
Specifying Cloud Application Requirements:

An Ontological Approach

Yih Leong Sun, Terence Harmer, and Alan Stewart

Queen’s University of Belfast,
University Road, Belfast, BT7 1NN, UK

{ysun05,t.harmer,a.stewart}@qub.ac.uk

http://www.qub.ac.uk

Abstract. Increasingly business organisations are deploying service ap-
plications onto cloud infrastructures. Given the available range of infras-
tructure providers and products, it is a challenging task to select the
most appropriate set of cloud resources for a given application. Cloud
providers offer resources in various formats using different pricing struc-
tures. There is a mismatch between the terminology used to specify an
application’s requirements and that used to describe provider resources.
In this paper, a resource allocation approach based on mapping applica-
tion requirements onto cloud infrastructure products is proposed. Two
domain-specific ontologies for media transcoding and financial services
are used to illustrate how application requirements can be modelled. It is
then shown how requirements can be mapped onto a general ontological
description of cloud resources. The resource ontology is provider-agnostic
and provides a framework for searching the cloud market for a set of
products that meet an application’s requirements.

Keywords: cloud computing, cloud programming model, ontology.

1 Introduction

Manyorganisations areutilising cloud infrastructuresasaflexible andcost-effective
platform onwhich to execute business applications. Increasingly providers offer in-
frastructure resources or services in the cloud market for hosting cloud-based ap-
plications. Different providers offer different ways of leasing their cloud resources
usingdifferentpricing structures. In order to achieve ahighdegree ofbusiness conti-
nuity, it is important that cloud-based applications can operate even under adverse
conditions. In the event of service interruptions caused by a provider’s resources
malfunctioning, the organisation should have the option to migrate their applica-
tions elsewhere and avoid a vendor lock-in situation. From the application devel-
oper’s point of view,finding anappropriate set of infrastructure resources thatmeet
an application’s requirements in a multi-provider cloud environment is a challeng-
ing task because of the range of products available as well as the dynamic nature
of the market.

Typically developers analyse an application’s requirements and then select
a suitable set of infrastructure resources on which to execute the application.

M. Yousif, L. Schubert (Eds.): Cloudcomp 2012, LNICST 112, pp. 82–91, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

http://www.qub.ac.uk


Cloud Requirement Ontology 83

Consequently, there is a need for a programming model which facilitates the
specification and construction of cloud-based infrastructures. Such a program-
ming model should enable application developers to build cloud-based infras-
tructures easily and rapidly. In order to develop such a programming model,
it is desirable to have a means for mapping application requirements onto in-
frastructure products (offered by multiple providers). Many different frameworks
have been proposed for discovering and utilising cloud resources. Typically cloud
requirements are analysed from the provider’s point of view, based on the re-
source capabilities offered by the provider. However, there is a mismatch between
the perspective of application developers and the low-level details supplied in a
typical resource specification. Currently, there are no suitable mechanisms for
describing requirements from an application’s viewpoint. This paper proposes
an application-centric, multi-layer ontology as a way of describing application
requirements in the cloud context. The ontology allows application developers to
formulate high-level domain-specific application requirements and subsequently
to use these descriptions to search for the most appropriate set of resources in a
multi-provider cloud environment. There is potential for application developers
to utilise the proposed ontology so as to automate the resource discovery process.

This paper is organised as follow. Section 2 provides a brief summary of a
provider-agnostic programming model. Section 3 discusses related research and
defines a multi-layer model. Section 4 describes ontology translation using two
examples while conclusion are drawn in Section 5.

2 A Provider-Agnostic Programming Model

An overview of a programming model for selecting and utilising cloud-based
infrastructures in a multi-provider cloud environment is given below.

The model is wrapped in a provider-agnostic API [7] (see Figure 1) and incor-
porates a set of cloud providers that make up the cloud market. The selection
of a particular provider depends on user preferences and provider’s financial
models. This set of providers is associated with a pool of available resources. In
practice, an application is mapped onto a set of resources from the resource pool
that meets the application’s requirements. Multiple types of suitable resources
may be discovered. An initial result set can be filtered using heuristics in order
to find the most suitable set of resources for a particular application. After a
best fit resource is identified, it can be reserved for future use. When resources
are needed, they are instantiated and user’s application is deployed. After the
application finishes, the underlying resources can be discarded.

