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Abstract. We present initial findings of an ongoing effort to endow the key 
players in a nation-state model with intelligent behaviors. The model is based 
on resource exchange as the fundamental interaction between agents. In initial 
versions, model agents were severely limited in their ability to respond and 
adapt to changes in their environment. By modeling agents with a broader range 
of capabilities, we can potentially evaluate policies more robustly. To this end, 
we have developed a hierarchical behavioral module, based on an extension of 
the proven ATLANTIS architecture, in order to provide flexible decision-
making algorithms to agents. A Three-Layer Architecture for Navigating 
Through Intricate Situations (ATLANTIS) was originally conceived for 
autonomous robot navigation at NASA’s JPL. It describes a multi-level 
approach to artificial intelligence. We demonstrate the suitability of our 
reification for guiding vastly different types of decisions in our simulations over 
a broad range of time scales. 
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1 Introduction 

There is growing interest in the social sciences in numerically modeling the key 
processes and interactions important for determining change in geopolitical systems. 
A major long-term goal is to develop models to critically evaluate U.S. foreign policy 
in a complex arena of multi-national corporations, military and economic rivalries, 
and long-term changes in the balance of power among nations. Eventually, the most 
useful models will capture the breadth of values and ideologies that guide nations of 
various sizes and political configurations. 

The resource-exchange model of Beyeler et al. (2011) [1] has been adapted to be 
capable of representing both historical and contemporary economic interactions 
among key players in the geopolitical arena. The agents in the model can include 
national and sub-national entities (such as provinces) as well as corporations, whether 



 Behaviors of Actors in a Resource-Exchange Model of Geopolitics 71 

 

sponsored by a single nation to advance its interests (e.g., the East India Company) or 
a semi-autonomous organization with international affiliations (e.g., Microsoft). We 
often refer to the model as the “nation-state model” in this configuration, which is 
well-suited for geopolitical scenarios. Both terms, “resource-exchange model” and 
“nation-state model”, will be used interchangeably throughout the text. Although it 
does not yet include prediction of military conflicts and their outcomes, the model 
nevertheless captures essential features of real economic systems. For example, it has 
been used successfully to represent economic interactions in the current Pax 
Americana, in which global-scale military conflicts are inhibited. 

The nation-state model [1] is a hybrid model combining system dynamics and 
multi-agent based modeling. Differential equations representing the important rates of 
change in the system are integrated forward in time. The continuous timeline 
described by the rate equations is interspersed, however, with discrete resource-
exchange events between agents (which the authors call entities). These exchanges 
occur through markets and constitute the fundamental interaction between entities. 
Money is represented in this framework as simply a resource which can be exchanged 
for any other, whereas all other resources are exchanged in specific ratios according 
to their relative value to different suppliers and consumers. Whether corporate, 
national, or sub-national, entities in the nation-state model [1] instantiate new 
processes and change parameters of processes already in operation in order to affect 
the flow of resources in and out of their boundaries. Processes represent what entities 
can do; what they will do is a separate question. 

It is noteworthy that entities in the current implementation of the exchange model 
[1] do not have the ability to make choices or analyze their environments (e.g., to 
improve their performance). Their ability to adapt is limited to changing their 
valuations of different resources according to simple dynamical equations. Entity 
behavior is governed solely by the dynamics, which do not represent goal-seeking, 
internal world-model building, or any other intentional process. The behaviors 
exhibited are therefore quite limited. In assessing the strength of foreign-policy 
decisions, naïve models carry the risk of underestimating the capabilities of 
adversaries and therefore evaluating U.S. policies over-optimistically. Geopolitical 
players in credible models will be capable of innovative approaches, such as trade 
regulations and the initiation of conflicts, to promote their own goals and undermine 
those of their competitors. 

It is the goal of this effort to implement agent behavior (with varying levels of 
skill) for the resource-exchange model using ideas from the artificial intelligence 
community. Our approach has been to design and develop reusable Java language [2] 
modules, which themselves depend minimally on the structure of the resource-
exchange model, in order to facilitate future application of the behavioral layer to 
other agent-based simulations. Architecturally, the software is a reification of the 
ATLANTIS architecture developed by Erann Gat (see [3], [4]) as a solution to the 
complex problem of navigating NASA’s ground rovers through rocky Martian terrain. 
We will discuss the advantages of their design for guiding entity behavior in the 
nation-state model. 
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2 Intelligent Agents 

2.1 Degrees of Sophistication 

Defining intelligent decision-making processes by agents in complex systems is 
critical to understanding the interactions between them, which can be both 
cooperative and competitive.1 The algorithms that accomplish this are expected to be 
broadly applicable. By not tying the behavioral layer to a particular complex-system 
model, we confer the ability for it to be used to inform decision-making for a wide 
range of agent-based systems. For example, flocking and steering behaviors can be 
encapsulated as common algorithms of certain animals. Once a particular behavior for 
an animal has been implemented, other animals exhibiting similar behaviors can be 
modeled using existing algorithms as a foundation. 

