
RAISE: RAIlway Infrastructure Health

Monitoring Using Wireless SEnsor Networks

Jaime Chen, Manuel Dı́az, Bartolomé Rubio, and José M. Troya

Dpto. Lenguajes y Ciencias de la Computación,
University of Málaga, Málaga, Spain
{hfc,mdr,tolo,troya}@lcc.uma.es

Abstract. Wireless Sensor Networks are composed of devices of reduced
size, self-powered and with wireless transmission capabilities. Because
of these features this technology has been recognised as promising for
a large variety of monitoring and surveillance applications. Moreover,
WSNs have been identified as having the potential to become an inte-
gral part of the protection of critical infrastructures (CIP). In this paper
we present the details of an application that makes use of WSNs to mon-
itor railway infrastructures. The WSN collects information about the
structural health and behavior of the infrastructure when a train travels
along it and relays the readings to a base station. The base station uses
the next train(s) as a data mule to upload the information. The informa-
tion is then processed on the train which does not have the limitations
of a sensor node. The use of a train as a data mule is especially suitable
to collect information from remote or inaccessible places which do not
have a direct connection to the internet. The application has been built
using a publish/subscribe middleware called PS-QUASAR over Tmote
sky nodes. The results of the simulation using the Cooja simulator are
presented in this paper and confirm the feasibility of the application.

Keywords: high-level programming abstraction, wireless sensor net-
work, middleware, critical infrastructure protection, infrastructure
health monitoring, railway bridge monitoring.

1 Introduction

Wireless Sensor Networks [Akyildiz et al., 2002] are composed of small devices
which are self-powered and contain different sensors that can get information
from the environment. They can also wirelessly communicate with each other to
coordinate themselves and transport the information to a base station.

Monitoring applications can greatly benefit from this technology since a large
number of nodes can be deployed in the scenario without the need for wiring
[Gaura et al., 2010]. By means of routing and synchronization protocols, sensor
nodes can coordinate with each other to sense the environment. In recent years,
for example, the future prospects for WSNs as promising for the Critical In-
frastructure Protection (CIP) field have been recognised. In this regard, WSNs
have the potential to become an integral part of the protection of CIs. Their

M. Zuniga and G. Dini (Eds): S-Cube 2013, LNICST 122, pp. 143–157, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

144 J. Chen et al.

distributed nature makes them particularly suitable against failures and attacks
as they are much more rarely affected in their entirety, unlike wired systems.

One of the main barriers, researchers and industry need to tackle in order for
WSNs to become pervasive in this application domain is the lack of QoS support,
mainly due to their wireless nature [Chen et al., 2011]. It is important that the
information sensed from the critical infrastructure is reliably sent to the base
station. Moreover, because of the embedded nature of sensor nodes, program-
ming applications for these devices is an error-prone task. In order to raise the
abstraction level with which these devices are programmed a middleware layer
is used on top of the sensor node’s operating system [Mottola and Picco, 2011].
The middleware offers a programming model that simplifies the task of develop-
ing applications. It can also manage the communication between the devices so
that application QoS requirements are met.

In this paper we apply WSN technology to the CIP problem, more specifically
the monitoring of railway infrastructures. The application scenario consists of a
railway bridge in which structural health is monitored. The WSN is deployed
along the bridge and takes periodical readings about the structural health of it.
Trains passing through are used as data mules to get the information from the
sensors which means that no direct connectivity to the internet is required for
the WSN. In order to tackle the lack of QoS support and the low level of abstrac-
tion of the sensor devices a middleware called PS-QUASAR [Chen et al., 2013]
has been used. PS-QUASAR provides a simple publish/subscribe programming
model. Developers can use it to provide QoS requirements that communications
need to meet. The application implemented in this paper tackles the use of WSNs
in the CIP problem. Also, it proves and defends that the use of middleware ab-
straction such as PS-QUASAR can considerably simplify the task of developing
WSN applications and make it less error-prone. Finally, it makes use of inter-
esting mechanisms that can be used to organize the network, such as clustering
(to avoid packet collision and packet loss), data fusion (to minimize the number
of sent packets) and QoS support.

The rest of the paper is organized as follows. Section 2 describes the mo-
tivation of the application scenario. In Section 3 related work is presented. A
brief description of the PS-QUASAR middleware is described in Section 4. The
application architecture and implementation details are depicted in Section 5.
The evaluation and future work are described in Sections 6 and 7, respectively.
Finally, some conclusions are presented in Section 8.