Fig. 1. A provider-agnostic programming model



84 Y.L. Sun, T. Harmer, and A. Stewart

Thismodel allows developers to acquire infrastructure resourceswithout knowl-
edge of the internal implementation details of the underlying providers. This pro-
vides an abstract view of infrastructure resources and insulates the application
from API changes arises from the underlying providers. Applications can be de-
ployed and scaled according to system constraints, within a given budget, and have
portability across multiple providers. This paper proposes the use of ontologies to
formulate application requirements. These requirements are subsequently used in
the resource mapping process of the proposed model.

3 A Multi-layer Ontological Model

An ontology is a formal description of the entities and the relationships be-
tween them within a particular knowledge domain. Ontologies have been used
to describe cloud resources elsewhere. Most cloud-related ontologies are resource-
centric and give definitions from the perspective of the capabilities of a particular
resource provider.

Bernstein et al [2] proposes an ontology-based catalog which describes the
resource capabilities offered by cloud providers, such as CPU, storage and com-
pliance capabilities. Reservoir [4] proposes a service specification mechanism
which includes VM details, application and deployment setings. Mosaic [8] in-
troduces an ontology to describe cloud resources with a set of functional and
non-functional properties. LoM2HiS [3] proposes a framework for mapping low-
level resource metrics to high-level SLA parameters which focuses on hardware
or network attributes. This paper proposes an application-centric multi-layer
ontology that focuses on user requirements rather than just the cloud resources.

In this paper, a three-layer model is used to describe the process of map-
ping application requirements onto cloud resources (see Figure 2). The top layer
uses a domain-specific ontology to express high-level application requirements se-
mantically using application specific terminology. Two examples of such domain-
specific requirements are: (i) application data must be processed within UK in
order to be compliant with the UK Data Protection Act; (ii) media file must be
transcoded into wmv format and played on windows phone device.

Fig. 2. A multi-layer ontology model



Cloud Requirement Ontology 85

The middle layer of the proposed model is an infrastructure requirement on-
tology. This layer describes provider-agnostic infrastructure constraints that are
needed to deliver the application requirements. In going from the top to the
middle layer, high-level domain-specific requirements are mapped to infrastruc-
ture level requirements. The bottom layer in the model is the resource layer
which specifies the resource capabilities offered by various cloud providers. This
paper focuses on the domain-specific and infrastructure requirement layer. The
resource layer has been widely investigated elsewhere [2,8].

3.1 Domain-Specific Ontology

A domain-specific ontology can be used to capture high-level application con-
straints. The ontological layer is application-centric, focused on user needs and
expressed using domain specific terminology. Two examples of domain-specific
ontologies are given in order to illustrate the model.

Media transcoding is the process of converting media files (video or au-
dio) from one format to another. Transcoding is computational intensive and
requires high storage and fast bandwidth [6,10]. Often users impose a budget
for the provisioning of transcoding infrastructure. Consider a media company
that broadcasts a series of animation videos. The video sources use avi format
and are made available 5 hours before the broadcast schedule. For certain ap-
plications, these need to be transcoded into windows media format at a frame
rate of 30 frame per second and delivered to Windows Phone devices via http
streaming. The company has a budget of £100 for the transcoding operations.
The application’s requirements may be specified in a high-level notation as:

Video conversion : AVI to Windows Media
Mobile encoding : Windows Phone
Delivery deadline : 9am next morning
Encoding features : frame-rate conversion; http adaptive streaming
Budget : £100

More generally, the following domain-specific ontology is used for specifying me-
dia transcoding requirements:

Budget requirements specify monetary constraints for running a transcoding
task. These can be specified as the maximum amount that a user is prepared
to spend per day or per hour.

Format requirements specify the container format of the source and
transcoded media; for example, transcoding a video from avi format to flv
format.

Codec requirements are the audio or video codecs of the media; for example,
mpeg4, h264, mp3, aac.

Device requirements refer to the destination devices that the transcoded
media will be played on; for example, iPhone, Windows Phone, PC.

Processing Filter requirements are advanced video and audio filters, in-
cluding both pre-processing and post-processing filters; for example, frame
rate conversion, de-interlacing, watermarking, audio resampling, etc.



86 Y.L. Sun, T. Harmer, and A. Stewart

Content Sensitivity requirements refer to the sensitivity of the media con-
tent. A sensitive media content is associated with high security capabilities;
for example, secure transfer channel or encryption.

Output Storage requirements refer to the storage destination of transcoded
media; for example, cloud storage, such as Amazon S3.

Delivery Time requirements refer to the time when the transcoded media
will be ready for delivery (i.e. when the transcoded media is needed for use).

Delivery Channel requirements refer to how the transcoded media is deliv-
ered; for example, to be delivered as a downloaded file, HTTP live streaming
over the internet, or mobile streaming over 3G network.

