
Automatically Mapping Human Skeletons

onto Virtual Character Armatures

Andrea Sanna, Fabrizio Lamberti, Gianluca Paravati, Gilles Carlevaris,
and Paolo Montuschi

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino 10129, Italy
{andrea.sanna,fabrizio.lamberti,gianluca.paravati,

gilles.carlevaris,paolo.montuschi}@polito.it
http://www.polito.it

Abstract. Motion capture systems provide an efficient and interactive
solution for extracting information related to a human skeleton, which is
often exploited to animate virtual characters. When the character can-
not be assimilated to an anthropometric shape, the task to map mo-
tion capture data onto the armature to be animated could be extremely
challenging. This paper presents a novel methodology for the automatic
mapping of a human skeleton onto virtual character armatures. By ex-
tending the concept of graph similarity, joints and bones of the tracked
human skeleton are mapped onto an arbitrary shaped armature. A pro-
totype implementation has been developed by using the Microsoft Kinect
as body tracking device. Preliminary results show that the proposed so-
lution can already be used to animate truly different characters such as
a Pixar-like lamp, a fish or a dog.

Keywords: virtual character animation, automatic armature mapping,
motion capture, graph similarity.

1 Introduction

The animation of virtual characters is an exciting and challenging task. The
mesh describing the shape of a character is linked to a set of bones usually
named armature (rigging). The manipulation of the armature allows the user to
animate the character. The traditional approach uses forward and inverse kine-
matics techniques to fix a set of key frames (poses), which will be automatically
interpolated by the animation program [1][2]. This approach has been often out-
performed by motion capture solutions [3]. In this case, animators motions are
tracked and can be recorded to a computer and then applied to the characters
or directly used to make interactive animations.

Each method has its advantages and drawbacks. On the one side, keyframing
can produce animations that would be difficult or impossible to act out. However,
complex actions can be both very difficult and time consuming to reproduce.
On the other side, motion capture can reproduce in a very accurate, fast and
smooth way a variety of human (and animal) movements. Nonetheless, capture

M. Mancas et al. (Eds.): INTETAIN 2013, LNICST 124, pp. 80–89, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Automatically Mapping Human 81

systems are, in general, very expensive and motion data could be hard to use
for animating different kinds of characters (though a solution to partially cope
with this latter limitation has been proposed in [4]).

The present paper addresses the problem to match the human skeleton of the
animators (which act out the scene as if they were the characters to be animated)
on a generic armature in an automatic and efficient way. In a number of previous
works, such as [5] [6] and [7], the above association was implemented manually.
Unfortunately, manual association can be a time consuming and difficult task,
since only skilled animators are generally able to immediately identify the best
match.

The proposed solution aims to find an efficient mapping of the human skeleton
onto the virtual character armature, by exploiting an extended graph similarity
criterion. In short, the matching algorithm analyzes and transforms a skeleton
into a graph describing its constituting parts and the connections among them.
Several parameters are taken into account, namely armature topology, general
user preferences, symmetry and motion constraints. The above parameters are
used to compute a similarity matrix, which is then exploited to associate each
bone in the considered armature to the most similar bone in the human skeleton.
Users can either accept the association that has been automatically found or
modify the proposed bone mapping according to their own needs.

The current implementation uses armatures defined in Blender [8] and the
Microsoft Kinect sensor [9] as motion capture device. Nonetheless, the proposed
methodology is general and it could be easily extended to any other tracking
system. A mapping between the human skeleton tracked by the Kinect and the
Blender armature allows the devised method to translate the local movements
of a human skeleton bone into translations and rotations of the related armature
bones. In this way, a markerless motion capture system for digital puppetry with
generic characters is actually implemented.

The paper is organized as follows: Section 2 briefly reviews other approaches
that have been designed to map a human skeleton onto a virtual character arma-
ture. Section 3 presents the proposed solution and, in particular, shows how the
similarity scores in the mapping matrix are computed. Section 4 proposes some
applications of the matching algorithm to non-anthropometric virtual characters.

2 Background

One of the first attempts to interactively control anthropometric limbs by in-
verse kinematics is proposed in [10]. However, this method is only meant for
controlling sub-parts of the skeleton independently. Hence, it is not always able
to cope with constraints that require the whole body to be animated. The issue
of controlling all the body parts is tackled in [11]. Here, the goal is to map the
movements made by a performer onto an animated character by only consid-
ering constraints on the end-effectors. An extension targeted to the control of
non-anthropometric characters is proposed in [12]. In this latter work, an inter-
mediate skeleton with less degrees of freedom is used and the remaining degrees
of freedom are computed analytically.