Beyond intelligent agents, it is desirable to be able to provide certain agents with 
decision-making capabilities that are not cognitive, knowledge-based, or even 
particularly intelligent. For example, to assess the performance of a particular entity 
and its decisions, it may make sense to script the specific actions of its competitors. 
Similarly, in systems such as ant colonies, inter-agent cooperation is possible without 
cognitive decision-making by any one member. Individual ants behave reflexively to 
specific chemical stimuli they receive from others in the colony. Such autonomous 
agents are well-adapted to their problem domain and achieve success without 
manifesting human-like thought processes. 

The first-order, rudimentary approach to modeling behavior, which has been used 
with some success in video games, is scripting. Scripted actors have a set strategy 
they follow. For example, a nation-state in our model could be told to always spend 
10% of its GDP on military products, unless that action engenders a response from 
others. This approach, which is straightforward to implement, can certainly instill 
nations and corporations with behavior. It is important to recognize, however, that 
scripted, predictable strategies, in which the behaviors of agents cannot adapt in time 
to new input and new situations, will almost certainly fail in competitive 
environments against adversaries that learn and adapt. 

The next level of sophistication for agent behavior is to instill actors with reflexes. 
For example, even animals we would not consider to be particularly intelligent have 
the ability to blink an eye to avoid being hit by a pebble. This rule-based approach to 
behavior is sufficient for making good decisions in some situations. For example, 
contemplation is not required (or a good idea) to avoid a car crash while driving. 
Braking and/or steering actions must be taken in a timely manner to preserve the 
driver’s health. 

The most sophisticated artificial intelligence systems, designed to solve 
challenging problems, are deliberative in nature. That is, the decision-maker must 
evaluate multiple options and make choices based on imperfect or distorted 
information about its surroundings, making outcomes of certain choices very difficult 
to predict. Although challenging to implement (and potentially intractable), 

                                                           
1 The ideas we present in this section come from internal discussions as well as a review of the 

artificial intelligence literature, especially the excellent textbooks that have been written on 
the subject; see [5] and [6]. 
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deliberative decision-making may be needed in order to achieve the ultimate goals of 
this research: to begin evaluating computationally the performance of diverse policy 
choices in a multitude of hypothetical scenarios. 

2.2 Components of Intelligent Agents 

We assume here that the agents we will be dealing with in practice are neither 
omniscient nor omnipotent. They are limited in their knowledge (and their ability to 
acquire knowledge), and those agents that can perform actions have a discrete, limited 
set of capabilities to affect their surroundings. Some but not all agents will also have 
memories and the ability to learn from past experiences. For agents that learn and 
adapt to their surroundings, we do not expect repeatable output for a given sequence 
of inputs. Intelligent agents exhibit dynamic behaviors; they are capable of improving 
their performance through repetition. 

We consider as a reasonable starting point a functional model for decision-making, 
which has the flexibility to encapsulate at least some common elements of the range 
of problems that require agents to make decisions and perform actions. Note we 
conceive of decisions and actions (or plans of action) as separate concepts. The latter 
are clearly the output of any decision model, but the implementation of a plan is time-
dependent and therefore susceptible to dynamical obstacles in the environment or 
disruption by the actions of other agents. In other words, things don’t always go 
according to plan. Dynamic, intelligent agents should be capable of perceiving 
obstacles and rethinking plans as unforeseen circumstances arise. 

Before discussing our proposed functional decomposition of decision-making 
problems, other temporal questions should be mentioned. It seems likely that complex 
agents will perform multiple tasks simultaneously. How often do decisions about 
these tasks need to be reconsidered? What level of analysis or effort is appropriate for 
each decision type? How much time is available to make each decision before action 
is required for the well-being (even survival) of the agent? How is the timing of 
decisions related to the rate of sensory input and the agent’s ongoing accumulation of 
knowledge about its environment? Answers to these questions are likely to be highly 
application-dependent. We note here only that how decisions are made is distinct 
from when decisions are executed. An application attempting to model the behaviors 
of intelligent agents must consider both problems in turn. 