The proposed transcoding ontology adopts the terminology used by the media
industry. Many media people would be familiar with such high-level specifica-
tions rather than the details of hardware or software resources that need to be
deployed to perform transcoding tasks. Moreover, there are many different so-
lutions which can be used to implement the same transcoding task: developers
can use a basic resource facility and additionally install the transcoding software
themselves; alternatively, developers could use a packaged resource with pre-
installed software, such as the AWS resource pre-built with Wowza Transcoder
[1]. By using the proposed model, media users can specify an application’s re-
quirements using appropriate terminology; this in turn allow developers to search
for the most suitable set of resources. It is up to developers to define a map-
ping algorithm which relates the domain-specific ontology to the infrastructure
constraints. Historical database can be used to facilitate the mapping process
by providing actual performance data. For example, in [6] several jobs are run
concurrently on a multi-core resource in order to meet a delivery deadline.

Financial service sector is a challenging domain for infrastructure deploy-
ment [9]. It is highly regulated and demands high availability of resources. One
way to increase infrastructure resilience is to deploy mirror infrastructures lo-
cated in different geographical locations. Consider a financial company which
needs to revalue their customers’ portfolios on a daily basis [9], the company
must comply with the UK Data Protection Act. The application service must
be made available 12 hours a day. Extra application services are required if sev-
eral large portfolios are to be revalued at the same time. These requirements can
be specified as:

Compliance: UK Data Protection Act 1998
Service hours required: 8am to 8pm, weekdays
Service performance: High response time; high availability;

high scalability; high disaster recovery
Portfolio valuation software: Supplied by users

A generic domain-specific ontology for financial services application is proposed
as follows:

Budget requirements are the monetary constraints for running the financial
application, typically specified as a maximum spend per month.



Cloud Requirement Ontology 87

Compliance requirements are the rules, regulations, legislation or laws that
need to be comformed with in the financial service domain, such as UK Data
Protection Act 1998.

Security requirements refer to how financial data is accessed and transferred.
Data requirements refer to the quality and integrity of the financial data.

For example, financial data must be verified and audited by a third-party
data verification service.

Performance requirements indicates the uptime requirements or guaranteed
response time for a certain time range in a day, for example, 99.99% uptime
and 100ms response time between 8am to 8pm, Monday to Friday.

Availability requirements refer to the capabilities of a financial application
to continue operate without service interruption in the event of component
failures, for example, availability level can be categorised as high, medium or
low; a high availability requirements indicates that a mirror infrastructure
must be provisioned in different geographical locations.

Scalability requirements refer to how flexible the infrastructure can grow or
shrink when demands fluctuate.

Financial companies require quick turn-around time to deploy applications in
order to remain competitive in the fast-paced financial market. The proposed
ontologies provide an easy and quick mechanism for financial users to specify
high-level requirements using appropriate terminology. Developers can trans-
late these high-level specifications to lower level infrastructure constraints. For
example, low availability means that infrastructure replication is not required,
whereas, high availability means that an application must be deployed on a mir-
ror infrastructure located in different geographical locations.

3.2 Infrastructure Requirement Ontology

In the infrastructure requirement ontology, a requirement specifies the capa-
bilities or qualities that are necessary (or desired) for an infrastructure. Infras-
tructure requirements are divided into different categories (see Figure 3):

Cost requirement is the budget for deploying cloud infrastructure.
Performance requirement refers to effectiveness and quality of the infras-

tructure. Network latency performance is the delay incurred in the pro-
cessing of data across the network; bandwidth performance is the speed
of the network including incoming and outgoing bandwidths.

Resource requirement refers to the specification of individual resources
(hardware, software or operating system). Four categories are identified:
hosting environment defines the operating system requirement of the host,
such as Windows 7; hardware capability refers to the hardware compo-
nents, such as CPU, RAM, storage space; software stack indicates the list
of software or services that need to be installed on a resource.

Geographical requirement refers to location of resources (including data).
Compliance code requirement refers to regulatory, industry or security

standard that the infrastructure needs to comply with, such as ISO27002.



88 Y.L. Sun, T. Harmer, and A. Stewart

Fig. 3. Hierarchy of infrastructure requirements

A requirement can be either hard requirement or soft requirement. A
hard requirement is a compulsory requirement which remains invariant over
the application’s lifecyle – an example might be legislation regulation; a soft
requirement is a desired requirement which can change or be re-prioritised –
for example, it might be budget or performance related. This concept is repre-
sented using the hasRequirementType property and the requirementType
emumeration property. A priority level data property is defined to indicate the
importancy of a requirement. This property can be used to measure and calcu-
late weightings during requirement prioritisation and resource filtering process.
Requirements may depend on each other. For example, UK Data Protection
Act (compliance requirement) indicates that no data can be processed or
stored outside the UK boundary. This translates to a dependency relationship
on geographical requirement. Figure 4 illustrates the requirement ontology.

