
KinectBalls: An Interactive Tool

for Ball Throwing Games

Jonathan Schoreels, Romuald Deshayes, and Tom Mens

Software Engineering Lab, NUMEDIART Research Insititute
University of Mons – UMONS, Belgium

firstname.name@umons.ac.be

Abstract. We present a tool that was developed in the context of the
first author’s masters project. The tool implements an interactive com-
puter game combining the real and the virtual world in a seamless way.
The player interacts with the game by throwing balls towards a wall on
which a virtual 3D scene is projected. Using the Kinect 3D sensor, we
compute and predict the trajectory, speed and position of the ball. Upon
impact with the screen, a virtual ball continues its trajectory in the vir-
tual scene, and interacts with the objects around it using a physical and
a graphical 3D engine Bullet, and Ogre3D. The prototype game has been
successfully tested on a large number of people of varying ages.

Keywords: Kinect, HCI, virtual reality, object tracking.

1 Introduction

Creating new games and entertainment applications using affordable state-of-
the-art devices has gained a lot of recent interest thanks to the emergence of
new HCI techniques and a trend towards the use of natural interaction. The first
major step that revolutionized the gaming industry was Nintendo’s Wii console,
allowing humans to play games with body gestures. Microsoft responded with the
Kinect sensor capable of seeing and reacting to the world in 3D. Since its release,
an important number of applications using this sensor have been published on
the internet [5,2,13,1].

While Kinect’s main strength is its ability to track a user’s body, it can be used
in other ways to serve different goals. We exploited the raw information provided
by Kinect’s 3D sensor to track a moving ball. We integrated this in a prototype
interactive game KinectBalls that bridges the gap between the real and virtual
world. The aim of the game is to bring down a pile of virtual boxes by throwing a
real ball towards them (see Figure 1). Videos of a live tool demonstration carried
out with an audience of high school students and small children during a science
fair at the University of Mons, can be found at http://youtu.be/v02BcA-EPrI.
Others have recently developed a similar tool to simulate a pétanque game, using
two high-speed PSEye camera’s for ball tracking, and a webcam for face detection
and tracking [3].

M. Mancas et al. (Eds.): INTETAIN 2013, LNICST 124, pp. 90–95, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

http://youtu.be/v02BcA-EPrI

An Interactive Ball-Throwing Game 91

Fig. 1. Left: Live demonstration of the KinectBalls prototype. Right: The projection
matrix (frustum) of the 3D virtual world.

The concept of the application is fairly simple. A beamer projects a virtual 3D
world on a screen or wall. The player then throws a ball towards the projected
scene. Using the Kinect, the tool tracks the ball’s trajectory and speed and
predicts the point and time of impact with the wall. At the predicted time and
position of impact, a virtual ball is created with the same parameters as the real
ball, and it continues its trajectory in the virtual world to interact with other
virtual objects. Although there are some technical limitations in the current
prototype implementation (low framerate, low resolution) they can easily be
addressed by using other input devices than the Kinect (see e.g. [3]). A wide
variety of ball throwing games could be implemented in a similar way (such as
basket ball, penalty shots, bowling, petanque...) These games can for instance
be used in small rooms to train the motor skills of young children by aiming
accurately at objects in a virtual scene.

To implement our tool, we deliberately constrained ourselves to an as afford-
able solution as possible using inexpensive yet state-of-the-art devices capable
of 3D vision, together with open source libraries for physical 3D rendering.

2 Object Tracking

One of the biggest problems with traditional ball tracking algorithms is their
inability to take into account 3D information. To address this problem, stereo
vision has often been used to retrieve information about the 3D position of the
ball. The main limitation of this technique is that it requires a relatively complex
setup. For example, to track a tennis ball, up to 6 cameras have to be placed
and calibrated together before being able to accurately track a moving ball [12].

The problem we are addressing is more simple than tennis ball tracking be-
cause the area where the ball needs to be tracked is much smaller and the
hand-thrown ball to be tracked moves at a much slower speed (a few m/s). On
the other hand, the system has to respond instantly, that is to say, even before
the ball hits the wall. This requires us to predict the ball’s trajectory and its
impact with the wall. We will see in Section 3.2 how this can be achieved.

Over the last decade, a lot of effort has been put in finding robust algorithms
to track a moving ball in realtime (e.g., for soccer games, tennis games, golf etc.)

92 J. Schoreels, R. Deshayes, and T. Mens

[15]. Using 2D cameras, the main challenge resides in being able to differentiate
between the object to be tracked and the rest of the scene. To do so, many
techniques exploit chromatic and morphological [7] features of the object to be
tracked. Other techniques for object tracking have been developed since. The
most widely used one is the so-called fiducial -based tracking. This technique
uses visible markers placed on the tracked object, thus improving the speed,
robustness and accuracy of the tracking algorithm [9,14]. The major drawback
of such techniques is that they are invasive as the tracked objects have to carry
markers. When objects with strong contours have to be tracked on non-cluttered
scenes, a RAPID-like method can be used [8,10]. The main advantage is that
this method is quite simple and was also one of the first methods to run in real-
time. Many enhancements for this method have been proposed to make it more
robust, such as the use of a more complex least-squares curve fitting method
[6]. A more detailed overview of the different kinds of tracking techniques can
be found in the excellent survey proposed by [11] that discusses most popular
model-based 3D tracking methods.

