
Identification of Chordless Cycles

in Ecological Networks

Nayla Sokhn1,2, Richard Baltensperger2, Louis-Félix Bersier1,
Jean Hennebert1,2, and Ulrich Ultes-Nitsche1

1 University of Fribourg, CH 1700 Fribourg, Switzerland
2 University of Applied Sciences of Western Switzerland, CH 1700 Fribourg,

Switzerland

Abstract. In the last few years the studies on complex networks have
gained extensive research interests. Significant impacts are made by these
studies on a wide range of different areas including social networks, tech-
nology networks, biological networks and others. Motivated by under-
standing the structure of ecological networks we introduce in this paper
a new algorithm for enumerating all chordless cycles. The proposed al-
gorithm is a recursive one based on the depth-first search.

Keywords: ecological networks, community structure, food webs, niche-
overlap graphs, chordless cycles.

1 Introduction

Food webs are well known networks in ecology. They depict feeding connections
between species in natural communities. They are represented as directed graphs
where each vertex corresponds to a kind of organism and each directed link
corresponds to a flow of energy or biomass, see Fig. 1. From this directed graph
it is possible to construct a new undirected graph called the niche-overlap graph
that represents the competition structure between predators. In other terms if
two predators have at least one common prey they will be connected in the niche-
overlap graph. According to Fig. 1 v1 and v2 (predators) have v6 as a common prey
therefore in the niche-overlap graph they are linked by an edge. Fig. 2 illustrates
the corresponding niche-overlap graph of the food-web graph shown in Fig. 1. Let
[v1, v2, ..., vn] be a sequence of n distinct vertices. By definition a cycle of length
k > 3 is chordless if there is only one link froma vertex vi to vi+1 (for all i = 1, ..., k)
and there is no other link between any two of these vertices. It has been suggested
in [1,2,3] that real systems almost completely lack chordless cycles. This indicates
that species can be arranged along a single hierarchy (e.g., body size). Previous
analyses in [4,5] have shown that recent and high-quality food webs possess many
chordless cycles. This implies that species can no more be ordered along a single
hierarchy. Therefore identifying those cycles is important in order to better under-
stand the structure of ecological networks.

The literature contains several algorithms able to find cycles and elementary
cycles1 in graphs. Some of them are based on vector search space and others on

1 In this type of cycles, vertices are not allowed to be repeated.

K. Glass et al. (Eds.): COMPLEX 2012, LNICST 126, pp. 316–324, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Identification of Chordless Cycles in Ecological Networks 317

backtracking algorithm [7,8,9,10,11,12]. On the other hand only few were seeking
the enumeration of all chordless cycles [13,14,15,16]. In [13], Spinrad presents
an algorithm that determines whether an undirected graph has chordless cycles
of size at least K in O(nK−3 ·M), where n is the number of vertices and M is the
time required to multiply two n by n matrices. In [14], an algorithm that detects
one chordless cycle in undirected graphs is described. In [16], an algorithm which
enumerates all chordless cycles in directed graphs is introduced. It is based on
the use of the asymmetry therefore applying it directly to undirected graphs is
worthless. In this paper, we propose an algorithm for enumerating all chordless
cycles in undirected graphs. The algorithm is a combination of proper steps
found in [12,14,16].

The rest of the paper is organized as follows. Section 2 introduces some fun-
damentals about graphs that are important for the rest of this paper. Section
3 describes the algorithm and illustrates its flowchart. Section 4 presents the
results. Section 5 concludes and exhibits some future work.

