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Abstract. This paper explores an approach to study entropy differentiations of 
heart’s activities estimation in Low Frequency (LF) and High Frequency (HF) 
bands. Dataset composed of 34 ECGs, obtained from healthy and diabetic rats 
under normal and exercise living conditions. RR intervals extracted efficiently 
in order to create Heart Rate (HR) time series.  Continuous Wavelet Transform 
(CWT) has been used, as the most appropriate approach, to evaluate the effects 
of exercise on healthy and diabetic HR variability (HRV). Statistical analysis 
performed taking into account both wavelet entropy in the low and the high 
frequency selected bands and the corresponding index LF/HF of the wavelet 
coefficients. Our results show that wavelet entropy measure based on CWT 
decomposition can capture significant differences between the specific 
frequency regions that are intrinsically related to the structure of the RR signal. 
According to our analysis, diabetic rats living under exercise conditions appear 
to have a reduced LF/HF entropy ratio compared to healthy population.  

Keywords: HRV, Diabetic, Exercise, Continuous Wavelet Transform, Wavelet 
Entropy.  

1 Introduction 

Over the last three decades, signal processing in biomedical field involve the analysis 
of measurements to extract useful information upon which physicians can make 
decisions.  New ways of biomedical signal processing has been discovered using a 
variety of mathematical functions and algorithms. One very powerful tool that has 
been used for the analysis of such signal is the wavelet transform [1].  

In normal conditions, there is a balance between the sympathetic and 
parasympathetic system known as the sympathovagal balance. The RR intervals, as 
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shown in Fig. 1, are the key of understanding the activity of the autonomic nervous 
system [2].  

Changes in beat-to-beat heart rate calculated from Electrocardiograph (ECG), 
known as Heart Rate Variability (HRV) is under continuous research and it is being 
conducted with several new works. HRV allows the evaluation of the balance 
mentioned above and has been shown to be a predictor of the occurrence of cardiac 
dysfunctions [2].  

Diabetes mellitus (DM) is a severe illness that has reached epidemic proportions 
worldwide. In particular, type II diabetes has increased significantly over the last 
years [3]. Patients with diabetes often develop cardiovascular diseases, like heart 
failure (HF) mainly caused from hypertension and coronary artery disease [4].  HRV 
decreases with diabetes and is associated with a high risk of cardiac arrhythmias, 
sudden death and an overall high mortality and morbidity rates. Exercise is an 
effective adjunct to pharmacological therapy of diabetes [5]. 

We decided to investigate this hypothesis by evaluating the entropy of HRV 
recordings.  The estimation of entropy obtained from wavelets, providing a time-
frequency representation of the signal with optimal time-frequency resolution. Wavelet 
entropy overcomes limitations as stationarity that fourier transform takes into account. 

The application of wavelets in cardiology has been introduced with several 
approaches [6]. Detection of ischemia from QRS and identification of biological 
markers are some of the published applications [7]. All newest wavelet applications in 
ECG signals are reviewed lately in [8]. 

Especially, in time frequency analysis of HRV, different wavelet methods has been 
applied [9,10]. The idea of measure the wavelet entropy from CWT scales has used 
before in [11,12] and generally wavelets coefficients shown that could be a measure 
of power in frequency domain that suits to various medical applications  [13]. 

 
Fig. 1. This scheme demonstrates (a) An ECG graph from a healthy rat with the characteristic 
features and (b) RR series extracted from an ECG of a healthy rat 
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In this study, the CWT were utilized to extract and analyze wavelet entropy 
differentiations of HRV in high frequency (HF), very low frequency (VLF), ultra-low 
frequency (ULF) and  low frequency (LF) bands. Objective of this paper was to 
evaluate the CWT based wavelet entropy to capture significant differences between 
the specific frequency regions. Another contribution of this work was to demonstrate 
the effects of exercise to the LF/HF energy healthy and diabetic subjects living under 
a daily workout program. 

2 Methods 

2.1 Wavelet 

In the last few years, the wavelet transform has become an important tool in the field 
of HRV. Although the concept of the wavelets presented earlier, the first algorithm 
was developed in 1988 and since then many modification of wavelets has been 
published [14].  

