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Abstract. Video processing algorithms present a necessary tool for var-
ious domains related to computer vision such as motion tracking, videos
indexation and event detection. However, the new video standards, espe-
cially those in high definitions, cause that current implementations, even
running on modern hardware, no longer respect the needs of real-time
processing. Several solutions have been proposed to overcome this con-
straint, by exploiting graphic processing units (GPUs). Although, they
present a high potential of GPU, any is able to treat high definition videos
efficiently. In this work, we propose a development scheme enabling an
efficient exploitation of GPUs, in order to achieve real-time processing
of Full HD videos. Based on this scheme, we developed GPU implemen-
tations of several methods related to motion tracking such as silhouette
extraction, corners detection and tracking using optical flow estimation.
These implementations are exploited for improving performances of an
application of real-time motion detection using mobile camera.
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1 Introduction

In recent years, the CPU power has been capped, essentially for thermal reasons,
to less than 4 GHz. A limitation that has been circumvented by the change
of internal architecture, with multiplying the number of integrated computing
units. This evolution is reflected in both general (CPU) and graphic (GPU)
processors, as well as in recent accelerated processors (APU) which combine
CPU and GPU on the same chip [I]. Moreover, GPUs have larger number of
computing units, and their power has far exceeded the CPUs ones. Indeed, the
advent of GPU programming interfaces (API) has encouraged many researchers
to exploit them for accelerating algorithms initially designed for CPUs.

Video processing and more particularly motion estimation algorithms present
the core of various methods used in computer vision. They have been used,
for example, in surveillance systems tracking humans in public places, such as
metro or airports, to identify possible abnormal behaviors and threats [2/3]. Mo-
tion estimation algorithms serve therefore as a common building block of some
more complex routines and systems. However, these algorithms are hampered by
their high consumption of both computing power and memory. The exploitation
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of graphic processors can present an efficient solution for their acceleration. In-
deed, they can present prime candidates for acceleration on GPU by exploiting
its processing units in parallel, since they consist mainly of a common compu-
tation over many pixels. Nevertheless, the new standards, especially those in
high resolutions cause that current implementations even running on modern
hardware, no longer meet the needs of real-time processing. Moreover, modern
surveillance systems are nowadays more commonly equipped with high defini-
tion cameras that expect to be treated in real-time. Furthermore, the treatment
of TV broadcast images, which cannot be down sampled, require an accelerated
object detection and recognition. Therfore, a fast processing of videos is needed
to ensure the treatment of 25 high definition frames per second (25 fps). To
overcome these constraints, several GPU computing approaches have recently
been proposed. Although they present a great potential of a GPU platform, any
one is able to process high definition video sequences efficiently. Thus, a need
arose to develop a tool being able to address the outlined problem.

In this paper, we propose a development scheme enabling an effective exploita-
tion of GPUs for accelerating video processing algorithms, and hence achieving
real-time treatment of high definition videos. This scheme allows an efficient
management of GPU memories and a fast visualization of results. Based on this
scheme, we developed CUDA [4] implementations of methods related to motion
tracking domain such as silhouette extraction, corners detection and tracking us-
ing optical flow estimation. These implementations are exploited for accelerating
a method of real-time motion detection using mobile camera.

The remainder of the paper is organized as follows: related works are described
in section 2. Section 3 presents our development scheme for video processing on
GPU. Section 4 describes our GPU implementations of silhouette extraction,
features detection and tracking methods. Section 5 presents the use of these
implementations for impoving performance of motion detection using mobile
camera. Finally, section 6 concludes and proposes further work.

2 Related Works

Unlike algorithms requiring a high dependency of computation between the input
data and hence a complicated parallelization, most of image and video process-
ing algorithms consist of similar computations over many pixels. This fact makes
them well adapted for acceleration on GPU by exploiting its processing units in
parallel. Otherwise, these algorithms require generally a real-time treatment of
video frames. We may find several methods in this category such as human be-
havior understanding, event detection, camera motion estimation. These meth-
ods are generally based on motion tracking algorithms that can exploit several
techniques such as optical flow estimation [6], block matching technique [7] and
SIFT [§ descriptors.