v1 v2 v3 v4

v6 v7 v8 v9

Fig. 1. A food web graph

v1

v3 v4

v2

Fig. 2. A niche-overlap graph

2 Fundamentals about Graphs

A graph G consists of two finite sets: a set V (G) of vertices and a set E(G) of
edges where each edge is associated with a set consisting of two vertices called
its endpoints. The order (number of vertices) and the size (number of edges)
of the graph are denoted by n and m respectively. A graph is undirected if
the edges have no orientation and it is directed if they have orientation. By
definition a walk is a finite alternating sequence of adjacent vertices and edges.
It has the form v0e1v1e2...vk−1ekvk where the v’s represent vertices, the e’s
represent edges. A path is a walk of the form v = v0e1v1e2...vk−1ekvk where all
the ei are distinct [17]. A path v0e1v1e2...vk−1 is chordless if vivj /∈ E(G) for
any two non-adjacent vertices vi, vj in the path [14]. A cycle (a closed path)
[v0, v1, ..., vk] is chordless if no edge vivj exists in E(G) such that |i − j| �= 1
mod k [14]. Fig. 3 and Fig. 4 illustrates a chordless cycle of order 4 and a
non-chordless one of order 4 respectively.

A graph G can be represented by an adjacency matrix or adjacency lists.
The adjacency matrix of order n is a n× n binary matrix A with entries given
by

318 N. Sokhn et al.

aij =

{
0, if vivj /∈ E(G),
1, if vivj ∈ E(G).

It is filled with a 1 in position (vi, vj) if vi and vj are adjacent and with a
0 otherwise. An adjacency list for a vertex vi is a list containing all vertices
adjacent to vi. These vertices are named neighborhood and denoted by N(vi).
In this paper, we treat undirected graphs with no loops (an edge with just one
endpoint) and no multiple edges (two or more edges connecting the same two
vertices).

v1 v2

v3 v4

Fig. 3. A chordless cycle

v1

v3 v4

v2

Fig. 4. A non-chordless cycle

3 Algorithm Description

The general principal of the algorithm is to create for each vertex expanding
paths (using the depth-first search startegy) that respect the conditions of a
chordless path and a chordless cycle. To limit the search space, several opti-
mizations are proposed. The process of the algorithm is described below and its
flowchart is illustrated in Fig. 5.

1. Create the adjacency matrix and the adjacency lists for the given graph.
Label the vertices from 1 to n [v1, v2, ..., vn].

2. Select the first vertex vstart (until all [v1, v2, ..., vn] are handled) and add it
to the path P initially empty. Now P contains vstart.

3. Select the first adjacent vertex vj (if it exists) of the last vertex vend in the
path P . Two conditions are imposed on vj , it should not exist in the given
path P and it must be bigger than vstart. If vj does not exist, delete the last
vertex of P and go back to this step. When all the adjacent vertices vj of
vstart are handled, go to step 2 and select a new vertex vstart+1.

4. If the size of P (denoted by |P |) = 2, go to step 3.

5. If |P | = 3, check if vend and vstart are connected. If they are not connected,
go to step 3 to potentially expand the path looking for chordless cycles. If
they are connected, a complete cycle K3 is detected, therefore delete the last

Identification of Chordless Cycles in Ecological Networks 319

vertex in P and go to step 3 to look for other potential paths leading to
chordless cycles.

6. If |P | > 3, check if any two non-adjacent vertices are connected ignoring
vstart (the first vertex in P). If any, delete the last vertex of P and go to
step 3. On the contrary, see if there is an edge between vend and vstart. If
it exists, a chordless cycle of order |P | is then detected, therefore delete the
last vertex in P and go to step 3. Otherwise go to step 3.

7. When the list [v1, v2, ..., vn] is handled, the algorithm is finished and all the
chordless cycles are found.

3.1 Clarification of Some Steps in the Algorithm

In step 1, it is important to create the adjacency matrix because it is then
possible to detect the presence or absence of a specific edge in constant time.
The use of the adjacency lists is important too since the selection of an adjacent
vertex occurs in constant time. In step 3, the first condition (vj should not be in
the path) avoids to have a path where vertices are repeated. The verification if a
vertex is already in the path is performed in the following way : a vector of size
n is initialized as ’False’. Each time an adjacent vertex vj is added to the path,
the status of this vertex is changed to ’True’. Accordingly vj is added to a path
only if its status is set to ’False’. The second condition (vj > vstart) presents
two important advantages described hereafter :

