the used symbolic notations are given and explained. 

Table 2. Symbolic Notations  

Symbo
l 

Meaning 

E Aggregation result ܷ௡ SS sensor node’s output. E.g. temperature reading ܷ௡ᇱ Symbol value of  SS sensor node’s output. E.g. “a” ܤ௡ Indicates if SS node’s reading matches the average value 
Sletter Count of sensors (with penalty) reading the value “letter” 
Wn Weight value of SS sensor n, which ranges from 0 to 1 
Vn Weight value of CL sensor n, which ranges from 0 to 1 
Dn Deviation of the sensor value from “letter” value 
S Number of regions selected by user 
Fn Number of “m” consecutive correct readings out of “n” 
Rn Number of wrong readings sent by a single SS node n 
M The most common letter (of all sensors in one grid) in a single round 
Mx1 The most common letter (of sensors on the right of grid) in a single round 
Mx2 The most common letter (of sensors on the left of grid) in a single round 
My1 The most common letter (of sensors on the top of grid) in a single round 
My2 The most common letter (of sensors on the bottom of grid) in a single round 
θ Positive penalty coefficient 
γ Negative penalty coefficient 

 



24 A.S. Siranossian and H.W. Maalouf 

 

In this paper, counting the number of occurrences of each letter is not performed 
using a primitive manner. Here also the idea of trust is used. This is performed to 
solve the Byzantine problem. Sensors which are detected as malicious (even if they 
are giving correct values on purpose) will not have influence on the counting 
phenomena. The count of sensors reading the “symbol” value is given by Sletter .Where 
Sletter  represents, the sum of sensors whose quantized (ܷ௡ᇱ) value of its output (ܷ௡) 
matches the normal symbol value “letter” multiplied by the weight of the sensor. Sletter 
can be obtained using the following formula: S୪ୣ୲୲ୣ୰  ൌ ∑ ሺܤ୬ሻ כ ሺW୬ሻN୬ୀ଴         where,  ܤ௡ ൌ ൜1 ݂݅ ܷ௡ᇱ ൌ 0"ݎ݁ݐݐ݈݁" ݁ݏ݅ݓݎ݄݁ݐ݋  (1) 

Consequently, if “a” and “b” are the two symbols used, then, Sୟ  will give the 
number of sensors reading the symbol “a” and  Sୠ  will give the number of sensors 
reading symbol “b” taking into account their weight value. Having these values, CL 
will find the symbol having the highest S value and designate it as the most common 
letter M.  

The CL node will now find out how much each sensor is deviated from the most 
common (normal) value, calculate the extent of irregularity, the number of 
consecutive successes and accordingly penalize each sensor. The updated penalty will 
be used in the next round. 

We proposed to calculate the deviation from the normal value using the following 
formula: ܦ௡ ൌ | ܷ௡ᇱ െ 2ݏܯ | (2) 

Where dn is the deviation of each sensor in a single round and “s” is steps (region 
from table 1) selected by the user.  

The main purpose behind this convention is adding the factor of error deviation to 
the penalty formula (eq.3) meaning that a sensor making a deviation δ from the 
normal will be penalized less than the sensor making an error (δ+λ).  

This factor was not considered in previous work; however, we believe that sensors 
should be penalized depending on how much they are deviated from the average. A 
sensor that is slightly deviated due to a disaster in its area should not be penalized as 
much as a sensor giving a value with high deviation due to malfunction or intrusion. 
E.g. a fire can start near a sensor, so that sensor will read values slightly higher than 
neighboring sensors at round one. If this is the case, and a large penalty is given to 
that sensor then it will be considered as a faulty node where in fact it is not. In our 
system, the node will be penalized with a small factor and will be rewarded in the 
next round, since the average will tend to be that of a disaster state if fire spreads 
making more sensors to detect the phenomena.  

The number of wrong readings (Rn) the sensor has made, is another factor to be 
considered in finding the penalty weight. This issue was considered in previous body 
of  work. However, we believe that the number of wrong readings ought to have an 
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exponential impact on the weight factor. In fact, we selected the  ቀ1 െ ଵ௘ೃ೙ቁ factor 

since it gives the desired performance. The system will not tolerate a sensor giving 
more than 5 wrong readings and will give harsh penalties to sensors making more 
than 2 consecutive wrong readings. 

