
 

M. Yousif, L. Schubert (Eds.): Cloudcomp 2012, LNICST 112, pp. 21–31, 2013. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013 

Design and Implementation  
of a Multi-objective Optimization Mechanism  

for Virtual Machine Placement  
in Cloud Computing Data Center 

Soichi Shigeta, Hiroyuki Yamashima, Tsunehisa Doi,  
Tsutomu Kawai, and Keisuke Fukui 

Cloud Computing Research Center, Fujitsu Laboratories Ltd. 
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, Japan 

{shigets,yama,micky,tkawai,kfukui}@labs.fujitsu.com 

Abstract. Cloud computing is becoming a popular way of supplying and using 
computing resources. A cloud-computing data center is equipped with a large 
number of physical resources and must manage an even larger number of 
virtual machines (VMs). The center’s VM placement strategy affects the 
utilization of physical resources, and consequently, it influences operational 
costs. Our goal is to develop a multi-objective optimization mechanism for VM 
placement that satisfies various constraints and results in the lowest operational 
cost. The number of possible combinations of VMs and hosts can be extremely 
large. For the mechanism to be practical, the number of possible combinations 
must be reduced. We reduced computational overheads by classifying VM hosts 
into a relatively small number of equivalent sets. Simulation results show that 
expected operational costs can be significantly reduced by applying the 
proposed mechanism.  

Keywords: cloud computing, VM placement, multi-objective optimization. 

1 Introduction 

Cloud computing is becoming an increasingly popular way of supplying and using 
computing resources. A number of commercial cloud services, such as Amazon EC2 
[1] and S3 [2], Google AppEngine [3], Salesforce CRM [4], and Fujitsu Global Cloud 
Platform [5] are presently being used to run business systems. Cloud services can be 
classified into three types: Infrastructure as a Service (IaaS), Platform as a Service 
(PaaS), and Software as a Service (SaaS). For example, Fujitsu Global Cloud 
Platform and Amazon EC2 are examples of IaaS. Google AppEngine is an example of 
PaaS, and Salesforce CRM is an example of SaaS. In this paper, our main focus is on 
an IaaS data center with particular emphasis on reducing operational costs.  

Reducing operational costs is a key to achieve high cost-benefit performance in 
cloud computing data centers. Lower operational costs are also important for  
price competitiveness because they will be reflected in the price of a service. 



22 S. Shigeta et al.  

 

Accordingly, the aim of this research is to develop a multi-objective mechanism to 
determine the lowest cost for virtual machine (VM) placement that considers various 
components of cost efficiency (such as electrical power consumption, availability, and 
load balancing).  

Traditional systems have been designed and built to satisfy the peak load that was 
estimated in advance. However, although periodic fluctuations for business workloads 
may be predictable, it is difficult to predict fluctuation of demand for a public cloud. 
Load balancing among physical servers is a typical criterion to increase the efficiency 
in cloud computing data centers. Therefore, many existing resource schedulers 
determine VM placement on the basis of utilization of physical servers (typically CPU 
and memory usage) or VM hosts. However, efficient and effective VM placement 
involves many other factors, and existing resource schedulers do not give these 
additional factors adequate consideration because multi-objective optimization is an 
extremely complex problem. If this problem is addressed in a straightforward way, an 
astronomical number of possible combinations will be generated because of the large 
number of physical servers and VMs in a cloud computing data center; i.e., a huge 
number of time-consuming computations are required to obtain an optimum result.  

Consequently, timely optimization is a challenge. A VM deployment request from 
a user should be completed within several minutes (including time to boot up VM). 
Therefore, a very limited amount of time is available to determine an optimum VM 
placement.  

2 Various Constraints to Virtual Machine Placement 

In addition to the physical capacity of each host (i.e., CPU and memory), resource 
scheduling often has to consider various other constraints. These constraints are 
related to policies established by the operator of the cloud. Moreover, it is common 
for the constraints to conflict with each other. Examples of constraint policies are 
given below:  

 
 Efficient use of electricity (towards a green environment): This policy allocates 

as many VMs as possible to a host. Electricity can be saved by powering-off 
idling hosts.  

 Availability of a virtual system: This policy distributes VMs to different hosts 
(redundancy) to guard against VMs going down if a single host fails. This policy 
may conflict with the goal of saving electricity.  

 Affinity: This policy allocates compatible or similar VMs to the same host. For 
example, network traffic via switches and routers can be reduced by allocating 
VMs that routinely communicate with each other to the same host. This is a 
typical situation for multiple VMs owned by a single tenant in a multi-tenant 
data center. 