If the output of a decision-making model (or algorithm) is a plan of action, what is 
the input? To determine this, we must first separate elements of the problem intrinsic 
to the agent from extrinsic elements. The latter are the agent’s environment, from 
which it receives input through its sensors and receptors in the form of percepts. 
Environmental awareness is limited by the agent’s sensors (which poll for new 
percepts) and receptors (which receive signals from the environment). The time scales 
for updating the agent about the environment depend on how these sensory 
mechanisms operate (e.g., ears and eyes, through which animals gather information at 
different frequencies). 

The agent must have a self-model of its sensors, actuators, and world view, which 
specify the inputs to various decision-making problems. Note also that complex 
agents may have different approaches to selecting actions in different situations. For 
example, human eyes blink reflexively to prevent damage to them. Such low-level 
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tasks can be addressed effectively by quick responses to reflexive impulses. Humans 
are also capable, however, of solving difficult problems through knowledge-based, 
cognitive thought processes. 

Hence, for agents that acquire and accumulate knowledge, decisions are not always 
made in reaction to percepts directly. Rather, sensory information is acquired, filtered, 
processed, and stored in the form of memories. Cognitive decisions are made based 
on knowledge–i.e., some sort of world model–comprising an agent’s fragmented 
memories about its environment and its experiences with the outcomes of past 
decisions. Certain percepts to be sure (such as an imminent car crash) will trigger 
immediate decisions at specific times. Intelligent agents, however, will also make 
decisions at various (in principle unpredictable) times, depending on the importance 
of the topic, the agent’s self-confidence about its current plans, and the availability of 
new, relevant information. 

2.3 Decision Problems and Thinking Agents 

As mentioned in Section 2.2, we hypothesize in this discussion that many important 
decision-making problems can be embodied in a decision function. The decision 
function can be represented abstractly with a decision model, which evaluates 
different actions against whatever (presumably domain-specific) criteria are 
appropriate for the problem at hand. From an object-oriented programming (OOP) 
standpoint, the decision model is likely to be an aspect of the agent attached using 
some sort of strategy pattern [7]. This design makes it possible for new ways of 
making decisions (for different types of problems) to be dynamically plugged into the 
agent. We elaborate here on the rationale for the simplified form of the decision 
function that we have adopted in these interfaces. 

The decision function clearly must take in the sequence of percepts from the 
agent’s sensors that have been acquired since the last time the agent processed 
sensory information (e.g., by acting on it or incorporating the new information into its 
world model). In addition to the environmental information (what the agent knows or 
can detect), we also will need a description of the agent’s actuators; i.e., those things 
that the agent can do. A plan of action, which is the output of a decision function, will 
naturally consist of a sequence of actions within the set of actions possible (e.g., 
according to the agent’s physics). The set of allowed actions limits the scope of each 
decision problem to a finite set of possible choices, although the correct plan for the 
agent might in some cases consist of an infinitely repeating sequence of actions. 

With suitable time-dependent decision functions, engineered agents in models can 
mimic intelligent behavior (at least in specific problem domains). Agents must 
combine their knowledge to solve problems in their task environments, with the 
potential to improve their performance with experience. In practice, decision-making 
algorithms can consider multiple choices for actions (or plans of actions) against 
various goodness criteria. The challenge is then optimizing the agent’s path through 
the decision tree, considering tradeoffs and likely events in the environment and 
responses from allies, neutrals, and adversaries. 

Significant progress can be made towards self-aware, thinking agents using a 
simplistic model of human psychology, the so-called rational-actor hypothesis. 
Rational-actor models assume intelligent agents always pursue their own interests, or 
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what they believe to be their own interests based on past experiences, limited only by 
their imperfect ability to predict the future outcomes of their actions. That is, they are 
goal-oriented and seek effective solutions to the problems they encounter to 
accomplish their goals. The filtering of information by sensory mechanisms in the 
agent leads to skewed perceptions or incomplete knowledge about the system. 