A wavelet is a “small wave” of small duration having an average value that is zero. 
Unlike fourier transform, where fourier sine and cosine functions are smooth, 
predictable and extend from minus to plus infinity, wavelets could be chosen from an 
unlimited tank of basis functions, they are usually non-symmetrical, with small 
duration and a finite period. 

The decomposition of a signal using a wavelet transform needs a ߰ function 
sufficiently regular and localized, called “Mother function”.  Wavelet transformation 
is a linear operation that decomposes the signal into a number of scales corresponding 
to frequency components and evaluates every scale with a certain resolution [15, 16].   

The implementation of the WT results to a serial list of coefficients named wavelet 
coefficients, which represent the evolution of the correlation between the signal and 
the mother function at different levels of analysis (or different ranges of frequencies) 
all along the HRV series [17]. 

2.2 Continuous Wavelet Transform 

Wavelet transforms categorized in essentially two distinct classes: the continuous 
wavelet transform CWT and the discrete wavelet transform DWT. Using a variable 
window width of mother function, related to the scale of observation, the CWT has 
the ability of isolation of the high frequency features. CWT advantage is to provide 
varying time-frequency resolution. 

CWT that is applied to the signal sሺtሻ defined as, 
,ሺܹܽܶܥ  ܾሻ ൌ ଵ√௔ ׬ ሻ߰ݐሺݏ ቀ௧ି௕௔ ቁ ஶିஶݐ݀                                      (1)  
 

Where ݏሺݐሻ is the signal, ߰ሺݐሻ is the mother wavelet, ܽ is the scaling parameter in y-
axis, ܾ is the shift parameter in x-axis and  1/√ܽ is an energy normalization index 
which makes wavelets of dissimilar scale has the same amount of energy and ݐ is the 
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time. A wavelet family ߰ሺܽ, ܾሻ is the set of elemental functions obtained from 
dilations and translations of a mother wavelet ߰.  

There are several families of wavelet and each one has specific features. In our 
study, the choice of the basis function was Daubechies 6 (db6) and the selection made 
experimentally. The daubechies (db) wavelets have many advantages that make the 
db wavelets well suited for HRV analysis [18]. 

The RR signal was resampled at 10 Hz and the wavelet coefficients were 
calculated on sets of 5 minutes.  If the signals included ectopic beats we removed 
them using a sliding window average filter. Then the sampled signals were 
interpolated using cubic spline interpolation and resampled in 4 Hz.  

In CWT, frequency bands change with scales.  We accept that the association of 
the center frequency ܨ௖ of the wavelet function, when the wavelet is dilated by a 
factor ܽ, becomes ܨ௖/ܽ .  Eventually, if the underlying sampling period of the signal 
is ߂, we also accept that the scale ܽ is expressed as frequency from the equation 2.  
௔ܨ  ൌ ி೎௔௱                                                              (2) 
 

The frequency ܨ௔ is inversely proportional to scale ܽ.  Large scale corresponds to a 
low frequency and small scales correspond to high frequencies providing details about 
the HRV signal.  

Table 1. Frequency decomposition after CWT and the related scales 

HRV Bands Scales Frequency (Hz) 
ULF 36-124 0.101-0.02 
VLF 14-35 0.27-0.102 
LF 5-13 0.75-0.28 
HF 1-4 3.65-0.90 

    
Frequency decomposition and related scale range are listed in Table 1. After 

several trials we decided that using a 124 linear scales decomposition of CWT 
provides high resolution.  The ULF band is localized in the scales 124-36, the VLF 
band in scales 35-14, LF band in 13-5 and the LF band in scales between 4-1.  

2.3 Wavelet Entropy 

The wavelet entropy (WE) has been proposed as a measurement to quantify the 
irregularity of a signal. In this study, we used it as a feature to study the effects of 
exercise conditions in healthy and diabetic rats. 

To provide valuable information about these effects in the selected bands, we 
calculate the wavelet entropy using the wavelet coefficients ܥ௝ሺ݇ሻ that correspond at 
each resolution level ݆. 

For the calculation of energy at each time sample k we use the equation 3. 
ሺ݇ሻ߃  ൌ ∑ หܥ௝ሺ݇ሻหଶ௝௝ୀଵ                                                  (3) 
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Fig. 2. The proposed method is presented for rat ECG signals. Generally, the first step involves 
the extraction of R peaks from the ECGs and the construction of RR series. At next step, time 
domain analysis provides several information for the signals such as beat-per-minute, mean 
values, standard deviation, etc. The CWT is then applied on the RR interpolated series and the 
wavelet entropy is computed at each scale. After calculation of the wavelet entropy at each 
corresponding frequency range the data is ready for statistical analysis.  