82 A. Sanna et al.

Fig. 1. Flow-chart of the mapping algorithm

The above works basically relies upon specific representations of motion (e.g.,
through simplified skeletons). A comparable approach is also used in [13], where a
data structure especially dedicated to motion adaptation is proposed. Moreover,
in all the works considered, the focus is mainly on human-like animation.

One of the most recent and impressive approaches known in the literature
to animate generic-shape characters by the skeleton of the animator is reported

Fig. 2. Human skeleton extracted by the tracking application via the Microsoft Kinect



Automatically Mapping Human 83

in [14]. The solution proposed allows the animator to directly manipulate the
mapping of the skeleton onto the mesh of the object to be controlled. The char-
acter mesh is segmented from the background. Then, the body of the animator
is embedded to position vacated by the object. By a vocal command, limbs of
the animator are attached to the parts of the mesh the body overlaps. These
attachments serve as constraints for the deformation model that is inspired by
the Embedded Deformation method proposed in [15].

3 The Proposed Solution: Skeleton Mapping

Figure 1 shows the flow-chart of the mapping algorithm, which will be described
in details in the following sections. From the chart, it can be easily noticed how
different blocks actually contribute to determine the score matrix that is used
to map the human skeleton onto the Blender armature. Such blocks consider
armature topology details (e.g., node-edge similarity), motion constraints, length
of kinematic chains and symmetries. Moreover, user preferences can be exploited
to force some mappings, thus possibly overriding other criteria.

3.1 Graph Representation

The first step of the matching algorithm analyzes both the skeleton produced
by the tracking device and the Blender armature of the virtual character to be
animated.

As mentioned in the Introduction, the Microsoft Kinect is used as capture
device in this work. Tracking data contain information about the center of mass
and the position of each of the twenty joints of the captured skeleton, along with
the status of each joint. Status information indicates whether the joint position
is being tracked or inferred (which happens when the Microsoft Kinect cannot
see this point and tries to accurately guess it based on information from previous
frames and neighboring joints). Joints tracked for the skeleton are split into three
main sections:

1. the central area, containing the head, the neck, the spine and the hip center;
2. the arms, containing for each arm the shoulder, the elbow, the wrist and the

hand;
3. the legs, containing for each leg the hip, the knee, the ankle and the foot.

Figure 2 shows the skeleton extracted by the Kinect application. A socket con-
nection is created between the Kinect application and a Blender Python script
controlling the execution of the program inside the Blender Game Engine (BGE).
The script constantly receives user’s skeleton data from the Kinect application,
computes the necessary transformations required and applies them to the arma-
ture to be controlled (for more details about the software architecture see [5]).

Blender armature is explored starting from the root bone and a mathemati-
cal description is generated for it. In particular, bones are associated to graph
nodes/vertices and relations between nodes are mapped to graph arcs/edges.



84 A. Sanna et al.

The graph can be represented by an adjacency matrix [16]; given a graph GA,
GA = G(VA, EA) where VA are the vertices and EA are the edges, if the cardi-
nality of VA is na, then the adjacency matrix A of this graph is a na×na matrix
in which entry [A]ij is equal to 1 if and only if (i, j) ∈ EA, 0 otherwise. The ad-
jacency matrix of an undirected graph will always be symmetric. Another useful
graph representation is obtained by means of pair of matrices called edge-source
matrix As and edge-terminus matrix At. This representation allows self-loops to
be considered in the graph [16]. Let sA(i) denote the source of edge i, and let
tA(i) denote the terminus of edge i. Then As and At can be defined as follows:

[As]ij =

{
1 if sA(j) = i

0 else

[At]ij =

{
1 if tA(j) = i

0 else

The graph representation given by As and At has the following properties:

– the adjacency matrix A is equal to AsA
T
t ;

– AsA
T
s is equal to a diagonal matrixDAs with the out-degree (i.e., the number

of outgoing edges) of node i in the i-th diagonal position;
– AtA

T
t is equal to a diagonal matrix DAt with the in-degree (i.e., the number

of incoming edges) of each node in the corresponding diagonal entry.