We also proposed upgrading the weight value whenever the sensor has been 
affected by a natural noise. This scheme was recently used by Oh et al. in [14]. 
However, we think that the increase should not be done directly every time the sensor 
output matches the normal value. We propose to increase the weight if the sensor was 
able to send a certain number of consecutive correct readings out of a predefined 
number (ܨ ௡). Selection of the parameter ܨ ௡  has an effect on the detection accuracy. 
By default, it is set to five out of ten. Hence, each five consecutive readings within the 
ten readings will increase ܨ ௡  by 1. After the ten consecutive readings, the number is 
reset. For stricter conditions, this value can be set to a firmer range such as eight 
correct readings out of ten. 

Having the number of wrong readings (ܴ௡), the deviation from average (ܦ௡) and 
the number of five consecutive correct sensor readings obtained (ܨ ௡), the CL node 
will calculate the weight value of each sensor in a single round. The weight can be 
increased or decreased depending on the behavior of a single node. The weight value 
represents the sensor node’s dependability. That is, the readings of a sensor node with 
a higher weight are more trustworthy and thus its readings will have higher influence 
in the aggregation process. Updating the values is important to reflect the correctness 
of the current readings in the future decision making process. 

Updating the weights has two purposes. First, if a sensor node is compromised and 
is frequently sending its faulty readings that are inconsistent with the final decision, 
its weight is likely to be decreased. Second, if an abnormal reading was sent by the 
sensor on one occasion and later by resolving its problem became consistent, then the 
weight value has to be increased. This is reasonable since sensors with incorrect 
reading should have smaller impact on the final decision than those with correct 
readings. 

Hence, summing up we propose the following equation to calculate the weight, 
where j indicates the present round: 

ሺ ௡ܹሻ௝ ൌ ൝ሺܨ ௡ כ ሻ ߠ ൅ ሺ ௡ܹሻ௝ିଵ െ ሺܦ௡ሻ כ ߛ כ ൬1 െ 1݁ோ೙൰ െ ܪ ݂݅ ܷ௡ᇱ ് ௡ܹܯ ݁ݏ݅ݓ݁ݏ݈݁                              
(3) 

Where,    0 ൑ ௡ܹ ൑ 1. 
 

In equation 3, the number of wrong readings (ܴ௡), with the selected exponential 
factor is deducted from the sensor’s previous weight. This means that, our formula is 
also based on the behavior of the sensor node itself. This was selected so that the 
penalty can depend on the number of mistaken reports which will increase the penalty 
exponentially. To add the ability to do fine adjustments, we have included the 
negative penalty coefficient (γ). Increasing this coefficient value will decrease the 
weight more rapidly. The value of γ can vary between 0.1 and 1.   
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On the other hand, the number of consecutive readings ሺܨ ௡ሻ multiplied by the 
positive penalty coefficient θ is added to the previous sensor weight. The larger the 
value of θ  is, the faster the increase of the weight value is when consecutive 
successes are achieved. The value of γ can vary between 0.1 and 1.   

Finding the optimal values of  θ  and γ  is essential in our mechanism since these 
parameters affect the detection time and accuracy of our proposed algorithm. 

In (eq. 3), we notice that sensors having higher deviation will be penalized more. 
Based on updated weights, the CL node is able to detect a node as a malicious node if 
its weight is lower or equal to zero. Sensors indicated as malicious will be taken out 
of the system.   

Moreover we have used in (eq. 3) the factor H to detect intruder nodes as well as 
Sybil and replication attacks, another factor H is added to (eq. 3), which is the 
validation factor. If the position of the sensor is not validated by its parent, a value of 
1 will be assigned to H, otherwise H will be zero. Subtracting 1 in (eq. 3) leads to the 
removal of the sensor from the system directly. We assumed here that the probability 
of finding the exact position of a sensor by a malicious node is low, sensors do not 
have the ability of finding the position of their neighboring sensors and that the 
position information is forwarded to the BS and CL nodes in a secure way.  

 Next, the CL node will aggregate two values to be sent to the BS node. The 
normal value aggregated from all sensors of the grid and the normal side sensor’s 
values aggregated from the sensors having a minimum distance (defined by the user) 
from the sides.  

To get the aggregation of the side sensors, the CL will use the same equations as 
above but instead of considering all sensors in the grid, it will consider the sensors 
which are positioned at the edge of the grid. This step will generate the values of the 
most common letter in the different sides of the grid, namely Mx1 on the right side, 
Mx2 on the left side, My1 on the top side and My2 on the bottom side. 