2 Motivation

Railway infrastructures, as any other kind of infrastructure, are affected by the
aging process. This is particularly important in this domain. For example, large
sections of the railway lines in the United States were built in the late 19th cen-
tury or beginning of the 20th century. In Europe large sections of the railway lines
were reconstructed after the Second World War. Therefore, it is really important
to regulate maintenance and restoration guidelines to ensure the safety in the

RAISE: RAIlway Infrastructure Health Monitoring Using WSNs 145

railway transport. In this regard, more attention has been paid to this issue from
the late 20th century. The document containing the guidelines for the mainte-
nance of the Spanish railway lines (ITPF-5) is regulated in the FOM/1951/2005
Ministerial Order [Spanish Official Bulletin of the State (BOE), 2005]. In par-
ticular, for railway bridges, the guidelines establish that a visual inspection of
elements of the infrastructure needs to be carried out every 15 years by spe-
cialized technicians. Furthermore, a general visual inspection is completed every
year by non-specialized railway line guards.

This is sufficient for most railway bridges. In structures with unusual topology
or particularly high/long structures, however, the information on the evolution of
defects is more limited. Moreover the visual inspections are much more difficult
to carry out and require a tempory closure to traffic. In these structures, it
is common to check the state of the structure using specialized equipment or
even install a permanent monitoring system, e.g. fiber optic instrumentation
with BOTDA (Brillouin Optical Time Domain Analysis) or distributed sensor
instrumentation. One of the main disadvantages of these systems is the high cost.
Also, if there is no mobile coverage then data acquired by the system cannot be
sent to the remote control center.

The current WSN technology can be used as a permanent monitoring system
and considerably reduce the cost of installation and maintenance since no wiring
is required. The application presented in this paper seeks to provide a system to
monitor railway infrastructures using WSNs cost-effectively. It also copes with
the network coverage problem and tackles the transfer of large quantities of data
in a reliable manner.

3 Related Work

The use of WSNs for infrastructure health monitoring has been extensively stud-
ied. This section covers some of the existing proposals that focus on WSNs mon-
itoring the infrastructure health of bridges.

In [Whelan et al., 2007] a WSN consisting of 20 sensor nodes is deployed on a
road bridge to gather accelerometer and strain data. Nodes are assigned a sequen-
tial time offset based on their local addresses to enable them to transmit without
collisions. Although TinyOS is used as the operating system, low level software
is programmed to achieve higher data throughput. An actual deployment of a
WSN for railway bridge monitoring is described in [Bischoff et al., 2009]. The
WSN consists of 8 nodes that are deployed on the bridge and collect strain
information whenever a train crosses the bridge. The network self-organizes
as a routing tree to relay the information to a sink node. The information is
then relayed from the sink node to the remote control centre using UMTS. In
[Aboelela et al., 2006] a WSN is used to monitor railway track status. Sensor
devices are hierarchically organized with redundant paths. Multi-path routing is
used to send the information to the remote base station. Fuzzy logic techniques
are employed to aggregate data collected. In BriMon [Chebrolu et al., 2008] a
wireless sensor network composed of Tmote-sky devices is deployed on a railway

146 J. Chen et al.

bridge. Information is collected by nodes and retransmitted to the train that
acts as a mobile sink node. The routing protocol forms a tree rooted at the head
node of the WSN by periodically transmitting a message which is flooded down
the WSN. The feasibility of the mobile data transfer from the WSN to the train
is studied by means of an experiment that only takes into account the mobile
head node and the WSN head node. Other real deployments of WSNs on road
bridges are presented in [Lee et al., 2007] [Kim et al., 2007] [Lynch et al., 2006]
and [Kundu et al., 2008].

Although, some of the these approaches and the proposal covered in this paper
share some commonalities there are some important differences. Most of these
proposals concentrate on the sensor processing part and a great number of them
lack a general purpose routing protocol. BriMon, is the only one to take the
data muling technique into account. Although it studies many different issues
and aspects of the application by means of isolated testing of components in
the system, no general testbed is mentioned in the paper. In our work we have
simulated the application scenario as a whole including mobility and the mobile
data transfer protocol. In addition, unlike other proposals, we make use of a
middleware layer to automatically handle QoS requirements and to simplify the
task of developing the application. Finally, other proposals use an application
specific design whereas the use of PS-QUASAR allows us to have a more generic
design. This in turn, allows us to add more nodes to the WSN, for example
nodes to cover new sections of the bridge without having to reprogram already
deployed nodes.