3.2 Node-Edge Similarity Scores

The approach presented above uses an iterative procedure to assign a similarity
score between pairs of nodes belonging to two different graphs, thus allowing
a match between the two bone configurations (i.e., the skeleton extracted by
the Kinect application and the Blender armature). In the similar way as [16],
the matching strategy is based on the coupled node-edge method. This method
returns similarity scores considering not only the node similarity scores, but also
edge similarity.

Given two graphs GA and GB, a simple way to give a definition of an edge
score is: an edge in GB is like an edge in GA if their source and terminal nodes
are similar, respectively. A is the adjacency matrix of GA and B the adjacency
matrix of GB . DAs , DAt and DBs , DBt are the diagonal matrices containing the
out-degree and the in-degree values of every node in GA and GB, respectively.

By iterating a certain number of times (usually, a satisfactory convergence
is obtained with 11 iterations [16]) equation (1), a n × m scores matrix X is
obtained, where n is the total number of bones in the Blender armature and m
is the number of bones in the Kinect skeleton.

xk ←− (A⊗B +AT ⊗BT +DAs ⊗DBs +DAt ⊗DBt)xk−1. (1)

The symbol ⊗ represents the Kronecker’s matrix product, k the k-th iteration
and xk a column vector obtained by concatenating the columns of the scores



Automatically Mapping Human 85

matrix X . The iteration method presented well recognizes nodes that are very
similar and provides good results if one of the two graphs is a subgraph of the
other one.

Nonetheless, the above score is not sufficient to denote the similarity between
the two armatures. Hence, other parameters (beyond the graph topologies) need
to be taken into account in order to propose the user an efficient and accurate
bone mapping.

3.3 Motion Constraints Scores

Another parameter to be considered in the mapping process is represented by the
motion constraints related to each bone: two bones (one of the human skeleton
and one of the Blender armature) exhibiting similar degrees of freedom should
be preferred by the mapping technique. For example, it is easier to control a
virtual segment exhibiting a high degree of freedom by means of a hand rather
than with the spine. These constraints are taken into account while updating
the scores matrix X by assigning a penalty to bones with degrees of freedom
that are different. In particular, a value proportional to the existing difference
is applied. If two bones have completely different movement types, their score is
set in such a way that they cannot be matched. Motion constraints scores are
added to node-edge similarity scores (see Figure 1).

3.4 Length of Paths Scores

Another criteria considered to update the matching scores is represented by the
length of kinematic chains: a long path of connected bones should be mapped
onto a similarly long path. A sort of bonus is added (see Figure 1) to the score
of all those bone pairs that share the same position in a chain starting from
the bone root. The bonus enhances the probability that a bone in the Blender
armature, placed in a certain position, will be mapped onto a bone placed in the
same position in the human skeleton. Updating the matrix of scores according
to this criterion brings another advantage: the probability of mapping sequential
bones in a chain by respecting the natural rank order is implicitly increased.

3.5 Symmetries Scores

Armatures may exhibit one or more symmetries. This behavior is easy to verify in
models like animals, where some parts of the body (like the legs) are symmetric
and they could be subdivided into small groups. A main symmetry in the human
skeleton can be obtained by splitting left parts from right parts. This kind of
symmetry can be present also in Blender armatures. Usually, a Blender animator
marks a bone in the left or right parts of the skeleton by adding the suffix “.L”
or “.R” to the end of the bone’s name, respectively. By searching for the bones
containing “.L” or “.R” in their names, it is possible to force a mapping of these
bones onto the corresponding parts of the human body. To this purpose, the



86 A. Sanna et al.

Kinect skeleton is split in five groups: body, left arm, right arm, left leg and
right leg. Depending on the bone type in Blender, the search space is reduced
to a few groups that compose the Kinect skeleton. This approach allows the
proposed technique to always map the left part of a model onto the user’s left
arm or onto the user’s left leg, and vice versa. Scores can assume the following
values: 0 (to avoid mapping a bone in the left part onto a bone in the right
part and vice versa), 1 (to leave unchanged the score of bones not related to
symmetries, like the spine bones) and 2 (to force left part bones to be mapped
onto left part bones and vice versa). Symmetries scores multiply the previously
obtained scores recorded in the matrix.