The rational-actor hypothesis may be flawed (in that a rational actor will not 
always mimic human behaviors, which are not strictly rational), but it nevertheless 
affords great breadth of freedom to entities in a framework such as the nation-state 
model [1]. The notion that judgments are subjective can be captured by differences in 
values between entities; i.e., those concepts the entities view as priorities. The value 
sets can differ greatly between entities and are in principle time-dependent, varying 
with a given entity's perception of its surroundings. In rational decision-making, all 
options for an entity to pursue its interests are on the table. 

3 The ATLANTIS Agent 

3.1  Description of the Architecture 

Many approaches have been tried since the inception of artificial intelligence to 
address the complexities involved in programming agents to solve problems (for 
example, see the discussion in [8]). In perusing various proposed solutions in the 
literature, we came to the conclusion that a multi-layered approach would provide the 
flexibility sought for governing the behaviors of entities in the nation-state model, for 
reasons we discuss in detail in Section 3.2. 

We eventually settled on the three-layered architecture described by ATLANTIS and 
shown in Figure 1. We also show in Figure 2 the key interfaces in our Java reification of 
ATLANTIS derived from an object-oriented design process, and how the agents interact 
with the other objects in the system. In particular, state information about the world is 
encapsulated as “projection” objects. The intent of Figure 2 is not to befuddle the reader 
with unnecessary implementation details but to show how the ATLANTIS architecture 
translates in practice to a statically typed language like Java (note Gat’s original 
implementations of ATLANTIS were written in LISP; see [3], [4]). 

The primary attraction of the three-layered approach for guiding agent behavior is 
its modularity. By dividing the decision-making process of an actor (our term for the 
subclass of agents that make decisions) into three separate layers—control, 
sequencing, and deliberative (see Figure 1)—the architecture supports 
implementations of increasing (and ultimately arbitrary) levels of sophistication. We 
will first describe the control layer and deliberative layer, which are the most intuitive 
conceptually. 

The control layer defines all interactions with the actor’s task environment. Actions 
must be performed by specific actuators attached to the agent, and actuators can only 
perform one task at a time. This is a key constraint that greatly simplifies the system 
and allows for local processing of information by the actor. As the only tools 
available to actors to affect their environment in constrained ways, actuators greatly 
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Fig. 1. As shown in this high-level overview of the ATLANTIS architecture [3], actors 
aggregate three interacting layers to make decisions and accomplish tasks. The control and 
deliberative layers send messages to and from the mediating sequencing layer to coordinate 
tasks. The control layer is close to the environment and operates on short time scales, whereas 
the deliberative layer, which runs asynchronously, solves complex problems and suggests 
action sequences for queuing by the sequencing layer. 

limit the scope of the agent, the decisions it must make, and the information required 
to make those decisions. Reflexes by actuators on short time scales are possible in the 
control layer (e.g., blinking eyes), thus permitting basic agent behaviors. At this level 
of the system, however, the actor does not manifest “intelligence” (or problem-
solving). Rather, it performs only the low-level, primitive actions defined by its 
actuators. 

Note in Figure 1 that an actor’s ‘environment()’ method returns a “world view” 
object, not the world itself. The task environment (for the most general types of acting 
agents) is itself a function of the agent’s perceptions. Actors interact with an 
imperfect model of their local environment; they do not know the full state of system. 
Any information actors have about their surroundings must go through their sensors 
or receptors. They have no access to other information about the world. This “fog” is 
another key constraint simplifying the construction of a true, problem-solving agent: 
they are not omniscient and require specific tools to gather and process information. 
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Fig. 2. In this class diagram (see [7] for more information about UML) of the key objects 
involved in our Java-based reification of the ATLANTIS architecture (for intelligent decision-
making), the task environment is represented with composite projections (i.e., IProjection 
implementations). We represent the notions of perceptions and beliefs with these projection 
objects. Hence, the world view of an actor can represent a distorted or incomplete description 
of the state of the system. All direct interaction of the actor with its environment occurs through 
the control layer. 

In ATLANTIS, the most sophisticated problem-solving for the actor occurs in the 
deliberative layer, which notably runs asynchronously with the rest of the system, so 
it does not reduce the responsiveness of the control layer. The bulk of the memory 
and processing power of the agent is expected to be consumed by deliberation, which 
includes development of a world model, time management, action selection and 
planning, and achieving goals. The learning also occurs in the deliberative layer by 
retaining memories of past experiences. In a robotics system, the control layer is a 
robust, real-time simulator, whereas the deliberative layer is not real-time but rather 
must partition its computational resources to achieve long-term goals prioritized by 
their importance to the agent. 