Now, if we need to have the exact reading values and not just the letter characters 
then the aggregation equation will become: 

ܧ ൌ ෍ ௡ܹே
௡ୀଵ כ ܷ௡ (4) 

Where E is the aggregation result, Wn is the weight ranging from 0 to 1 and Un the 
sensor reading.  

After receiving the most common letters M, Mx1, Mx2,My1, My2, values from its 
children CLs, the BS node performs Aggregation based on the M values where each 
BS node will collect the data received from the four corners. Similarly, a BS node will 
find the most common letter Nn based on the weight Vn and the different Nn using 
previous formulas but with firmer conditions. Figure 2 summarizes the weight based 
aggregation system. 
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Fig. 2. Weight based aggregation of the hierarchical network REDWEST 

The above steps are repeated whenever new information is to be reported to the 
sink node. The weight of each sensor is updated based on the correctness of the 
information. If the weight value of a sensor becomes less or equal to zero, it will be 
considered out of the system. If it happens to be a CL or a BS node, the system will 
designate that job to another sensor that has the necessary requirements by performing 
the steps explained earlier.  

Sensor nodes whose weight value is less or equal to zero are excluded from the 
system; however, these nodes can join the aggregation process again if their weights 
increase to 1 by the user depending on the application.     

6 Simulation Results 

Several simulation experiments using Matlab[16] were conducted to evaluate the 
effectiveness and performance of REDWEST. In these simulations, we considered 
that a total of 900 temperature sensors were deployed in a forest which was divided to 
a  3 כ 3 grid. The number of letters chosen was 5. Faults (dead, malicious, and 
malfunctioning sensors) and critical situations were introduced. In the case of dead 
sensors, it was assumed that these sensors would remain dead during the selected 100 
runs, where a run is the process of all sensor readings being sent to SN node. 
Malicious nodes were picked randomly with a probability of an occurrence set by the 
user. To make the simulation as close to reality as possible, we assumed that the 
probability of an already selected node to be picked again as malicious was higher in 
the next round. In the performed tests we have evaluated the effectiveness of our 
proposed formulas with respect to previously used similar schemes. Also, resiliency, 
endurance, performance and dynamism tests were performed as functions of different 
factors such as: the number of sensors deployed, the number of runs performed 
(endurance test), the number of malicious nodes deployed, the number of permanent 
faults deployed, positive penalty coefficient θ, negative penalty coefficient γ, the  ቀ1 െ ଵ௘ೃ೙ቁ, H  and ܨ ௡ factors.  

To begin with, we considered  θ = 0.2 and γ = 0.8 since we have to be strict with 
sensors making mistakes and on the other hand not tolerant with the sensors giving 
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correct values after incorrect readings.  Endurance of the system was measured by 
varying the number of reading instances (runs) from 100 to 1000 runs.  

Two probability factors were generated: possibility of sensors to be damaged, 
malfunctioning and out of power denoted by Pdead , and possibility of sensor to be 
malicious, reading incorrect readings and under the influence of attack denoted by 
Pproblematic . To consider very harsh environment, we took extreme bad conditions 
where the probability of dead sensors Pdead =0.10 and then the probability of 
problematic (damaged, having dead battery, created due to Sybil and malicious 
attacks) was increased. The system functioned error free until Pproblematic = 0.6.   

From the first subplot (a) in Figure 3, it can be noticed that even with 10% dead 
sensor leading to 90 sensors in each grid with 60% of it not normal (malicious or  

 

  
Fig. 3. General Outcome 
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(b) (c) 

(d) (e) 
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malfunctioned), the system in the 100 runs gave only one mistaken output with a 
deviation of two letter grades. However, if we look at the remaining subplots, we can 
see that at that instance no unharmed sensors exist (d), less than 5 sensors were giving 
correct results (b), all sensors were penalized (c) and less than 20 sensors were alive 
(e). Moreover, even after the incorrect reading reported, the system was able to 
overcome this harsh situation due to our two way grading system. So we can say that 
the system is consistent, resilient, and was able to overcome our endurance test. 
 