3.6 Evaluation Component: Hungarian Algorithm

In order to identify the best matching between two graphs, the node pairs with
the highest scores in the matrix, according to a certain evaluation criterion, have
to be found. This problem is known as the maximum weight bipartite graph
matching problem. A common algorithm for identifying such a maximum weight
is the Hungarian algorithm, described in [17]. In the proposed technique, the
Hungarian algorithm is applied to the scores matrix to obtain a matching be-
tween the nodes of the graph representing the Blender armature and the nodes of
the graph representing the Kinect skeleton, which maximizes the sum of squared
matched scores. Thus, for each bone in the Blender armature, the Kinect bone
it will be mapped onto is obtained.

3.7 Preferences

After having performed several tests by exploiting all the previous scores, it was
realized that, in many cases, the approach proposed correctly chose some parts
of the Kinect skeleton like the shoulders, but these segments were indeed difficult
to use for controlling and animating characters. This issue has been tackled by
adding user’s preferences to the overall mapping strategy.

If some armature bones are mapped onto the arms, forearms or hands are
preferred to the shoulders. Of course, any other preferences could be coded in the

Fig. 3. Mapping of the human skeleton onto the armature used to animate a Pixar-like
lamp (a video is available at http://130.192.5.7/intetain2013/lamp.avi)

http://130.192.5.7/intetain2013/lamp.avi


Automatically Mapping Human 87

Fig. 4. Mapping of the human skeleton onto the armature used to animate a fish
(a video is available at http://130.192.5.7/intetain2013/fish.avi)

matrix. Furthermore, the user can choose to avoid the mapping of the possible
unused parts belonging to a mapped arm. The same approach is applied for the
legs. After the application of the preferences, the Hungarian algorithm is used
again to assign all the other unused bones.

4 Experimental Results

This section presents the application of the devised mapping approach to three
non-anthropometric characters (a Pixar-like lamp, a fish and a dog), whose
Blender armatures have been mapped onto the human skeleton extracted by
the Kinect application. Results are shown in Figures 3, 4 and 5, respectively.
The kinematics chain of the lamp is mapped part onto two bones of the left
arm (bones 1 and 2) and part onto three bones of the right arm (bones 3, 4 and
5). Arms are selected here, since their preferences score is the highest one (see
Section 3.7). A completely different mapping has been obtained for the fish. In
this case, it can be noticed how the symmetry (see Section 3.5) related to the
fins is taken into account for mapping bones 4 and 5 on the right arm and bones
6 and 7 on the left arm. Since bones 1, 2 and 3 are topologically similar to the
spine of the human skeleton, they are mapped onto it. The computation of map-
ping scores is detailed, for this character, in the Appendix that is available at
http://130.192.5.7/intetain2013/appendix.pdf. The dog armature is the most
complex one among the three considered. Again, because of topological similar-
ity, the spine of the dog is mapped onto the spine of the human skeleton (bones
1, 2 and 3). The symmetry is used to map the left parts of the skeleton onto the
left parts of the armature and vice versa. Moreover, still because of topological
similarity, the arms are mapped onto the front paws (the tail makes the similar-
ity score for the back paws, with respect the skeleton arms, lower than the front
paws). In this case, the user can choose to obtain a mapping also for the head
and the tail or, as shown in the Figure 5, to leave these two bones unmapped as

http://130.192.5.7/intetain2013/fish.avi
http://130.192.5.7/intetain2013/appendix.pdf


88 A. Sanna et al.

Fig. 5. Mapping of the human skeleton onto the armature used to animate a dog (a
video is available at http://130.192.5.7/intetain2013/dog.avi)

the five main kinematics chains of the skeleton have been already (even if not
completely) used.

5 Conclusion and Future Works

This paper presents a novel automatic procedure to map the human skele-
ton captured by a tracking system (the Microsoft Kinect, in the proposed im-
plementation) onto the armature of a virtual character to be animated. The
proposed solution is able to efficiently tackle issues related to the control of non-
anthropometric characters by taking into account topological similarity scores
as well as other parameters such as motion constraints, kinematic chains length,
user preferences and so forth. The mapping between the armatures is static,
meaning that the proposed algorithm assigns direct relationships among bones
based on the analysis of the topologies of the two armatures. Both skilled an-
imators and, above all, an audience with little or no experience in computer
animation could take advantage of the devised approach. The step of mapping
the animator’s skeleton onto the armature of the character to be animated is
efficiently automated, thus reducing time losses and frustrating attempts.