While for the calculation of the total energy we consider the equation 4 
௧௢௧௔௟ܧ  ൌ ∑ ∑ หܥ௝ሺ݇ሻหଶ ൌ  ∑ ௝௝ே௞ୀଵ௝௝ୀଵܧ                                        (4) 

 
Dividing the energy at a level ݆ by its total energy is equivalent to define a 

probability distribution.  So the energy in scales is defined from the equation 5, where 
the ∑ ௝௝݌ ൌ 1 and the distribution ݌௝ considered as time-scale density.  
௝݌  ൌ ாೕா೟೚೟ೌ೗                                                            (5) 

 
At last, writing the well-known definition of wavelet entropy, wavelet entropy ܪௐ்ሺ݌ሻ defined as in equation 6. 



46 D.G. Tsalikakis et al. 

 

ሻ݌ௐ்ሺܪ ൌ െ ∑ .௝݌ ௝ሿ௝௜ୀଵ݌ଶሾ݃݋݈                                             (6) 

2.4 Preprocessing Data 

Telemetry ECGs were acquired at a rate of 1 kHz using commercially available 
hardware and software (Dataquest™ A.R.T. 4.0, Data Sciences International, Inc.). 
Baseline recordings were reviewed for the presence of arrhythmia and/or excessive 
movement artifacts and records containing such events were not analyzed further. 

In this work, all the analysis procedure completed using custom algorithms which 
was developed in Matlab environment. The proposed method applied to a dataset 
composed of 34 ECGs, obtained by 24 hour recordings, form healthy and diabetic 
male Wistar rats under normal and exercise conditions. We select 5 min ECG 
segments from each group based on visual inspection of the most stable and rhythmic 
HR. Αfter R wave peak extraction RR series generated. 

As for the frequency-domain analysis of HRV, RR series were resampled by a 2nd 
order quadratic interpolation method at 10 Hz and NaN values removed.  Power 
spectrum was obtained using Welch’s method at 256 points with a 50% overlap and 
Hanning window. 

3 Results 

As we mentioned above, data were divided into the four groups (healthy, healthy 
under exercise conditions, diabetics, diabetics under exercise conditions) and CWT 
analysis was performed for each group. Wavelet entropy calculated for each group 
from the CWT scales that corresponds to each frequency domain.  

In order to extract further information about from the data, classical time domain 
analysis and frequency analysis performed using custom algorithms as described in 
details previously [19].  We also calculate the RMS (Root Mean Square), the signal 
power contained in ultra-low, very low, low and high frequencies using the Welch 
method [19]. Using the RSM power, we calculate the index of LH/HF, which 
represents the sympathovagal balance of the heart.  

Statistical analyses were performed to evaluate the ability of the wavelet energy to 
discriminate the effect of exercise in healthy and diabetic population of rats.  

All data values normalized and the Analysis of Variance (ANOVA) was used to 
test the null hypothesis that there is no difference of the mean values of the index of 
LF/HF of the WE between the groups “healthy – healthy exercise” and “diabetes – 
diabetes exercise” by analyzing or comparing the sample variance of groups. 
Statistical significance was established at the p<0.05 level. 

ANOVA test pointed out that between the groups healthy – healthy exercise and 
diabetes – diabetes exercise, low and high frequency components and the index 
HF/LF quantified by WE have significant differences.  We also used ANOVA to test 
the hypothesis for the mean values of index LF/HF calculated from the RMS but the 
results show significant differences between the healthy and healthy exercise group 
but no significant differences between diabetic and diabetic exercise group. 
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We demonstrated that wavelet entropy produced discrimination in LF/HF energy 
ratio between both pairs of group.  Especially, the increment of LF/HF energy index 
in healthy exercise group compared to healthy group and the decrement of LF/HF 
energy index in diabetic exercise group compared to diabetic group are very 
important.  

These results suggest considerable potential in using wavelet entropy to estimate 
the effects of exercise in healthy and diabetic during HRV analysis. 
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