The first one is the possibility of running concurrently the algorithm. In oth-
ers terms, detecting chordless cycles may be performed in parallel for different
vertices. The way of dividing the vertices is important to balance the computa-
tion load. To simplify the task, we consider two identical computers. Running
the first set [v1, v2, ..., vk] (k = n

2 , k ∈ N) on the first one and the second set
[vk+1, ..., vn] on the other one will lead to unbalanced loads since most of the
chordless cycles appears in the first part of the set due to the following condition:
adjacent vertices vj > vstart. Nevertheless creating two sets by interlacing the
vertices is a more suitable solution. In this case, the first set starts with vertex
v1 (odd numbers are selected) [v1, v3, v5, ..., vn] and the second set starts with
vertex v2 (even numbers are selected) [v2, v4, v6, ..., vn−1]. In that way, vertices
that contain most of the chordless cycles are separated. Results confirming this
useful separation are presented in section 4.

The second advantage is that duplicates chordless cycles are avoided. Suppose
we found the chordless cycle [v1, v2, v3, v4]. Removing this condition on the ad-
jacent vertex vj will provide same chordless cycles ([v2, v3, v4, v1], [v3, v4, v1, v2],
[v4, v1, v2, v3]). However in this algorithm each chordless cycle is found twice. By
symmetry [v1, v4, v3, v2] is another copy of [v1, v2, v3, v4]. In order to keep only
one cycle a condition is imposed : the second element of the cycle (v2) should
be always smaller than the last one (vend). v2 > vend implies that the cycle is a
symmetry of a previous detected one. In step 5, the size of the current path is
3. Checking if vstart and vend are connected is required. If no edge exists there

320 N. Sokhn et al.

is then the guarantee that the path is chordless. But if an edge exists between
vstart and vend, a complete cycle K3 is then detected. Therefore proceeding with
the current path and choosing an adjacent vertex vj is useless since the new path
is no more a chordless one. For that reason we delete the last vertex in the path.
In step 6, the size of P (|P |) is bigger than 3. Verifying whether all non-adjacent
vertices are not connected ensures that the enumerated path is chordless. Ac-
cordingly whenever vstart and vend are connected the cycle is then a chordless
one.

Studying the structure of the graph before applying this algorithm could also
lead to optimization in terms of running time computation. For example if the
graphs can be separated in several biconnected components, the algorithm could
be applied separately on each one for a faster detection of chordless cycles.

3.2 Space and Time Complexity

The proposed algorithm explores the graph using the depth-first search strategy
with an additional condition : the selected path must be chordless. The space
complexity required by this algorithm is determined by the storage of set V of
vertices O(n), the current path P O(k) where k is the length of the current path,
the adjacency lists O(n+m) and the adjacency matrix O(n2). Consequently the
algorithm requires O(n2) space.

Estimating the time complexity is more difficult. In the current stage of our
studies, we believe that only an empirical estimation of the complexity is possible.
There is indeed a relation between the number and the length of chordless paths
that exist in the graph and the running time of the algorithm. In fact, adding
adjacent vertices to the current path P is performed as long as the path is
chordless. The more a graph has chordless paths the longer the running time will
be. The complexity is then increasing with the length and number of chordless
paths which is actually not known in advance. A worst case estimation of the
complexity could potentially be expressed but is not treated in this paper.

4 Results

The running time T (in seconds) for the niche-overlap graphs is given in Table
1. The implementation is executed using C++ (Microsoft Visual Studio 2010)
on a 2.93 GHz processors and a 4 GB memory running on windows 7. In table
2 the number and the order of chordless cycles are shown. Note that Ck (for
k = {4, 5, ..., 8}) represents a chordless cycle of order k.

As it was mentioned in section 3 the way of dividing the vertices for concurrent
computation is important. To confirm this we choose two matrices : “LRL South
Summer“ and “Floridabay“. We apply two different separations for “LRL South
Summer“. The first one is simply splitting the vertex set in two equal parts
[v1, v2, v3, ..., v59] (the first half) and [v60, v61, v62, ..., v119] (the second half). This
separation is not useful because even though the duration to detect some of the
chordless cycles is 10 seconds for the second set, it takes 7226 seconds (see

Identification of Chordless Cycles in Ecological Networks 321

Create the adjacency matrix
and the adjacency lists

Initialize the graph

 Label the vertices :

Begin

NO

NO

 NO

 NO

NO

Detect chordless cycle of length P

Delete of P

End
YES

Get an adjacent vertex vj (if it exists) of the last
vertex (vend) and add it to the path P

 Order vj > order vstart
and vj does not exist in P?