Motion tracking methods consist on estimating the displacement and veloc-
ity of features in a given video frame with respect to the previous one. In this
work, we are more focused on optical flow methods since they present a promising
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solution for tracking even in noisy and crowded scenes or in case of small mo-
tions. In case of GPU-based optical flow motion tracking algorithms, one can
find two kinds of related works. The first presents so called dense optical flow
which tracks all pixels without selecting features. In this context, [9] presented
a GPU implementation, using the API CUDA [4], of the Lucas-Kanade method
used for optical flow estimation. The method computes dense and accurate ve-
locity field at 15 fps with 640x480 video resolution. Authors in [I1] proposed
the CUDA implementation of the Horn-Schunck optical flow algorithm with a
real-time processing of low resolution videos (316x252). The second category
consists of methods that enable to track selected image features only. Sinha et
al. [12] developed a GPU implementation of the KLT feature tracker [13] and the
SIFT feature extraction algorithm [8]. This allowed to detect 800 features from
640480 video at 10 fps which is around 10 times faster than the CPU imple-
mentation. However, despite their high speedups, none of the abovementioned
GPU-based implementations can provide real-time processing of high definition
videos. Otherwise, OpenCL [5] proposed a framework for writing programs which
execute across hybrid platforms consisting of both CPUs and GPUs. There are
also some GPU works dedicated to medical imaging for parallel [22] and hetero-
geneous [I525] computation for vertebra detection and segmentation in X-ray
images.

Our contribution focuses on the conception of a scheme development that
enables an efficient exploitation of GPUs for high definition video processing in
real-time. This scheme is based upon CUDA for parallel constructs and OpenGL
[14] for visualization. It enables also an effective management of GPU memories
that allows a fast access to pixels within video frames. Based on this scheme,
we developed GPU implementations of three methods : silhouette extraction,
features detection and tracking using optical flow estimation. These implemen-
tations enabled a real-time processing of Full HD videos, they were exploited for
improving performance of real-time motion detection using camera in move.

3 Video Processing on GPU

As pointed out in previous sections, a GPU presents an effective tool for ac-
celerating video processing algorithms. This section is presented in two parts:
the first one describes our development scheme for video processing on GPU,
showing also the employed GPU optimization techniques. The second part is
devoted to describe our GPU implementations of silhouette extraction, features
detection and tracking algrithms that exploit optical flow measures.

3.1 Development Scheme for Video Processing on GPU

The proposed scheme is based upon CUDA for parallel computing and OpenGL
for visualization. This scheme is based on the three following steps :

1. Loading of video frames on GPU: we start with reading and decoding
the video frames using the OpenCV library [16]. We copy the current frame
on a device (GPU) that processes it in the next step.
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2. CUDA parallel processing: before launching the parallel processing of the
current frame, the number of GPU threads has to be defined, so that each
thread can perform its processing on one or a group of pixels. This enables
the program to treat the image pixels in parallel. Note that the number of
threads depends on the number of pixels.

3. OpenGL visualization: the current image can be directly visualized on
the screen through the video output of GPU. Therefore, we use the OpenGL
library that allows for fast visualization, as it can operate buffers already
existing on GPU, and thus requires less data transfer between host and de-
vice memories. Once the visualization of the current image is completed, the
program goes back to the first step to load and process next frames. Other-
wise and in case of multiple videos processing, the OpenGL visualization will
be impossible using one video output only. So, a transfer of the processed
video frames from GPU to CPU memory is required, which represents an
additional cost for the application.

For a best exploitation of GPUs, we employed two optimization techniques.
The first one consists on exploiting texture and shared memories. Indeed, video
frames are loaded on texture memory in order to have a fast access to pixels
values. The pixel neighbors are loaded on shared memory for a fast processing
of pixels using their neighbors’ values. The second optimization that we propose
is the exploitation of four CUDA streams in order to overlap kernels executions
by images transfers. Each stream consists of three instructions :

1. Copy of the current frame from host to GPU memory
2. Computations performed by CUDA kernels
3. Copy of the current frame (already processed) from GPU to host memory

3.2 GPU Implementations

Based on the scheme described in section 3.1, we propose the GPU implemen-
tation of silhouette extraction, features detection and tracking methods, which
enabled to obtain both efficient results in terms of the quality of detected and
tracked motions, and improved performance thanks to the exploitation of GPU.