4 PS-QUASAR Middleware

PS-QUASAR is a middleware for WSANs that offers a high level simple program-
ming model based on the publish/subscribe paradigm. The publish/subscribe
programming model provided by PS-QUASAR is really simple and easy to use
(Figure 1). The simplicity of the model helps developers to implement WSAN
applications without having to worry about common low-level issues such as
data packet encoding/decoding, message handling, etc. In this model all nodes
in the network are aware of the existing subscribers and can become publishers
of each of the topics.

The proposed publish/subscribe programming model is based on two different
mechanisms: publish/subscriber primitives and listeners. The publish/subscribe
primitives allow information to be transparently sent from publishers to sub-
scribers. These two entities can be located in different nodes or in the same one.
In the proposed publish/subscribe model, the QoS requirements are only speci-
fied on the publisher’s side. This simplifies the task of delivering information and
avoids time-consuming QoS-matching algorithms. The QoS parameters offered
are deadline, reliability and priority. Listeners are functions that are executed
whenever a message is received by a subscriber. Only subscribers can make use
of listeners to process received data. Listeners are specified as a parameter in
the ps subscribe method.

RAISE: RAIlway Infrastructure Health Monitoring Using WSNs 147

���������	�
����������	�
����������	�
����������	�
�
��
�����������
�����������
�����������
��
���������
���������
���������
��������������������
����������������
����������������
����������������
�������� ��������� ��������� ��������� ���������
��
�������������
�������������
�������������
��������������������
�!�������
�!�������
�!�������
�!�� �����
�"�����
�"�����
�"�����
�"� � � �
��
�������������
�������������
�������������
��������������������
�!�������
�!�������
�!�������
�!�� �����
�"�����
�"�����
�"�����
�"����������������
����������������
����������������
����������������
�������� ��������� ��������� ��������� ���������

���#��$	�%
����#��$	�%
����#��$	�%
����#��$	�%
�
��
���������
���������
���������
��
���������
���������
���������
������������"�������������"�������������"�������������"�����

����&��"�����������&��"�����������&��"�����������&��"�������"���
��'�"���
��'�"���
��'�"���
��'��������������������������������� (��
�����!(��
�����!(��
�����!(��
�����!)��
�����!)��
�����!)��
�����!)��
�����! � � � �

(��
�����!(��
�����!(��
�����!(��
�����!****
���+��"������,������"���������+��"������,������"���������+��"������,������"���������+��"������,������"������
-�����-�����-�����-����� "��"���� �"��"���� �"��"���� �"��"���� �
������������	�"������	�"������	�"������	�"������ ������������ ������������������������ ��
-�����-�����-�����-����� ����������! ����������! ����������! ����������!
-������-������-������-�������������! �������! �������! �������!

....

���/0%
�����/0%
�����/0%
�����/0%
��
��
�����!
����������
�����!
����������
�����!
����������
�����!
���
���������
���������
���������
������������������������������������"���
��
��������"���
��
��������"���
��
��������"���
��
���������������������""�
������""�
������""�
������""�
����������""��""��""��""�� � � �
��
�����
��������
�����
��������
�����
��������
�����
�������� �� �� ��

Fig. 1. PS-QUASAR programming model API

�	

	

�	

�	
�	

��

�

��

��
��

��

�

��

��
��

�

�

�

�

��

�

��

��
��

��

�

��

��
��

�

������� 	
���	���� ��

������� �
���	���� ��

������� �
���	���� ��

�������

���	���� ��

������� �
���	���� ��

������� �
���	���� ��

�

� � �
 � �

������
���

�� ��

� !�"�	� #�	��$������% �"�� �
���	���� ��

���% �"�� �$
���	���� ��

Fig. 2. Architecture of the application prototype

148 J. Chen et al.

�&'

�����
"� (!	!)(*	��!��	���
+"�)��-�

��
.