 

Fig. 4. Averages for every 5 run  

Figure 4 magnifies what we previously noticed in figure 3. Here, instead of reading 
the result after each run, the average of every five runs was considered. We can see 
that after the 6th 5-Run step there are no remaining unharmed sensors, so all sensors 
on the terrain were malicious, dead or suspicious. It can also be noticed that in spite of 
having the number of correct readings most of the time less than half of the live 
sensors, the system was still able to give correct results (meaning correct temperature 
values). Furthermore, the system was able to revive itself by adding the non- 
malicious nodes to the system after they were temporarily removed due to erroneous 
readings. These come to substantiate what we previously already concluded 
previously. 

Next, a comparison between our system and previous works that could be applied 
to our system is performed. Ju et al’s system WTA was considered, since it is an 
improved version of WTE. Figure 5 presents:  

• The average reading of all sensor nodes in the grid considering dead and 
malicious sensor nodes denoted by Averages. It should be noted that sensors 
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giving no values will be read as 2 (i.e. the value of “2” is considered as an 
infinite reading). 

• The average reading of all sensor nodes in the grid using Ju et al’s system, 
denoted by WTA averages. 

• The average reading of all sensor nodes in the grid using our proposed 
system, denoted by REDWEST averages. 

•  The average reading of only sensor nodes in the grid which are giving 
correct values, denoted by Perfect Averages. 

 

Fig. 5. Comparison Test 

In comparison to Ju et al’s system WTA, it can be noticed that REDWEST has 
passed the endurance test by at least 100 Runs while WTA was able to last until the 
60th round. Moreover, if we further continue this comparison, we notice that 
REDWEST was too close to the perfect results, while WTA was more sensitive to 
errors. 

Survival rate is an equally important factor especially when the system is adopted 
in battlefields or harsh environmental conditions.  We have also tested the system 
with high rate of attacks for longer periods of time. Figure 6, shows that although the 
system was under high rate of malicious attacks, it was able to overcome it and gave 
correct answers. 

Numerically speaking if 60% of the 90 sensors are malicious at every run then the 
system will collapse after eight runs at extreme conditions. REDWEST on the other 
hand is functioning perfectly until the 120th run even when all the sensors are 
damaged. The output was wrong only when none of the sensors were giving correct 
results, which is very normal. If we compare it with WTA, we can notice how 
REDWEST’s lifetime and endurance is high. In fact, it gave near perfect results 
except in situations where none of the sensors were functioning correctly, while WTA 
stopped functioning after 60 Runs. Finally, in order to find the optimal values of the 
positive penalty coefficient (θ) and the negative penalty coefficient (γ) we considered 
ratio ∂. 

 

Redwest 
Perfect Averages 

Averages 
WTA 
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Fig. 6. System’s performance under long term stress 

∂ ൌ system correctnessmean ሺ correctlive sensors ሻ (5) 

After considering different combinations of θ and γ, the simulation results showed 
that θ= 0.2 γ=0.8 combination gives the best results. By taking γ=0.8 we are 
decreasing the weight of a wrong sensor rapidly. However, taking θ=0.2 means that 
we are increasing the weight of the correct sensor smoothly. In this way the system 
will have enough time to decide whether the sensor was malicious or was under the 
effect of thermal noise.  

7 Conclusion 

In this paper, we proposed a novel dual weighted trust evaluation based scheme to 
detect compromised or misbehaved nodes in hierarchical WSNs. Trust values of 
sensor nodes are used as weights decided by the parent node to reflect the correctness 
of a sensor node’s reports in decision-making procedures. The weights are updated in 
such a way that normal nodes with weights equal to 1 will retain their values, while 
those with weights less than one will be put in testing phase. If five consecutive 
correct values are recorded, then the trust value is increased. On the other hand, 
malicious nodes behaving differently from normal nodes gradually lose their weights 
and nodes having weight value equal to zero are excluded from the system. 

Redwest 

Averages 
WTA 

Perfect Averages
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In this paper, a modified SAX was used in order to minimize the transmitted data 
and to increase the system accuracy. Several equations were also proposed to test and 
calculate the different coefficients of the proposed algorithm. 

As possible future work, we propose to add energy level to our weight formula 
hence solving the problems caused directly by selfish nodes. In this way, sensors 
having high power will be more trusted especially in the case of CL and BS nodes. 
Furthermore, additional aspects can be added to detect any source of replication 
leading to Sybil attacks; and to minimize extra security procedures used by security 
measures which consume several resources like energy and storage.  
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