Infrastructure and requirement are core entities in the infrastructure re-
quirement ontology. Every infrastructure has at least one site. A site has one
or more resource groups. A resource group is a set of resources. Require-
ments can be applied at different levels of the infrastructure layout: infras-
tructure, site, resource group or resource level. The relationship between
infrastructure and requirement is expressed using the hasRequirement
property (see Figure 5).

A restriction class is defined to identify the conditions or constraints asso-
ciated with a requirement. Each requirement has at least one restriction
which is expressed using isConstrainedBy property (see Figure 4).

Cost requirement is constrained by cost restriction. A cost restriction
can be a total cost or it can be divided into compute cost, software cost,
storage cost, or bandwidth cost. Each cost restriction is associated with
cost frequency (per hour, per day) and cost money (amount, currency).

Fig. 4. Requirement Fig. 5. Infrastructure and requirement



Cloud Requirement Ontology 89

Performance requirement is constrained by performance-related restric-
tion. Latency performance is constrained by latency restriction (expressed
via hasLatency property).Bandwidth performance is constrained by band-
width restriction. Bandwidth restriction indicates minimum amount of
bandwidth required using the hasMinBandwidth property.

Resource requirement is constrained by resource-related restriction.Host-
ing environment is constrained by operating system restriction which indi-
cates the operating system types (via hasOS property). Hardware capability
is constrained by hardware restrictions, such as cpu core restriction (via
hasMinCPUCore property), cpu speed restriction (via hasMinCPUS-
peed property), cpu architecture restrictioin (via hasCPUArchitecture
property), RAM restriction (via hasMinMemory property), and storage
space restriction (via hasMinStorageSpace property). Software stack is
constrained by software restriction which indicates the list of softwares or
services that need to be installed on the resource (via hasSoftware property).

Geographical requirement is constrained by location restriction. Lo-
cation restriction is associated with hasLocation property that indicates the
location (country or data center location).

Compliance code requirement is constrained by compliance restric-
tion, which can be standard code restriction – contains the standard’s code
format or regulatory restriction – contains the name of regulation.

3.3 Resource Ontology

The resource ontology, the bottom layer of the proposed model, defines the
properties of the resources offered by cloud providers. This layer has been widely
investigated elsewhere – see [2] and [8]. These existing ontologies can be applied
as the resource ontology in the proposed model. The mapping of infrastructure
requirements to the resource ontology can be achieved by using query language
[5] – this topic is outside the scope of this paper.

4 Translation from Domain-Specific Ontology

Here consideration is given as to how a domain-specific ontology can be trans-
lated to the infrastructure requirements ontology.

For the media transcoding example, application developers need to provision
an infrastructure which fulfils the transcoding requirements as well as balances
the budget and delivery time constraints. Transcoding requirements, such as
video format conversion, frame rate conversion or http streaming, indicate the
features or capabilities of a transcoding software that need to provide. Particular
software, such as FFmpeg or Rhozet, can be used to perform the transcoding
task. However, each software has different system requirements. For example,
Rhozet must be run on Windows operating system, whereas FFmpeg can be
run on Linux. Using the proposed multi-layer ontology model, domain-specific
transcoding requirements can be translated into software requirements, where



90 Y.L. Sun, T. Harmer, and A. Stewart

each software has associated operating system or hardware dependancy require-
ments. Moreover, tight delivery deadline requirement may necessitated the use
of high-cpu resources. Figure 6 illustrates how the transcoding requirements are
translated into infrastructure requirements.

Examples of the ontology relationships between domain-specific and infras-
tructure layer for the media transcoding application are given as follow: Format,
codec, device, processing filters and delivery channel isDependOn soft-
ware stack which indicates the transcoding software’s capabilities or features;
delivery time isDependOn network latency, bandwidth and hardware
capability as it requires fast bandwidth and high cpu for fast processing.

For the financial services example, the UK Data Protection Act regulatory
requirement indicates that the infrastructure resources being provisioned must
be located within UK. Two identical mirror infrastructure must be provisioned
at different geographical location in order to meet the high availability and high
disaster recovery requirements. High bandwidth usage is required as the appli-
cation service needs to utilise stock market values. The demand of high response
time requires high-cpu and high-memory resources for faster computation. The
formulation of such requirements are illustrated in Figure 7.