� ���	!�"� �	/��

*�0$1	/��

,"� +	�	���$$

&�
,
-

.")!���
+"�)��

Fig. 3. PS-QUASAR module diagram

The PS-QUASAR middleware is composed of three different modules: PS-
QUASAR Maintenance Protocol, PS-QUASAR Routing Module and the API.
Figure 3 shows the PS-QUASAR module diagram and how the different modules
connect to each other. The maintenance protocol is in charge of creating the links
between neighbor nodes and discovering subscribers and publishers. The routing
module carries out the actual routing process based on the information collected
by the former protocol. The middleware uses a directed acyclic graph based
routing protocol that supports a many-to-many communication and can handle
priority, deadline and reliability requirements in the communication between
nodes. The protocols are fully distributed and multicasting techniques are used to
improve communication between nodes. The API, on the other hand, provides a
set of methods for developers to make use of the publish/subscribe programming
model offered by PS-QUASAR.

In the context of our application scenario, the use of such high level abstraction
significantly simplifies the task of collecting sensed data. At the same time, the
middleware, if specified, provides reliable communication by means of retrans-
missions. More details on the middleware can be found in [Chen et al., 2013].

5 RAISE Architecture

The general architecture of the application is depicted in Figure 2. The appli-
cation scenario consists of a WSN deployed on a railway bridge (referred to
simply as the bridge WSN for the rest of the paper) and sink nodes deployed
on the trains, passing through, which will collect the information sensed by the
bridge WSN. This WSN gathers important data about the structural health of
the infrastructure such as vibrations and strain. An optional WSN could also
be deployed inside the train to monitor abnormal situations as the train travels
over the railway line or for the whole itinerary (train WSN). This information
(vibration, temperature, material deformation,. . .) on the carriages’ health can
be tracked to detect problems in the train.

RAISE: RAIlway Infrastructure Health Monitoring Using WSNs 149

In the bridge WSN a set of different nodes are deployed along the railway
infrastructure. Let us note that nodes are not only deployed on the railway
tracks but also inside the structure itself so infrastructure aging and possible
incidents can be detected. The goal of the network is to self organize to sense
data whenever a train passes by and use the next train as a data mule to upload
the sensed data. The data sensed at the bridge is transferred to the train by
means of sink nodes, labelled S1 and S2 in Figure 2.

The first application prototype was developed with a single WSN that con-
tained all the sensor nodes in the bridge. The tests carried out in this application
prototype showed disappointing results in terms of reliability. In this first ap-
proach, a single node acts as head node of the network and collects the informa-
tion that is sent by the rest of nodes. Since the reliability is significantly affected
by the distance between source and destination and by neighborhood traffic, in
this scenario where a single WSN contains all nodes, collisions are frequent. As
a result, reliability was shown to be around 70%-80% in our preliminary tests.

In order to increase performance clustering techniques need to be used. Nodes
along the bridge are divided into independent sections (labeled as section a, b,
c, . . . in Figure 2). Consecutive sections operate on different channels, namely
channel A and B, so there is no interference between them. In our prototype
only two channels have been used, but a greater number of channels could be
used if a higher throughput is desired in the data muling process as explained in
Section 5.3. The use of separate sections reduces the maximum distance between
nodes and the network traffic thereby improving network energy consumption
and reliability.

��

�

��

��
��

�	�������
��
����
��
����� ���
�������

����� �

Fig. 4. Organization of a network section: a single head node collects the information
sent from other nodes

For each Section i of the bridge WSN, node 1i subscribes to information on
topic Si. The rest of the nodes in Section i publish information on topic Si.
Figure 4 shows the connections between the nodes in a section (determined by
the node range and the location where they are deployed). In the case study pro-
totype, each section is composed of a total of 5 nodes. All these nodes (including
the head node) participate in sensing data but only the head node communi-
cates with the train to upload the sensed data. This organization of the section

150 J. Chen et al.

(tree-based) has been chosen because it minimizes neighborhood interference
and therefore improves the reliability of each section. Application developers are
not directly aware of the routing protocol, nor the network organization, that is,
the middleware automatically delivers the information. This allows them to add
or remove nodes from each section on-the-fly, even in other topologies distinct
from the tree one used in this prototype. The sensed information collected in the
head nodes is stored until the next train passes by. In that moment, the data
muling protocol will start uploading the information to the train.

#�	��$�$ 	((�(
/

���(��� !�	�� � 0"����!��� !�	�� �

5	!	$+)���� !�	�� �6�

�

#�	��$�7�$ 	((�(
/

���(��� !�	�� �7� 0"����!��� !�	�� �7�

5	!	$+)���� !�	�� �

�

Fig. 5. Train schedule and the execution of the different modules

Overall the application has three different modules: sensing module, collecting
module and data muling module. Figure 5 shows the relationship between each
of the modules and the trains’s schedule. Sensing and collecting modules run
on all nodes in each section whereas the data muling module is only used in
head nodes. These three modules are explained in Sections 5.1, 5.2 and 5.3 and
depicted in Figures 6(a), 6(b) and 6(c), respectively.