 Repulsion: VMs that compete for resources should not be placed on the same 
host. For example, VMs requiring higher network bandwidth should be placed 
repulsively to avoid network congestion. Firewalls are a typical example.  



 Design and Implementation of a Multi-objective Optimization Mechanism 23 

 

 Minimum migration cost: This policy determines VMs that should be migrated 
from one host to another host. Migration costs can be a function of factors 
memory size, I/O rate, and the number of hops between hosts.  

3 Challenges 

Realization of Practical Response Time. It is not practical to use a brute-force 
method to find optimum VM placement because of the large numbers of hosts and 
VMs in a cloud computing data center. To realize practical computation time, the 
number of possible combinations must be limited.  

 
Arbitration. As mentioned in the previous section, the various policies established by 
the cloud computing data center to determine VM placement may conflict with each 
other; for example, reducing power consumption conflicts with high availability, and 
conversely, ensuring high availability may increase power consumption. One of the 
challenges for a cloud administrator is determining how to arbitrate such conflicting 
constraints. Prioritization could be a solution, but arbitrating the conflict between 
availability and power consumption is not axiomatic.  

 
Flexibility. Since the requirements and prioritization of policies can differ among 
data centers, a multi-objective optimization system should allow a data center 
operator to configure (add and remove) policies to satisfy particular requirements. 
Moreover, any system for determining VM placement must be sufficiently flexible to 
respond to changes in economic, political, and social conditions, such as the rising 
cost of energy, preferential taxation systems for ecological initiatives, regulations 
requiring the restriction of CO2 emissions, and other responses to global warming and 
climate change. For example, data centers in Japan had to respond to restricted 
electricity supply after the earthquake and tsunami, which occurred in March, 2011.  

4 Solutions in the Design 

Avoiding Excessive Numbers of Possible Placement Combinations. This is 
essential for the realization of a practical multi-objective optimization mechanism. 
We have solved this difficulty by defining and introducing equivalent sets of hosts.  

Although a large number of hosts exist in a cloud computing data center, they can 
be classified into a relatively small number of equivalent sets on the basis of the status 
of each host. One host from a set can be used to evaluate the cost, thereby 
significantly reducing the required computations. For example, all hosts can be 
classified into two equivalent sets (powered on and off) to determine how to apply the 
electricity-saving policy mentioned in section 2.  

Here, we assume that n is the number of hosts and m is the number of VMs to be 
deployed. When a brute-force method is used, there are n choices for placement of 
each VM. Therefore, the order of required computation is O(nm).  



24 S. Shigeta et al.  

 

We are proposing an algorithm, which will be described in detail in a following 
section, which utilizes a representative VM from an equivalent set to minimize the 
number of computations. First, because we need to check the status of each host, for 
each constraint, the order of computations to classify n hosts into equivalent sets is 
O(n). It is also O(n) for k constraints. Note that it is reasonable to assume k << n. 
Second, O(n) computations are required to calculate a comprehensive cost for n hosts. 
Additionally, if all the hosts are neighboring, a maximum of O(n) computations are 
needed to conduct a neighborhood search. All these computations of O(n) are 
necessary for m VMs. Therefore, the order of computation is O(n*m).  

For example, for 120 hosts and 8 VMs:  
O(nm) = 120^8 (~ 10^16): brute-force method  
O(n*m) = 120*8 (~ 10^3): proposed mechanism.  

 
Flexibility and Arbitration. Multi-objective optimization must be flexible and 
capable of arbitrating conflicting constraints. For example, electricity saving and 
availability of a virtual system are compatible policies in a multi-tenant environment. 
Although the latter policy acts to distribute one tenant’s VMs on different hosts, the 
former policy works to cluster several tenants’ VMs on one of host. As a result, the 
number of powered-on hosts can be decreased by sharing hosts among tenants. 
Considering other optimization objectives, the proposed mechanism 
programmatically finds an optimum VM placement from a large number of possible 
combinations.  

The structure of the proposed mechanism is illustrated in Figure 1. It consists of 
following three modules:  
 

1. Cost Evaluation Plug-in Module 
The proposed mechanism has been designed with a plug-in structure to enable 
data center operators to implement various operational policies. The cost 
evaluation plug-in module evaluates the cost on the basis of a specific 
optimization objective function. The exceptional value of this design feature is 
that is allows a comparison of the impact of various constrains on the basis of 
the cost.  
 