3 Architecture of KinectBalls

We have developed our tool in a modular way, in order to facilitate changes to
(1) the characteristics of the moving object, (2) the game application and (3) its
3D rendering. Figure 2 shows the 4 modules of our tool: data acquisition, object
detection, trajectory prediction and graphical rendering.

Fig. 2. Architecture of the prototype framework

3.1 Object Detection and Tracking

The most widely used affordable 3D sensor today is undoubtedly the Kinect. Its
infrared projector and sensor allow to analyze and create a complete depth map
of the observed scene in real-time at a framerate of 30Hz. We used this sensor
to ease the detection and tracking of moving objects.

An Interactive Ball-Throwing Game 93

An important challenge is to differentiate between the background and the
moving object. The infrared camera provides a set of successive frames repre-
senting snapshots of the observed scene and constructs a depth map, i.e., a 3D
image where each pixel has three (x,y,z) values representing the exact position
in metric space w.r.t. the camera. By comparing a frame Fn with the previous
frame Fn−1, we compute the difference in depth (z-axis) for each pixel. If this
difference exceeds a certain threshold T (allowing us to filter out noise) and if a
sufficient number of adjacent pixels have undergone a similar difference in depth,
we conclude that something has moved. We apply this idea to create a matrix

MoveMap(i, j) =

{
1 if |Fn(i, j)− Fn−1(i, j)| > T
0 otherwise

Every 1 in MoveMap corresponds to a moving pixel in terms of depth. The
0’s are considered as being part of the background. Using this matrix we can
easily track moving objects using the following setup. The camera faces the wall
on which a virtual scene is projected to which the ball will be thrown, thus the
only moving object that will be detected is the ball (since all other objects will
not change position). However, due to imprecision of the 3D sensor, the edges
of some of the objects composing the scene might still be detected as moving.
Therefore, to improve the robustness of the tracking algorithm, we look for the
biggest square of 1’s in MoveMap. We can assume with a fairly high confidence
that the biggest moving thing in the scene is the ball.

The next step of the algorithm is to detect the shape of the moving object.
With the technique of the biggest square, we only get an approximation of the
moving object’s shape. By refining our algorithm, we consider all the adjacent
1’s, compute the centroid of this new shape and use this point as the position of
the ball to approximate the trajectory.

3.2 Trajectory Prediction

To predict the moving ball’s trajectory, we store the centroid computed on each
frame Fn. As soon as we have at least 2 positions of the ball (i.e., two frames in
which a sufficiently big square was detected), we use a least squares regression
model to approximate the trajectory of the ball with 3 second-degree polyno-
mials (1 polynomial for each axis). At each new frame where a moving ball
is detected, we update the regression model by taking into account the newly
detected position of the ball.

Knowing the exact 3D position of the wall on which the virtual scene is
projected, we use the computed regression model to predict the position and the
time at which the ball will hit the wall. The speed of the ball is also computed
using the derivative of the position. The closer the ball gets to the wall (and the
more data points are used), the more precise the trajectory prediction will be. At
the predicted time of impact, a virtual ball is created at the predicted position.
The virtual ball will continue its route using the regression model parameters
provided by the trajectory approximation algorithm.

94 J. Schoreels, R. Deshayes, and T. Mens

To transform a position in the real world to a position in the virtual world, we
convert the coordinate system of the real world (given by the Kinect) into the
coordinate system of the virtual world (computed by the projector’s parameters
and its position relative to the screen and the Kinect). Thus, we calibrated
[4] these two devices by calculating their intrinsic parameters. The extrinsic
parameters are estimated using a matrix M = (R, T) containing the rotation R
and the translation T to be applied.

To create an immersive virtual world, we modified the projection matrix de-
fined by a perspective frustum (i.e., a pyramid lying between two parallel planes
cutting it, see right of figure 1) of the 3D rendering engine to match the pro-
jector’s intrinsic parameters. We measured the distance between the projector
and the screen, the vertical and horizontal size of the screen to set the frustum
parameters. This way, we can use the same scale in both worlds, and we can
easily create an impression of a virtual box (increasing the level of realism when
the ball continues through the virtual world).

4 Lessons Learned and Future Work

We tested our setup with an Intel i5 computer with 4Gb RAM and an ATI 7850
graphical processor during a full day in front of a live audience. Calibration was
a challenge, since it depends on the angle of width and position of both the
projector and the Kinect relative to the screen. We did not take into account
the distortion of the camera and projector because the precision of the Kinect
was not sufficiently high to gain any important benefit. For higher resolution
devices, distortion should be taken into consideration.