��

�

��

��
��

22���(���33

22���(���33

22���(���33

22���(���33

22���(���33

(a) Sensing module

��

�

��

��
��

0"����!���

0"����!���

0"����!���

0"����!���

(b) Collecting module

��

�

��

��
��

��
�	�	�
������

��
�������� ����
������ ��	��

(c) Data muling module

Fig. 6. Different modules of the application running in the nodes

5.1 Sensing

The sensing module retrieves data as trains pass by. It is far more useful to
gather the data when the train is passing through as this provides real informa-
tion on how the infrastructure behaves when it is actually in use. This can be

RAISE: RAIlway Infrastructure Health Monitoring Using WSNs 151

used to detect abnormal vibrations or material deformation which indicates that
the health of the infrastructure has been compromised. The frequency rate at
which to sample depends on the information to be collected. Since the informa-
tion gathered by each sensor is simulated in our application prototype we have
assumed a sampling rate of 2Hz and a sample size of 2 bytes. Nodes in the bridge
WSN are instructed to start sensing whenever a train passes by. To do that, the
application needs to identify whenever a train is approaching the bridge in order
to start collecting data. In tests presented in Section 6, the command to start
sensing is given by the simulation script each time a train passes by. In an actual
deployment there are several alternatives that can be used to detect a nearing
train. BriMon [Chebrolu et al., 2008] for example, suggests the use of frontier
nodes which are nodes placed upstream of the sensor network to detect nearing
trains in time to notify the rest the network to start sensing. Another option
would be to use accelerometers to detect vibrations coming from approaching
trains. In the same way, when a train leaves the bridge, nodes are instructed to
stop sensing.

All information sensed in each node is stored in a data cache. This data cache
will be accessed by the collecting module.

5.2 Collecting Data

The application collects data by default where there are no trains on the bridge.
The collecting module in each node sends the information stored in the local
data cache to the head node of the section. For example, in Figure 4 all nodes
send data packets, containing the sensor readings, to node 1 whenever there is
data in the local data cache. To do this, sensor nodes call the publish primitive of
the PS-QUASAR middleware and it automatically handles the delivery. Packet
payload is filled with as much data as possible, from the local data cache in order
to minimize the number of packets to be sent. In order to be sure that data is
delivered, communication is reliably configured. This is achievable by using an
additional parameter in the publish primitive that accepts QoS requirements.
The collection module is programmed to use retransmissions with ACKs in or-
der to confirm that data has been delivered. When the module is enabled, data
cache is periodically checked and if it contains something then a packet is sent to
the head node. The data collected by each section will not be transferred until
the next train arrives so packet delay is not a concern. Therefore, data in the
cache does not need to be sent immediately to the head node. For each node, a
collecting period of 1 second has been chosen between consecutive transmissions
of data to the head node. Figure 7 shows the pseudocode of the sensing and
collecting data modules, respectively, using the API shown in Figure 1. Head
nodes call the ps subscribe method to express their desire to receive all the in-
formation associated with a topic. Nodes in the same section use the ps publish
method to send the information on that same topic. The third parameter of the
method establishes that the information needs to be sent reliably. The middle-
ware automatically delivers the information to the corresponding subscribers.

152 J. Chen et al.

������� ������

89��/ �8��'�:;&8.'�5<
�	+ �� ($=$��!;(+ ��;��"+;(��("�(��>
(9�;!";�	!	;�	����$($�>

���������� �������� ��	������
�!$���!�	��?	!�"�

�����
����
��$!" ��;�@$�	����;�	!	;��(!���� �>

A)��!�"� �	����;�	!	;��(!�����$�����(((��;	����((@$�	+ �� �	!	�B
� �� � � � �(9�;!";�	!	;+)����;�	����$�	!	$�>

C

���������� �������� �����������
89��/ 0�1180#'�:;&8.'�5<
���$�	!	;�	���;�"!;�+ !/ �B

�	+ �� (+ ��;�"����!�"�DE$=$��!;(+ ��(;��"+;�	!	;�	�����>
�����
�����$!" ��;�@$(+ ��;�"����!�"�@$F"(;����	
�� �>

C

Fig. 7. Pseudocode of collecting and sensing modules for Section i

5.3 Data Muling

Once the information has been collected in the head node the next train that
passes by will be used as the data mule to get the information from it. This
module only runs on head nodes which are the only nodes that communicate
with the train. The module is executed concurrently together with the sensing
module in the head nodes. The module basically starts sending data packets
from the data muling cache to the train whenever a passing train is detected.