 

Fig. 1. Structure of the proposed mechanism 

{ 



 Design and Implementation of a Multi-objective Optimization Mechanism 25 

 

2. Comprehensive-Evaluation Module  
This module gathers the evaluated cost from all plug-in modules. 
Subsequently, the comprehensive-evaluation module calculates a 
comprehensive cost considering the weight rating of each policy. The formula 
is as follows:  

 
where Ci is the comprehensive cost for host i, wj is the weight of the policy j, 
and ei,j is an evaluated cost for host i by applying policy j.  

3. Total Optimization Controller  
The total optimization controller allows the API to accept optimization 
requests. Interacting with other modules, this controller determines and 
enforces an optimum VM placement.  

 

An overview of the algorithm is shown in pseudo code in Figure 2. The algorithm 
works in two phases. In the first phase, a temporal VM placement is determined as an 
initial state. Subsequently, in the second phase, a neighborhood search is performed.  
 

 

Fig. 2. Overview of the algorithm 

5 A Prototype Implementation 

Total Optimization Controller / Comprehensive-Evaluation Module. A prototype 
of the Total Optimization Controller has been developed as a web application. We 
used Ruby on Rails [6], which is a framework for developing web applications, to 
realize fast implementation. The controller provides a REST API to accept requests 
from the Resource Orchestrator, which will be described in greater detail in Section 6. 
The comprehensive-evaluation module has been implemented as a component module 
of the total optimization controller.  



26 S. Shigeta et al.  

 

Cost Evaluation Plug-in Modules. We have implemented plug-in modules for four 
typical VM placement policies. The plug-in modules are written in Ruby 1.8.  

 

1. Electricity saving  
This plug-in module evaluates the cost of electricity. For simplicity, we focus 
only on whether a physical server is powered on or off. The actual electricity 
consumption depends on the load, but there is a significant difference 
between powered on and off.  

Evaluated cost will be:  
E, if a VM is placed on a host which needs to be powered on  
0, otherwise  

 

2. Availability of a virtual system  
This plug-in module takes particular note of redundancy of VMs in the same 
tier. An example of a commonly used three-tiered web system is shown in 
Figure 3. In the example, each tier (web, application, and database) has 
redundant VMs. However, the whole tier will be downed by the failure of a 
single host if redundant VMs are deployed on the same host. To prevent such 
a situation, this module considers the loss of redundancy as a cost.  

Evaluated cost will be:  
F, if a VM is placed with another VM that belongs to the same tier  
0, otherwise  

 

 
Fig. 3. Example of a 3-tiered web system 

 
Fig. 4. Example of 3 types of communication situations 

{ 

{ 



 Design and Implementation of a Multi-objective Optimization Mechanism 27 

 

3. Affinity (reduction of network traffic beyond a top-of-rack switch)  
This plug-in module evaluates the impact of network traffic. As shown in 
Figure 4, communication between VMs is classified into three types:  
 
a. S (small): No network traffic is required outside of a host. VMs are 

placed on the same host.  
 

b. M (medium): Network traffic between hosts via a top-of-rack switch is 
required when VMs are placed on different hosts exiting in the same rack.  
 

c. L (large): Network traffics with inter-rack routing are required when VMs 
are placed on the hosts in different racks.  

 
Additionally, we introduced a filling rate to represent rack occupancy. For 
each rack, the filling rate is given as the number of deployed VMs divided by 
the total capacity (number of possible VMs) of the hosts. Note that the 
number of VMs is determined by the smallest VM equivalent. When the 
filling rate exceeds the predefined threshold, this plug-in module charges 
additional cost A. Therefore, placement of VMs on racks that are at or close to 
capacity is discouraged.  
 

4. Repulsion 
We assume that a virtual system contains at least one VM that acts as a 
firewall. Typically, a firewall requires high bandwidth because all traffic to 
and from associated networks pass through it. Therefore, placing multiple 
VM firewalls on the same host is generally undesirable. This plug-in module 
considers competition for network bandwidth as a cost.  

Evaluated cost will be:  
B2, if a firewall VM is placed with other firewall VMs  
0, otherwise 

Note: The value of B is proportional to the number of VM firewalls on the 
host. We use B2 as an analogy of the charge repulsion.  

6 Preliminary Evaluation 

We conducted simulations to evaluate the proposed mechanism. Fujitsu ServerView 
Resource Orchestrator [7] and a hardware simulator were used to construct a mock 
cloud computing data center environment. The Resource Orchestrator manages all 
pseudo physical resources (servers, network switches and storage) and VMs. In 
addition, it manages and allocates addressing resources (MAC addresses, IP 
addresses, and VLAN IDs). We have made a small modification to the Resource 
Orchestrator to invoke the proposed mechanism when it receives a request to deploy a 
virtual system from a user.  
 