3.2.1 GPU-Based Silhouette Extraction

The computation of difference between frames presents a simple and efficient
method for detecting the silhouettes of moving objects. Based on the scheme
presented in section 3.1, we propose the GPU implementation of this method
using three steps. We start by loading the two first frames on GPU in order to
compute the difference between them during the CUDA parallel processing step.
Once the first image displayed, we replace it by the next video frame in order
to apply the same treatment. Fig. presents the obtained result of silhouette
extraction. This figure shows two silhouettes extracted, that present two moving
persons. In order to improve the quality of results, a threshold of 200 was used
for noise elimination.
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3.2.2 GPU-Based Features Detection and Tracking

In this section, we propose the GPU implementation of both features detection
and tracking methods. The first one enables to detect features that are good
to track, i.e. corners. To achieve this, we have exploited the Bouguet’s corners
extraction technique [I7], which is based on the principle of Harris detector [24].
Our GPU implementation of this method is detailled in [I8/19/20].

The second step enables to track the features previously detected using the
optical flow method, which presents a distribution of apparent velocities of
movement of brightness pattern in an image. It enables to compute the spatial
displacements of images pixels based on the assumption of constant light hy-
pothesis which supposes that the properties of consecutive images are similar in
a small region. For more detail about optical flow computation, we refer readers
to [6]. In literature, several optical flow methods exist such as Horn-Shunck [21],
Lucas-Kanade [23] and block matching [7]. In this work, we propose the GPU
implementation of the Lucas-Kanade algorithm, which is well known for its high
efficiency, accuracy and robustness. This algorithm disposes of six steps:

1. Step 1: Pyramid construction : In the first step, the algorithm computes
a pyramid representation of images I and J which represent two consecutive
images from the video. The other pyramid levels are built in a recursive
fashion by applying a Gaussian filter. Once the pyramid is constructed, a
loop is launched that starts from the smallest image (the highest pyramid
level) and ends with the original image (level 0). Its goal is to propagate the
displacement vector between the pyramid levels.

2. Step 2: Pixels matching over levels : For each pyramid level (de-
scribed in the previous step), the new coordinates of pixels (or corners) are
calculated.

3. Step 3: Local gradient computation : In this step, the matrix of spatial
gradient G is computed for each pixel (or corner) of the image I. This matrix
of four elements (2x2) is calculated based on the horizontal and vertical spa-
tial derivatives. The computation of the gradient matrix takes into account
the area (window) of pixels which are centered on the point to track.

4. Step 4: Iterative loop launch and temporal derivative computa-
tion: A loop is launched and iterated until the difference between the two
successive optical flow measures (calculated in the next step), or iterations, is
higher than a defined threshold. Once the loop is launched, the computation
of the temporal derivatives is performed using the image J (second image).
This derivative is obtained by the subtraction of each pixel (or corner) of the
image I (first image) and its corresponding corner in the image J (second
image). This enables to estimate the displacement estimations which is then
propagated between successive pyramid levels.

5. Step 5: Optical flow computation: The optical flow measure g is cal-
culated using the gradient matrix G and the sum of temporal derivatives
presented by shift vector b. The measure of optical flow is calculated by
multiplying the inverse of the gradient matrix G by the shift vector b.

6. Step 6: Result propagation and end of the pyramid loop: The current
results are propagated to the lower level. Once the algorithm reaches the
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lowest pyramid level (the original image), the pyramid loop (launched in the
first step) is stopped. The vector g presents the final optical flow value of
the analyzed corner. For more detail, we refer readers to [17].

Upon matching and tracking pixels (corners) between frames, the result is a
set of vectors as shown in Equation (I):

Q=A{wy ... wp | wi = (T4, 94,05, 04) } (1)

where:

— x, y; are the x a y coordinates of the feature i;
— v; represents the velocity of the feature i;
— «; denotes motion direction of the feature i.

Based on the scheme presented in section 3.1, we propose the GPU imple-
mentation of the Lucas-Kanade otpical flow method by parallelizing its steps on
GPU. These steps are executed in parallel using CUDA such that each GPU
thread applies its instructions (among the six steps) on one pixel or corner.
Therefore, the number of GPU threads is equal to the number of pixels or cor-
ners. Since the algorithm looks at the neighboring pixels, for a given pixel, the
images, or pyramid levels are kept in the texture memory. This allows a faster
access within the 2-dimensional spatial data. Other data, e.g. the arrays with
computed displacements, are kept in the global memory, and are cached in the
shared memory if needed. Notice that the quality of results remains identical
since the process has not changed. Fig. presents the comparison between
CPU and GPU implementations of silhouette extraction method, while figures
and present, respectively, the quality and performance of our GPU
implementation of features detection and tracking method using optical flow es-
timation. These performances are compared with a CPU solution developed with
OpenCV [I6]. Notice that the constraint of real-time processing can be achieved
with high definition videos thanks to the efficient exploitation of high computing
power of GPUs. Notice also that the transfer time of video frames between CPU
and GPU memories is included. This transfer time presents about 15 % from
the total time of the application.