Two issues need to be tackled in the mobile data transfer. The first one is to
reliably send the information to the train and the second to send it at a speed
that allows all sensed data to be uploaded to a single train. The first one is
solved by using reliable transmission based on ACKs. The second depends on
different parameters such as the train speed and the hardware used to transmit
the data (node radio range, data rate, . . .). In order to further increase the
throughput of the proposed data muling protocol multiples sink nodes are used.
In our prototype two sink nodes have been used in order to double the transfer
rate of the protocol but a higher number of sink nodes could be used if necessary,
for example if the sampling rate required is higher. The radio range of each head
node is not assumed to be higher than the one for normal sensor nodes. In Figure
2, for example, sink node S1 collects data from head nodes 1a, 1c and 1e while
sink node S2 does the same from head nodes 1b, 1d and 1f. The results presented
in Section 6.2 show that the proposed data muling protocol is feasible.

6 Evaluation

The complete case study application has been implemented with the settings
described in Section 6.1. The results in terms of reliability and quantity of data

RAISE: RAIlway Infrastructure Health Monitoring Using WSNs 153

Table 1. Tmote-sky specifications

Attribute Value

Processor MSP430 8MHz

Radio
CC2420 802.15.4
compliant

Battery 2 AA batteries

Power consumption

Sending: 59.1 mW
Receiving: 52.2 mW
CPU: 5.4 mW
LPM: 0.1635 mW

Operating system Contiki OS

generated by the WSN are shown in Section 6.2. The mobile data transfer re-
sults are discussed in Section 6.3. Finally the power consumption is presented in
Section 6.4.

6.1 Environment Set-Up and Scenario Settings

The application scenario has been implemented in C programming lan-
guage for the Tmote-sky motes running the Contiki operating system
[Dunkels et al., 2004]. Table 1 shows the main features of these motes. Power
consumption in the table and in the rest of the tests has been calculated using
the energest module [Dunkels et al., 2007] provided by Contiki OS. The result-
ing code has been simulated using the Cooja simulator [Osterlind et al., 2006].
The Cooja simulator emulates Tmote-sky motes at machine code instruction set
level. The communication model takes into account packet loss when nodes are
transmitting at the same time, namely collisions are taken into account in the
simulation. The Contiki test editor plugin has been used to control the simu-
lation and to actually simulate the movement of the train. This plugin allows
users to control many different settings of the scenario, such as node position,
at different instants of time. This feature has been used to actually recreate
the movement of the train passing through the bridge WSN. Nodes have been
deployed as depicted in Figure 2, that is 30 nodes divided into 6 sections of 5
nodes each. The script simulates 20 trains passing over the bridge, one every 60
seconds. Each train moves at a speed such that the sink nodes on the train are
in range of each head node for around 7 seconds. For example, this means that
if both head nodes and sink nodes in the train have a radio range of 50 metres
the train is travelling at a speed of 100 km/h (assuming ideal conditions).

6.2 Reliability and Data Generated by the Bridge WSN

Results obtained in the tests are summarized in Table 2. One section generates
on average 706 bytes everytime a train crosses the bridge. The total amount

154 J. Chen et al.

Table 2. Data generated and reliability

Attribute Value

Sensing rate 2Hz

Sample size 2 bytes

Mean data generated for each train in one section 706 bytes

Data collection reliablity achieved 100%

Data collection mean number of retransmissions 1.076

Data collection maximum number of retransmissions 7

of sensed data has been received by each head node which gives a reliability of
100%. Although the maximum number of retransmissions carried out by a sensor
is 7 the mean number of retransmissions is 1.076 which means that almost no
retransmissions have been carried out. Also, it shows that even in networks with
low traffic it is really difficult to obtain 100% reliability without using techniques
such as retransmissions. This leads us to believe that simulators which do not
take collisions into account do not produce realistic results.