Kids of 5 years and older interacted with the game very enthusiastically and
without requiring any explanation. With a supple throw, between 4 to 10 suc-
cessive positions of the ball were detected. With this amount of points, the
precision of the predicted impact of the ball varied between 1 and 5 centimeters.
Only when the ball was not long enough in the field of view, or when it was
thrown too fast or too straight, the resolution and framerate of the Kinect did
not allow to compute the trajectory correctly. Doubling the framerate to 60Hz
would mostly solve this problem.

Some adult players reported a lack of immersion, because they had difficulties
to interpret the 3D virtual world, as it was only projected in 2D on the screen.
Using a stereoscopic 3D projector could address this problem. Another way to
make the game more immersive is by tracking the position of the player w.r.t.
the projector using a second Kinect device. The rendered virtual scene can then
be adapted to match the user’s relative position to the screen.

The game could be extended into a multiplayer version with multiple balls
thrown simultaneously. This would require to identify different balls (e.g. based
on their color), and detecting possible collisions between them.

An Interactive Ball-Throwing Game 95

5 Conclusion

We presented KinectBalls, an interactive game capable of tracking a moving ball
thrown towards a projected virtual scene. The technique used for achieving this
requires only one very affordable 3D sensor to track the ball and predict its
trajectory and impact on the wall. The developed algorithms are fast enough to
run in real time on a standard computer. After calibration, the solution worked
fine in all tested indoor situations, but various improvements can be made to
increase the level of immersion.

References

1. Bailly, G., Walter, R., Müller, J., Ning, T., Lecolinet, E.: Comparing free hand
menu techniques for distant displays using linear, marking and finger-count menus.
In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.)
INTERACT 2011, Part II. LNCS, vol. 6947, pp. 248–262. Springer, Heidelberg
(2011)

2. Boulos, M.K.N., Blanchard, B., Walker, J.M.C., Tripathy, R.G.-O.A.: Web GIS in
practice X: A Microsoft Kinect natural user interface for Google Earth navigation.
Int’l J. Health Geographics 10, 14 (2011)

3. Dalpé, S., Monat-rodier, J., Riendeau, G., Voutsinas, P.: Poly-pétanque. In: Int’l
Meeting on Virtual Reality and Converging Technologies, LAVAL VIRTUAL
(2013), http://youtu.be/0Z2VDdaS3rs

4. Deshayes, R.: Reconstruction algorithmique d’objets 3D. Master’s thesis, Faculty
of Sciences, University of Mons, Belgium (June 2011)

5. Deshayes, R., Jacquet, C., Hardebolle, C., Boulanger, F., Mens, T.: Heterogeneous
modeling of gesture-based 3D applications. In: MoDELS Workshops (2012)

6. Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE
Trans. Pattern Anal. Mach. Intell. 24(7), 932–946 (2002)

7. Gong, Y., Sin, L.T., Chuan, C.H., Zhang, H., Sakauchi, M.: Automatic parsing
of TV soccer programs. In: IEEE Int’l Conf. Multimedia Computing and Systems
(ICMCS), pp. 167–174 (1995)

8. Harris, C.: Tracking with rigid objects. MIT Press (1992)
9. Hoff, W.A., Nguyen, K., Lyon, T.: Computer vision-based registration techniques

for augmented reality. In: Intelligent Robots and Computer Vision XV, pp. 538–548
(1996)

10. Klein, G., Drummond, T.: Robust visual tracking for non-instrumented augmented
reality. In: IEEE/ACM Int’l Symp. Mixed and Augmented Reality (ISMAR),
pp. 113–122. IEEE Computer Society (2003)

11. Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects: A survey.
Foundations and Trends in Computer Graphics and Vision 1(1), 91 (2005)

12. Pingali, G.S., Opalach, A., Jean, Y.: Ball tracking and virtual replays for innovative
tennis broadcasts. In: Int’l Conf. Pattern Recognition, pp. 4152–4156 (2000)

13. Ren, Z., Meng, J., Yuan, J., Zhang, Z.: Robust hand gesture recognition with
Kinect sensor. In: ACM Int’l Conf. Multimedia, pp. 759–760 (2011)

14. State, A., Hirota, G., Chen, D.T., Garrett, W.F., Livingston, M.A.: Superior aug-
mented reality registration by integrating landmark tracking and magnetic track-
ing. In: SIGGRAPH, pp. 429–438 (1996)

15. Tong, X.-F., Lu, H.-Q., Liu, Q.-S.: An effective and fast soccer ball detection and
tracking method. In: Int’l Conf. Pattern Recognition, pp. 795–798 (2004)

http://youtu.be/0Z2VDdaS3rs

	KinectBalls: An Interactive Tool for Ball Throwing
	1 Introduction
	2 Object Tracking
	3 Architecture of KinectBalls
	3.1 Object Detection and Tracking
	3.2 Trajectory Prediction

	4 Lessons Learned and Future Work
	5 Conclusion
	References