4 GPU for Real-Time Motion Detection Using Mobile
Camera

The abovementioned GPU implementations are exploited in an application that
consists of real-time motion detection within moving camera. In this category,
motion detection algorithms are generally based on background subtraction
which presents a widely used technique in computer vision domain. Typically,
a fixed background is given to the application and new frames are subtracted
from this background to detect the motion. The difference will give the objects
or motion when the frame is subtracted from the fixed background. This dif-
ference in resulting binary image is called foreground objects. However, some
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Fig. 1. Real-time treatment of Full HD videos on GPU

scenarios present a dynamic background which can changes due the movement
of cameras. In this context, we propose an application for real-time background
subtraction, which enables to detect automatically background and foreground
using a moving camera. This application can be summarized in four steps :

1. Corners detection: The Harris corner detector [24] is applied to extract
good features to track and examine for camera motion.

2. Optical flow computation: The Lukas-Kanade optical flow method [I7]
is applied to track the corners, detected previously.

3. Camera motion Inhibition: The camera motion is estimated by comput-
ing the dominant values of optical flow vectors. This enables to extract the
common area beween each two consecutive images and focus only on motions
related to objects in the scene.

4. Motion detection: This step consists of detecting movements based on
computing the difference between each two consecutive frames.

In order to achieve a real-time treatment of high definition videos, the most
intensive steps of this method are ported on GPU: corners detection, optical
flow computation, motion detection. The GPU implementation of these steps
is described in section 3.2, following the steps of loading of video frames on
GPU, CUDA parallel processing and OpenGL visualization. Fig. Bl(a) shows
a scene of camera motion. Dotted and dashed line presents the first image,
dotted line presents the second frame and solid line shows the joint area of
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two frames. Once, the camera motion is estimated. The joint area between 2
consecutive frames is determined by cropping the incoming and outgoing areas
as seen in the white area of Fig. 2l (a). Fig. 2 (b) shows the resulting image of
background subtraction. White areas represent the difference around moving
objects. Table [I] presents a comparison between CPU and GPU performances
of the abovementioned method. Notice that the use of GPU enabled a real-time
processing for Full HD videos (1920x1080), which is 20 times faster than the
corresponding CPU version.

(b)

Fig. 2. (a). Camera motion estimation (b). Motion detection
Table 1. GPU performances of motion detection using mobile camera

Resolution CPU dual-core GPU Acceleration

512x512 5 fps 79 fps 15,80 x
1280x720 2,9 fps 51 fps 17,59 x
1920x 1080 1,7 fps 35 fps 20,59 x

5 Conclusion

We proposed in this paper a development scheme for video processing on GPUs.
Based on this scheme, we proposed an efficient implementation of the optical flow
algorithm for the sparse motion tracking. More precisely, we developed a GPU
based software that applies Lucas-Kanade tracking method to the previously
detected corners. A GPU implementation of the silhouette extraction, based on
frames difference, was also developed. These implementations were exploited for
improving performance of an application that requires a real-time processing
of high definition videos. This application consists of motion detection using a
camera in move. As future work, we plan to develop a smart system for real-
time processing of high definition videos in multi-user scenarios. This system
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could exploit nvidia and ATI graphic cards thanks to the exploitation of CUDA
and OpenCL APIs, respectively. The idea is to provide a dynamic platform en-
abling to facilitate the implementation of new advanced monitoring and control
systems, effectively, that exploit parallel and heterogeneous architectures, with
minimum energy consumption.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

AMD Fusion, Family of APUs. The Future brought to you by AMD introducing the
AMD APU Family, http://sites.amd.com/us/fusion/au/Pages/fusion.aspx
Fonseca, A., Mayron, L., Socek, D., Marques, O.: Design and im-plementation of
an optical flow-based autonomous video surveillance system. In: Proceedings of the
TASTED, p. 209 (2008)

Mahmoudi, S.A., Sharif, H., Thaddadene, N., Djerabe, C.: Abnormal event detec-
tion in real time video. In: 1st International Workshop on Multimodal Interactions
Analysis of Users in a Controlled Environment, ICMI (2008)