 

{ 



28 S. Shigeta et al.  

 

Conditions of Simulations 
 
 Physical Servers: 120 homogeneous physical servers; each capable of hosting 20 

“economy” VMs (see Table 1).  
 Virtual Machines: As shown in Table 1, VMs has been classified into economy, 

standard, advanced, and high performance. These types were determined by 
reference to the Amazon EC2 and the Fujitsu Global Cloud Platform.  

 Virtual Systems: A virtual system consists of 2-12 VMs that cab be comprised 
of various types. All VMs in a virtual system will be deployed or deleted 
synchronously on the basis of a request from a user.  

 Duration of a simulation: 1 year.  
 Overall CPU utilization: The average overall CPU utilization in a data center 

starts from 0% (no VM deployed) and grows up to 60% by the end of one year. 
Note that some deployed virtual systems are deleted during the simulation. In 
this preliminary evaluation, VM placement that resulted in an over-committed 
state was not allowed.  

 Electricity costs: We assume that a physical server will consume 300 W of 
electricity (e.g., Fujitsu PRIMERGY RX200S5 equipped with two Intel Xeon 
2.53GHz processors and 24GB memory). Based on the cost of the special high-
tension voltage power in Tokyo, Japan, the cost is approximately 3.4 yen per 
hour.  

Table 1. Types of VMs 

Type CPU Memory (GB)  

Economy 1  1.7  

Standard 2  3.4  

Advanced 4  7.5  

High Performance 8 15.0  

Note: “CPU=1” is equivalent CPU performance of Intel Xeon 1.0 GHz. 

 
Simulation Results. Configurations of the weighted values for the applied plug-in 
modules are summarized in Table 2. “A” represents the lowest boundary of electricity 
cost. “F” distributes VMs considering both availability and repulsion (i.e., no 
electricity saving). The weight of availability and repulsion are gradually increased 
from “C” to “E.”  

Three patterns of request sequences, p1, p2, and p3, were assessed. Under 
conditions described in above, each virtual system was given randomly generated 
parameters: type and number of VMs, date and time of deployment, and deletion.  

Figure 5 shows the average calculation time to find an optimum VM placement by 
the proposed mechanism and a brute-force method (simulated on a PC equipped with 
Intel Core i5-2520M 2.50GHz CPU and 4GB memory). The x-axis represents the 
number of VMs included in a virtual system. We can see that the proposed 
mechanism realized a practical calculation time even the number of VMs was 
increased. For example, for 8 VMs, the average calculation time by the proposed 
mechanism and a brute-force method were 0.097sec and 160sec, respectively.  



 Design and Implementation of a Multi-objective Optimization Mechanism 29 

 

Figure 6 shows the accumulated costs for one year of simulated operation. Figure 
6(a) indicates the real cost of electricity. Figures 6(b) and (c) represent the assigned 
costs of availability and repulsion, respectively. As mentioned in Section 5, assigned 
costs are charged when constraints are not satisfied; i.e., smaller value is preferable.  

Table 2. Configurations of weight for the applied plug-in modules 

config. electricity saving availability repulsion affinity 

A 1.0 - - - 

B 1.0 2.0 - - 

C 1.0 0.5 0.5 1.0 

D 1.0 1.0 1.0 1.0 

E 1.0 2.0 2.0 1.0 

F - 1.0 1.0 - 

(- : not applied) 

 

 

Fig. 5. Average calculation time to find an optimum VM placement 

 
(a) electricity             (b) availability                (c) repulsion 

Fig. 6. Accumulated costs (duration: 1 year) 

The simulation results show that the electricity cost increases as other constraints 
are satisfied. In this simulation, however, both availability and repulsion were well 
satisfied for configurations “D” and “E.” Compared with “F,” 8.4% to 27.3% of 
electricity cost was saved.  

7 Related Work 

Ni et al. [8] implemented a probabilistic scheme to determine VM placement.  
A roulette wheel is used in their scheme. A sector on the roulette wheel corresponds 



30 S. Shigeta et al.  

 

to a host. To create larger selection probability, a larger central angle was assigned to 
a sector associated with a host that has larger amount of available resources. In the 
proposed VM mapping policy, multi-dimensional resource usage (e.g., CPU and 
memory) was considered. However, other constraints, such as electricity saving and 
high availability of a virtual system, were not considered.  