The sequencing layer is the core innovation of ATLANTIS and three-layer A.I. 
architectures in general (see Gat, 1998 [8]). By allowing agent control and 
deliberation to operate asynchronously, with the controller always having real-time 
priority, the agent can potentially perform both simple and complicated tasks well. In 
early intelligent-agent architectures, the deliberator was in complete control. Such an 
architecture is much more limited because action selection is often only occurring on 
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long timescales compared to the polling time of a typical agent’s sensors (e.g., of 
order 10 Hz for the human vision system). 

The sequencing layer is in principle complicated. It must sort out the priorities of 
different actions, provide scheduling, interruption, and rescheduling of tasks as 
necessary, and respond to failure messages sent by the control layer. For simple 
agents, this is likely to be fairly straightforward. Difficulties emerge for more 
complex agents, however, in which goals and plans can potentially conflict or 
compete for use of actuators. Much complexity is hidden in the sequencing layer, 
which we consider a good design. By delegating final authority for action scheduling 
to a mediating layer, a good implementation can allocate computational resources 
appropriately and balance the agent’s short-term and long-term needs. 

Note another key feature of ATLANTIS shown in Figure 1: the hierarchical 
structure of the actors themselves. In object-oriented design terms, actors are naturally 
organized in a composite pattern [7]. Hence, specific tasks either too complicated or 
too low-level for the agent can be delegated to a set of child actors (the delegates in 
the diagram) under the supervision of the parent. Very different implementations 
might be used for decision-making by an actor’s children, allowing the intelligent 
agent to solve multiple specialized problems at once. For instance, a nation-state 
might delegate discrete information-gathering to an espionage agency. To make life 
interesting, child actors may not always act in the best interests of the parent 
(depending on the level of oversight). 

Finally, we point out that the control and sequencing layers together, without a 
deliberative layer, are sufficient to capture certain types of agent behaviors, such as 
reflexes occurring over short time spans, in which deliberation and planning are not 
necessary to make reasonable decisions. Initial implementations should therefore 
focus on constructing a robust control layer supervised by a simple sequencing layer, 
which does not need to do much work because actions are simple and the time scales 
for their completion are short. Such a configuration can exhibit behaviors based on 
simple rules, such as an expert system. Behaviors in such a system can be quite 
interesting in their own right (e.g., emergent behaviors observed in cellular automata), 
although complex problem-solving and learning still require the deliberative layer. 

3.2 Strengths and Weaknesses  

The solution offered by the ATLANTIS architecture offers numerous advantages over 
many others we investigated (e.g., a blackboard architecture (briefly described in [5], 
p. 369-70). A full Java implementation of the components (even ignoring domain-
specific objects and/or algorithms) is likely to involve a lot of code. But the 
architecture affords a sufficiently fine-grained division of labor amongst  
the components (without sacrificing flexibility) to allow the system to be built from 
the bottom up. Bottom-up construction is highly desirable because the individual 
pieces of the software are reasonably simple and testable. Furthermore, simple agent 
behaviors can be examined in detail before attempting to address challenging domain 
problems. 
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The ATLANTIS architecture stays close to the objects in the problem domain itself 
and is therefore more intuitive than many other architectural descriptions for 
intelligent agents. It lends itself to development of a Java version without having 
detailed knowledge of the original version (or access to its source code, which was 
written in LISP by Erann Gat while at Virginia Tech and NASA’s JPL; see [3, 4]). 

The architecture also strongly decouples the parts of the problem that are 
challenging (deliberation in order to solve domain-specific problems) from aspects 
that are more straightforward (agent control through sensors and actuators). In 
software-engineering terms, ATLANTIS describes objects with weak coupling but 
strong cohesion, which is a key principle of building maintainable software (as 
discussed at length in [7]). This decoupling of deliberation and control extends not 
just to code complexity but computational resources, since the deliberative layer runs 
asynchronously from the rest of the system and is allowed to consume more memory 
and processor time than the other layers. 

We furthermore consider it a major advantage of ATLANTIS that dealing with 
error conditions and reporting unknown situations is well-specified at the architectural 
level. It is the control layer’s responsibility to detect the end state of the actions it 
attempts (through actuators) and report this information to the sequencing layer. 
Agents in ATLANTIS are failure cognizant [4]. This implies that in a fully functional 
system, there is natural cohesion between the information-gathering objects (sensors 
and receptors) and the effector objects (the actuators). 