Examples of the ontology relationships for the financial services application
are given below: Compliance isDependOn geographical because a ‘UK Data
Protection Act’ indicates that no data can be processed outside the UK bound-
ary; data isDependOn software stack as it requires third party verification
services; high availability and high scalability are complex requirements
and depend on how infrastructure resources are provisioned. The concepts of
infrastructure, site, resource group and resource are used to indicate that
different geographical sites must be provisioned, and each site hasRequirement
latency, bandwidth and geographical.

The middle layer of the proposed model serves as an agent that translate the
domain-specific ontology onto related infrastructure requirements ontology. This
provides an abstract view of high-level requirements from the application’s per-
spective. Infrastructure requirements ontology can then be mapped to resource
ontology using ontology query language [5].

Fig. 6. Media transcoding application Fig. 7. Financial services application



Cloud Requirement Ontology 91

5 Conclusion and Future Work

The cloud market is developing rapidly with a dynamic environment of providers
and products. Searching for suitable resources in such a dynamic environment
is challenging. Little attention has been paid to describe a cloud application’s
requirements at an appropriate level of abstraction. In this paper, an application-
centric multi-layer ontology for describing cloud application requirements is pro-
posed. This ontology provides a semantic mechanism for capturing application
needs in a language familiar from users’ application domains. Two examples
are used to illustrate the formulation of application requirements. We hope to
enhance the ontology by studying other application domains. We also hope to de-
velop techniques for mapping user requirements into infrastructure constraints.
We believe that our approach offers an effective mechanism to compare and
select resources from a multi-provider cloud market.

References

1. Wowza Transcoders,
http://www.wowza.com/forums/content.php?23-

pre-built-amis-amazon-machine-images

(last accessed: June 30, 2012)
2. Bernstein, D., Vij, D.: Using Semantic Web Ontology for Intercloud Directories

and Exchanges. In: International Conference on Internet Computing (2010)
3. Emeakaroha, V.C., Brandic, I., Maurer, M., Dustdar, S.: Low level Metrics to High

level SLAs - LoM2HiS framework: Bridging the gap between monitored metrics and
SLA parameters in cloud environments. In: 2010 International Conference on High
Performance Computing and Simulation, HPCS (July 2010)

4. Galán, F., Sampaio, A., Rodero-Merino, L., Loy, I., Gil, V., Vaquero, L.M.: Ser-
vice specification in cloud environments based on extensions to open standards.
In: Proceedings of the Fourth International ICST Conference on Communication
System Software and Middleware, COMSWARE 2009. ACM (2009)

5. Haase, P., Motik, B.: A mapping system for the integration of OWL-DL ontolo-
gies. In: Proceedings of the First International Workshop on Interoperability of
Heterogeneous Information Systems, IHIS 2005, pp. 9–16. ACM (2005)

6. Harmer, T., Wright, P., Cunningham, C., Hawkins, J., Perrott, R.: An application-
centric model for cloud management. In: Proceedings of the 2010 6th World
Congress on Services, SERVICES 2010. IEEE Computer Society (2010)

7. Harmer, T., Wright, P., Cunningham, C., Perrott, R.: Provider-independent use
of the cloud. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS,
vol. 5704, pp. 454–465. Springer, Heidelberg (2009)

8. Moscato, F., Aversa, R., Di Martino, B., Fortis, T., Munteanu, V.: An analysis of
mOSAIC ontology for Cloud resources annotation. In: 2011 Federated Conference
on Computer Science and Information Systems, FedCSIS (September 2011)

9. Sun, Y.L., Perrott, R., Harmer, T., Cunningham, C., Wright, P.: An SLA Focused
Financial Services Infrastructure. In: Proceedings of the 1st International Confer-
ence on Cloud Computing Virtualization, Singapore (2010)

10. Wright, P., Harmer, T., Hawkins, J., Sun, Y.L.: A Commodity-Focused Multi-
cloud Marketplace Exemplar Application. In: 2011 IEEE International Conference
on Cloud Computing (CLOUD) (July 2011)

http://www.wowza.com/forums/content.php?23-pre-built-amis-amazon-machine-images
http://www.wowza.com/forums/content.php?23-pre-built-amis-amazon-machine-images

	Specifying Cloud Application Requirements: 
An Ontological Approach
	1 Introduction
	2 A Provider-Agnostic Programming Model
	3 A Multi-layer Ontological Model
	3.1 Domain-Specific Ontology
	3.2 Infrastructure Requirement Ontology
	3.3 Resource Ontology

	4 Translation from Domain-Specific Ontology
	5 Conclusion and Future Work
	References