Xu et al. [9] and Garces et al. [10] implemented multi-objective optimization 
mechanisms for VM placement and migration. Their common approach applies a 
genetic algorithm to solve a multi-objective optimization problem. Our approach does 
not use a genetic algorithm. As mentioned in Section 4, we introduced equivalent sets 
of hosts to avoid extremely large numbers of possible placement combinations.  

Tsakalozos et al. [11] proposed an approach similar to ours; i.e., identifying 
potentially compatible groups of physical servers to reduce the search space. 
Moreover, a few constraints such as power saving and minimizing network traffic by 
co-deploying a set of VMs on the same physical server were considered. In this 
research, however, physical servers were classified into groups based solely on VM 
migration ability because the goal was load balancing through migration. In contrast, 
our mechanism generates equivalent sets of physical servers (hosts) for each 
constraint or policy. Note that the VM migration ability of a host can be added as a 
constraint by implementing a plug-in module. Subsequently, our mechanism places a 
VM on a host that was evaluated as having the lowest comprehensive cost because 
our goal is the reduction of operational cost and not load balancing.  

8 Conclusion 

We have designed and implemented a multi-objective optimization mechanism for 
VM placement. The proposed mechanism is flexible and allows data center operators 
to add their own desired optimization objectives or evaluate specific policies by 
implementing plug-in modules.  

The unique value of our system is that a constraint is translated into an estimated 
cost (real or assigned). Each plug-in module evaluates the additional cost that would 
accrue if a VM is placed on a host. Subsequently, the Comprehensive-Evaluation 
Module gathers the results and calculates the total cost considering the weight of each 
policy. The Total optimization controller conducts a neighborhood search to find the 
lowest cost VM placement, and ultimately, it enforces the optimum VM placement.  

A practical calculation time to find an optimum VM placement was realized by 
introducing the equivalent sets of hosts. The simulation results showed that both 
availability and repulsion could be satisfied with a cost saving of 8.4%-27.3% for 
electricity.  
 
Acknowledgments. We would especially like to express our heart-felt gratitude to 
Messrs. Toru Sakiyama, Noriyuki Murata, and Makoto Nasuno who are systems 
software engineers at ASCADE Inc.  



 Design and Implementation of a Multi-objective Optimization Mechanism 31 

 

References 

1. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/ 
2. Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/ 
3. Google App Engine, http://code.google.com/appengine/ 
4. Saleseforce CRM, http://www.salesforce.com/crm/ 
5. Fujitsu Global Cloud Platform, 

http://www.fujitsu.com/global/solutions/ 
cloud/solutions/global-cloud-platform/ 

6. Ruby on Rails, http://rubyonrails.org/ 
7. Fujitsu ServerView Resource Orchestrator Cloud Edition, 

http://www.fujitsu.com/fts/products/computing/ 
servers/primergy/management/dynamize/ror-ce/ror-ce.html 

8. Ni, J., Huang, Y., Luan, Z., Zhang, J., Qian, D.: Virtual Machine Mapping Policy Based on 
Load Balancing in Private Cloud Environment. In: Proc. of 2011 Int’l Conf. on Cloud and 
Service Computing, Hong Kong, China (2011) 

9. Xu, J., Fortes, J.A.B.: Multi-objective Virtual Machine Placement in Virtualized Data 
Center Environments. In: Proc. of 2010 IEEE/ACM Int’l Conf. on Green Computing and 
Communications, Hangzhou, China (2010) 

10. Garces, N., Ortiz, N., Mendez, D., Donoso, Y.: Multi-Objective Optimization for Virtual 
Machine Migration on LANs for Opportunistic Grid Infrastructure. In: Proc. of the 3rd 
Int’l Conf. on Emerging Network Intelligence, Lisbon, Portugal (2011) 

11. Tsakalozos, K., Roussopoulos, M., Delis, A.: VM Placement in non-Homogeneous IaaS-
Clouds. In: Proc. of the 9th Int’l Conf. on Service Oriented Computing, Paphos, Cyprus 
(2012) 


	Design and Implementation of a Multi-objective Optimization Mechanism for Virtual Machine Placement in Cloud Computing Data Center
	1 Introduction
	2 Various Constraints to Virtual Machine Placement
	3 Challenges
	4 Solutions in the Design
	5 A Prototype Implementation
	6 Preliminary Evaluation
	7 Related Work
	8 Conclusion
	References