It is worth noting that the intermediate sequencing layer is potentially complicated, 
depending on the application. Indeed, part of the architecture’s design is to hide 
complexity in the sequencing layer. However, for a first pass-implementation, its 
operation can be approximated with a thread-safe priority queue (thread-safe because 
the deliberative layer runs asynchronously), in which the control layer has the option 
to interrupt in-progress actions at any time. We admit, however, that the sequencing 
layer is the main potential disadvantage to three-layered architectures. For 
complicated agents, it is conceivable that a robust implementation of the sequencing 
layer will prove elusive. 

Nevertheless, a solution based on ATLANTIS has been deployed to solve a 
sophisticated robotics problem: how to autonomously steer a robot on the surface of 
another planet. Hence, the basic ideas are thought to be sound and compare favorably 
to alternative approaches to intelligent agent architectures (see [7]). Due to the 
generality of ATLANTIS and its dissection of the key interacting objects into 
manageable pieces, we expect the architecture to have broad applicability to complex 
systems problems, even though many of the anticipated applications are quite 
different from the robotics problem domain in which it was conceived. 

4 Application of ATLANTIS 

We have used the ATLANTIS architecture in designing the behavioral layer for 
entities in the nation-state model. As shown in Figure 3, it is within the behavioral 
layer that entities process information and perform actions, thereby manifesting 
complex behaviors that potentially can defy prediction. Without the behavioral layer, 
behaviors of entities are limited to simple local functions of their internal resource 
levels [1]. The inclusion of the behavior layer provides entities, such as nations and 
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corporations, with capabilities to alter model structure in more sophisticated ways in 
order to promote their policies and weaken competitors. Implementations will 
enumerate these possible actions (examples of which are shown in Figure 3), from 
which decisions will be made according to different strategies and algorithms 
encapsulated in the behavior layer (see Figure 4). 

 

Fig. 3. The connection between the behavioral layer of a resource-exchange model [1] entity 
(configured for geopolitical scenarios) and the model structure itself, comprising the external 
environment with which entities interact. Some examples are given in the table of the types of 
actions entities must choose from in order to succeed and increase their health. 

Sensations and capabilities of entities, shown in Figure 4, as well as discrete action 
execution by actuators, comprise the control layer of the ATLANTIS architecture. 
The control layer is the hard boundary between entities and the world. This structural 
locality is built-in intentionally to confine the scope of entities’ knowledge, 
awareness, and ability to affect their surroundings. Entities are part of the world (and 
may understand it structure) but only act locally. Internal thought processes of the 
most intelligent entities (e.g., national leaders) might include a world model with 
memory, values and objectives, contemplation of future possibilities, and action 
planning in order to accomplish goals. The black box in Figure 4 captures these ideas 
of scoring choices, which are made in the deliberative layer. Final arbitration of the 
actions to be performed by an agent when its goals or needs are conflicting is handled 
in the sequencing layer. 
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Fig. 4. The behavioral layer will provide intelligent decision-making capabilities to entities in 
the nation-state model [1].  We discuss in the text how these components fit into our reification 
of the versatile three-layer architecture (ATLANTIS) in Java, as shown in Figure 2. 

The ATLANTIS architecture was originally conceived to provide autonomous 
navigation for vehicles, but its applicability is not specific to that problem domain 
because it captures fundamental aspects of intelligent agents. The discrete character of 
agents’ interactions with their surroundings, embodied in the control layer, is a 
general feature of A.I. problems. Also, the general problems of action ordering and 
prioritization, along with failure response, are described well by the architecture’s 
sequencing layer. 

Furthermore, the deliberative layer’s internals are not specified by the architecture. 
The deliberative layer can be as simple or complex as needed to achieve adequate 
performance in the problem domain; it is the agent’s brain, and it can be tailored to 
solve a broad range of problems. It is in the deliberative layer that the agent “comes to 
life”. Although there is coupling to the sequencing layer, the deliberative layer is fully 
separated in ATLANTIS from the control layer. The control layer code can therefore 
be reused for multiple implementations of an agent’s deliberative layer. Once the 
capabilities of the entities in the nation-state model are defined, their level of 
sophistication can be developed incrementally. In future work, we will compare the 
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performance of different implementations of the three-layer framework described in 
ATLANTIS, ranging from simple rule-based systems to representations of rational 
and even non-rational thought. 
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