NVIDIA, NVIDIA CUDA: Compute Unified Device Architecture (2007),
http://www.nvidia.com/cuda

Khronos-Group, The Open Standard for Parallel Programming of Heterogeneous
Systems (2009), http://www.khronos.org/opencl

Bimbo, A.D., Nezi, P., Sanz, J.L.C.: Optical flow computation using extended
constraints. IEEE Transaction on Image Processing, 720 (1996)

Kitt, B., Ranft, B., Lategahn, H.: Block-matching based optical flow estimation
with reduced search space based on geometric constraints. In: 13th International
Conference on Intelligent Transportation Systems, p. 1140 (2010)

Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision (IJCV) 60(2), 91 (2004)

Marzat, J., Dumortier, Y., Ducrot, A.: Real-time dense and accurate parallel op-
tical flow using CUDA. In: In Proceedings of WSCG, p. 105 (2009)

Mizukami, Y., Tadamura, K.: Optical Flow Computation on Compute Unified De-
vice Architecture. In: ICIAP’14, p. 179 (2007)

Mizukami, Y., Tadamura, K.: Optical Flow Computation on Compute Unified De-
vice Architecture. In: ICIAP’14, p. 179 (2007)

Sinha, S.N., Fram, J.-M., Pollefeys, M., Genc, Y.: Gpu-based video feature tracking
and matching. In: Edge Computing Using New Commodity Architectures (2006)
Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical Report
CMU-CS-91-132, CMU, p. 1 (1991)

OpenGL, OpenGL Architecture Review Board: ARB vertex program, Revision 45
(2004), http://oss.sgi.com/projects/ogl-sample/registry/

Lecron, F., Mahmoudi, S.A., Benjelloun, M., Mahmoudi, S., Manneback, P.: Het-
erogeneous Computing for Vertebra Detection and Segmentation in X-Ray Images.
International Journal of Biomedical Imaging (2011)

OpenCV, OpenCV computer vision library, http://www.opencv.org

Bouguet, J.Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker,
Description of the algorithm. Intel Corporation Microprocessor Research (2000)
Mahmoudi, S.A., et al.: Traitements d’images sur architectures paralleles et
hétérogenes. Technique et Science Informatiques 31, 1183 (2012)

Mahmoudi, S.A., Manneback, P., Augonnet, C., Thibault, S.: Détection optimale
des coins et contours dans des bases d’images volumineuses sur architectures mul-
ticoeurs hétérogenes. 20éme Rencontres Francophones du Parallélisme (2012)


http://sites.amd.com/us/fusion/au/Pages/fusion.aspx
http://www.nvidia.com/cuda
http://www.khronos.org/opencl
http://oss.sgi.com/projects/ogl-sample/registry/
http://www.opencv.org

20.

21.

22.

23.

24.

25.

Real-Time GPU-Based Motion Detection 21

Mahmoudi, S.A., Manneback, P.: Efficient Exploitation of Heterogeneous Platforms
for Images Features Extraction. In: International Conference on Image Processing
Theory, Tools and Applications, IPTA (2012)

Horn, B.K.P., Schunk, B.G.: Determining Optical Flow. Artificial Intelligence 2,
185 (1981)

Mahmoudi, S.A., Lecron, F., Manneback, P., Benjelloun, M., Mahmoudi, S.: GPU-
Based Segmentation of Cervical Vertebra in X-Ray Images. In: IEEE International
Conference on Cluster Computing, p. 1 (2010)

Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. In: Imaging Understanding Workshop, p. 121 (1981)
Harris, C.: A combined corner and edge detector. In: Alvey Vision Conference,
p. 147 (1988)

Mahmoudi, S.A., Lecron, F., Manneback, P., Benjelloun, M., Mahmoudi, S.: Ef-
ficient Exploitation of Heterogeneous Platforms for Vertebra Detection in X-Ray
Images. In: Biomedical Engineering International Conference, Biomeic 2012, Tlem-
cen, Algeria, p. 1 (2012)



	Real-Time GPU-Based Motion Detection and Tracking Using Full HD Videos
	1 Introduction
	2 Related Works
	3 Video Processing on GPU
	3.1 Development Scheme for Video Processing on GPU
	3.2 GPU Implementations

	4 GPU for Real-Time Motion Detection Using Mobile Camera
	5 Conclusion
	References