6.3 Data Muling

In the tests carried out each of the trains receives the readings sensed when the
previous train was crossing the bridge. Each train is in range with each head
node for approximately 7 seconds. The information sensed for each of the 20
trains in the test has successfully been received by the sink nodes S1 and S2.
The reliability achieved is 100% because ACKs have been used to confirm the
reception of data packets. To do that the runicast library provided by Contiki
OS has been used. The data muling transfer rate from the bridge WSN to nodes
S1 and S2 for each train is 0.668 Kbps and 0.665 Kbps. That means that the
mean data muling transfer rate for the whole system is 1.334 Kbps. Although
in the application scenario all packets have been successfully transferred to the
train the data muling transfer rate is really low compared to the maximum data
rate of the mote (around 45 Kbps). Several factors may have influenced this
data rate drop. First, the head node also carries out the sensing task at a rate of
2Hz which slows down the data muling process. Head nodes can be programmed
not to carry out sensing if a higher data rate is needed in the head nodes. Also,
the operating system and the retransmission mechanism introduces some latency,
especially when ACKs have not been received (the radio has to wait a predefined
time if no ACK has been received before sending a retransmission). Finally, the
radio range of the head nodes is assumed to be relatively short (i.e. 50 metres if
the train moves at a speed of 100 Km/h). By extending the radio range of head
nodes the data muling transfer rate can be easily increased.

6.4 Power Consumption

The power consumption of each kind of node has been measured and is shown
in Table 3. This power consumption can be compared to that presented in Table

RAISE: RAIlway Infrastructure Health Monitoring Using WSNs 155

Table 3. Power consumption (mW)

Head node Normal node Sink node

Sensing and data muling 9.392 0.971 1.812

Collecting 1.950 1.832

1 for the different modes of the mote. Power consumption during the data col-
lection is relatively low, 1.950 mW and 1.832 for head nodes and normal nodes,
respectively. Power consumption of the sink nodes is also low, although energy
consumption in sink nodes is not a concern because they can be powered as they
are located on the train. During the sensing and data muling processes, head
nodes have the highest energy consumption since all the information gathered
by the network needs to be transmitted by them. However, this only happens
when trains are crossing the bridge which constitutes a really short amount of
time compared to the amount of time the head nodes are collecting information.

7 Future Work

The results obtained in the test with the application prototype suggest that the
application scenario is actually feasible. However, there are still open questions
that need to be tackled, such as which specific sensors to use in the sensor nodes
and how the way in which they are deployed can affect the accuracy of the read-
ings. There are also several issues and behaviors that have not been captured by
the simulators such as the influence of the bridge’s infrastructure or the speed of
the train on the performance of the sensor radio that require further considera-
tion. This paper, however, can be used as a starting point from which to consider
all these unanswered questions. In addition, the use of PS-QUASAR has proven
to be invaluable as it automatically handles the QoS requirements specified at
the application layer and substantially simplifies the task of programming WSN
applications. Based on the results obtained, we believe PS-QUASAR is suitable
for a wide range of applications in the context of CIP.

8 Conclusions

A railway infrastructure health monitoring application that uses WSNs has been
presented in this paper. The WSN collects information about the structural
health and behavior of the infrastructure when a train travels along it and relays
the readings to a base station. The base station then uses the next train(s) as a
data mule to upload the information. The WSN makes use of a publish/subscribe
based middleware called PS-QUASAR to significantly simplify the task of de-
veloping the application and to allow new nodes to be added on-the-fly. Other
techniques used to minimize packet loss, mainly due to collisions, are packet
caching, data fusion and clustering. The evaluation carried out shows that the
mobile data transfer is actually feasible and that the results obtained are satis-
factory, both in terms of reliability and power consumption.

156 J. Chen et al.

Acknowledgments. This work was supported by the Spanish Project TIN2011-
23795 WiCMaS:Wireless based Critical Information Management Systems.