Future works will be mainly aimed to gather a larger number of user feed-
backs (currently, the system is being tested by a few students of the Computer
Animation course of the Master of Science degree in Computer Science at Po-
litecnico di Torino), in order to evaluate how the proposed mapping is close/far
to/from the statistically best solution. The approach could/should be improved
and extended in order to let it cope with armatures including a number of bones
that is larger than the one provided by the tracking device. In this case, forward
kinematics could not be used for the mapping, unless the target armature is
reduced by collapsing pairs of bones.

http://130.192.5.7/intetain2013/dog.avi


Automatically Mapping Human 89

Currently, the proposed method favours the static relations between bones by
exploiting morphological features of the armature to be animated; indeed, less
importance is assigned to the kinetic model (degree of freedom of the bones,
range of movements). Thus, future works will also consider and study in depth
the kinetic mapping between the armatures to improve the translation between
human movements into those of the target model to be animated.

Acknowledgments. The authors would like to thank the anonymous review-
ers for their valuable comments and suggestions to improve the quality of the
manuscript.

References

1. Burtnyk, N., Wein, M.: Computer generated key frame animation. Journal of the
Society of Motion Picture and Television Engineers 8(3), 149–153 (1971)

2. Burtnyk, N., Wein, M.: Interactive skeleton techniques for enhancing motion dy-
namics in key frame animation. Communication of the ACM 19(10), 564–569 (1976)

3. Menache, A.: Understanding motion capture for computer animation and video
games. Morgan Kaufmann, New York (2000)

4. Gleicher, M.: Retargeting motion to new characters. In: Proceedings of the ACM
Siggraph 1998, pp. 33–42 (1998)

5. Sanna, A., Lamberti, F., Paravati, G., Domingues Rocha, F.: A Kinect-based In-
terface to Animate Virtual Characters. International Journal of Multimodal User
Interfaces, doi:10.1007/s12193-012-0113-9

6. The Bloop project, http://dm.tzi.de/research/hci/bloop
7. The Brekelmans Jasper web site, http://www.brekel.com
8. The Blender project, http://www.blender.org
9. The Kinect web site, http://www.xbox.com/kinect/

10. Tak, S., Young Song, O., Ko, H.S.: Spacetime sweeping: An interactive dynamic
constraints solver. In: Proceedings of the Computer Animation, p. 261. IEEE Com-
puter Society (2002)

11. Shin, H.J., Lee, J., Shin, S.Y., Gleicher, M.: Computer puppetry: An importance-
based approach. ACM Trans. Graph. 20(2), 67–94 (2001)

12. Monzani, J.S., Baerlocher, P., Boulic, R., Thalmann, D.: Using an intermediate
skeleton and inverse kinematics for motion retargeting. Computer Graphics Fo-
rum 19(3) (2000)

13. Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of mo-
tions for interactive human-like animation. Computer Graphics Forum 24, 343–352
(2005)

14. Chen, J., Izadi, S., Fitzgibbon, A.: KinÊtre: Animating the world with
the human body. In: ACM SIGGRAPH 2012 Talks, pp. 39–144 (2012),
doi:10.1145/2343045.2343098

15. Sumner, R.W., Schmid, J., Paulty, M.: Embedded deformation for shape manipu-
lation. In: Proceedings of the ACM Siggraph 2007 (2007)

16. Zager, L.: Graph Similarity and Matching. Department of Electrical Engineering
and Computer Science, Massachussets Institute of Technology (2005)

17. Andràs, F.: On Khun’s Hungarian method - a tribute from Hungary. Egervàry re-
search Group on Combinatorial Optimization Technical report, TR-2004-14 (2004),
http://www.cs.elte.hu/egres/tr/egres-04-14.pdf

http://dm.tzi.de/research/hci/bloop
http://www.brekel.com
http://www.blender.org
http://www.xbox.com/kinect/
http://www.cs.elte.hu/egres/tr/egres-04-14.pdf

	Automatically Mapping Human Skeletons onto Virtual Character Armatures
	1 Introduction
	2 Background
	3 The Proposed Solution: Skeleton Mapping
	3.1 Graph Representation
	3.2 Node-Edge Similarity Scores
	3.3 Motion Constraints Scores
	3.4 Length of Paths Scores
	3.5 Symmetries Scores
	3.6 Evaluation Component: Hungarian Algorithm
	3.7 Preferences

	4 Experimental Results
	5 Conclusion and Future Works
	References