References

Aboelela et al., 2006. Aboelela, E., Edberg, W., Papakonstantinou, C., Vokkarane, V.:
Wireless sensor network based model for secure railway operations. In: 21st IEEE
International Performance, Computing, and Communications Conference, p. 83
(2002)

Akyildiz et al., 2002. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.:
Wireless sensor networks: a survey. Computer Networks 38, 393–422 (2002)

Bischoff et al., 2009. Bischoff, R., Meyer, J., Enochsson, O., Feltrin, G., Elfgren, L.:
Event-based strain monitoring on a railway bridge with a wireless sensor network.
In: 4th International Conference on Structural Health Monitoring of Intelligent
Infrastructure, SHMII-4 (2009)

Chebrolu et al., 2008. Chebrolu, K., Raman, B., Mishra, N., Valiveti, P.K., Kumar,
R.: BriMon: A Sensor Network System for Railway Bridge Monitoring. In: The 6th
Annual International Conference on Mobile Systems, Applications and Services,
MobiSys (2008)

Chen et al., 2011. Chen, J., Dı́az, M., Llopis, L., Rubio, B., Troya, J.M.: A survey on
quality of service support in wireless sensor and actor networks: Requirements and
challenges in the context of critical infrastructure protection. Journal of Network
and Computer Applications 34(4), 1225–1239 (2011)

Chen et al., 2013. Chen, J., Dı́az, M., Rubio, B., Troya, J.M.: Ps-quasar: A pub-
lish/subscribe qos aware middleware for wireless sensor and actor networks. Journal
of Systems and Software 86(6), 1650–1662 (2013)

Dunkels et al., 2004. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and
flexible operating system for tiny networked sensors. In: Proceedings of the First
IEEE Workshop on Embedded Networked Sensors (Emnets-I), Tampa, Florida,
USA (2004)

Dunkels et al., 2007. Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based on-
line energy estimation for sensor nodes. In: Proceedings of the 4th Workshop on
Embedded Networked Sensors, EmNets 2007, pp. 28–32. ACM, New York (2007)

Gaura et al., 2010. Gaura, E., Girod, L., Brusey, J., Allen, M., Challen, G.: Wireless
Sensor Networks, Deployments and Design Frameworks. Springer (2010)

Kim et al., 2007. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S.,
Turon, M.: Health monitoring of civil infrastructures using wireless sensor net-
works. In: Proceedings of the 6th International Conference on Information Pro-
cessing in Sensor Networks, IPSN 2007, pp. 254–263. ACM, New York (2007)

Kundu et al., 2008. Kundu, S., Roy, S., Pal, A.: A power-aware wireless sensor
network based bridge monitoring system. In: 16th IEEE International Conference
on Networks, ICON 2008, pp. 1–7 (2008)

Lee et al., 2007. Lee, R.-G., Chen, K.-C., Lai, C.-C., Chiang, S.-S., Liu, H.-S., Wei,
M.-S.: A backup routing with wireless sensor network for bridge monitoring system.
Measurement 40(1), 55–63 (2007)

Lynch et al., 2006. Lynch, J.P., Wang, Y., Loh, K.J., Yi, J.-H., Yun, C.-B.: Perfor-
mance monitoring of the geumdang bridge using a dense network of high-resolution
wireless sensors. Smart Materials and Structures 15(6), 1561 (2006)

RAISE: RAIlway Infrastructure Health Monitoring Using WSNs 157

Mottola and Picco, 2011. Mottola, L., Picco, G.P.: Programming wireless sensor net-
works: Fundamental concepts and state of the art. ACM Comput. Surv. 43(3),
19:1–19:51 (2011)

Osterlind et al., 2006. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.:
Cross-level sensor network simulation with cooja. In: Proceedings 2006 31st IEEE
Conference on Local Computer Networks, pp. 641–648 (2006)

Spanish Official Bulletin of the State (BOE), 2005. Spanish Official Bulletin of the
State (BOE), Instrucción sobre las inspecciones técnicas en los puentes de fer-
rocarril (itpf-05). fom/1951/2005 (2005)

Whelan et al., 2007. Whelan, M.J., Fuchs, M., Gangone, M.V., Janoyan, K.D.: De-
velopment of a wireless bridge monitoring system for condition assessment using
hybrid techniques. In: Proceedings of SPIE, The International Society for Optical
Engineering, pp. 28–32 (2007)

	RAISE: RAIlway infrastructure health monitoring using Wireless SEnsor Networks
	1
Introduction
	2
Motivation
	3
Related Work
	4
PS-QUASAR Middleware
	5 RAISE Architecture
	5.1 Sensing

	5.2 Collecting Data

	5.3
Data Muling

	6
Evaluation
	6.1
Environment Set-Up and Scenario Settings
	6.2
Reliability and Data Generated by the Bridge WSN
	6.3
Data Muling
	6.4
Power Consumption

	7 Future Work

	8
Conclusions