 Get a vertex vstart and add it to the path P

Have all vertices
been handled?

 Adjacent vertices of vstart
have been handled?

 e = vstartvend exists?

Detect K3 and delete of P

|P| = 2?

YES

 e = vstartvend exists?

 NO

 YES

 YES

If vj does not exist,
delete vend of P

YES

[v1,v2 ,v3 ,…,vn]

YES

NO

YES

 An edge exists between
two non-adjacent vertices?
 (ignoring vstart)

 NO

 vend

vend

 YES

|P| = 3?

Fig. 5. Flowchart of the algorithm

322 N. Sokhn et al.

Table 1. Execution time for detecting all chordless cycles C

Name # of vertices # of edges Chordless cycles C Time T

Volcan dry 19 170 0 0
Quebrada wet 19 137 0 0

Coachella 27 297 42 0
Chesapeake 27 95 0 0

HBBL 27 306 0 0
SkipWithPond 34 318 0 0
Saint Martin 38 312 356 2
Aguafria dry 45 904 180 2

Cypwet 53 854 130 6
Macara dry 55 1346 249 2
Everglades 58 1214 710 7
Ythan 84 1306 391 8

Mangrovedry 86 2315 29178 359
LRL South Winter 83 1418 224 23
LRL North Spring 1 105 2594 18032 1070

Floridabay 107 3249 85976 4569
LRL North Spring 2 111 2520 25824 2297

LRL North Fall 116 3095 32695 1850
LRL South Summer 119 2420 48921 7409
LRL North Summer 121 3064 16904 3700

Table 2. Order and number of C detected for each niche-overlap graph

Name C4 C5 C6 C7 C8

Volcan dry 0 0 0 0 0
Quebrada wet 0 0 0 0 0

Coachella 42 0 0 0 0
Chesapeake 0 0 0 0 0

HBBL 1768 0 0 0 0
SkipWithPond 0 0 0 0 0
Saint Martin 230 91 29 6 0
Aguafria dry 126 54 0 0 0

Cypwet 130 0 0 0 0
Macara dry 184 65 0 0 0
Everglades 568 130 12 0 0

Ythan 213 156 10 12 0
Mangrovedry 7329 8506 8259 4448 636

LRL South Winter 224 0 0 0 0
LRL North Spring 1 5168 10944 1920 0 0

Floridabay 5769 15825 35824 21158 7400
LRL North Spring 2 5664 13120 7040 0 0

LRL North Fall 8970 23725 0 0 0
LRL South Summer 3689 8788 23340 13104 0
LRL North Summer 6956 9948 0 0 0

Identification of Chordless Cycles in Ecological Networks 323

Table 3. Experimental results on “LRL South Summer“ and “Floridabay“

LRL South Summer First set Second set First set Second set

Vertices [v1, v2, ..., v59] [v60, v61, ..., v119] [v1, v3, v5, ..., v119] [v2, v4, v6, v8, ..., v118]
Number of C 48903 18 22580 26341

Time in seconds 7226 10 3594 3960

Floridabay First set Second set First set Second set

Vertices [v1, v2, ..., v53] [v54, v55, ..., v107] [v1, v3, v5, ..., v107] [v2, v4, v6, ..., v106]
Number of C 85247 729 51437 34539

Time in seconds 4557 12 2459 2247

Table 3) for the first set. Note that 7226 seconds is close to the total running
time (7409 seconds) see Table 1.
This observed result is actually the consequence of the condition “ adjacent
vertices vj > vstart“ explained in section 3.1

The second one is the even/odd version : [v2, v4, v6..., v118] and [v1, v3, v5.., v119].
This separation leads to more balanced loads and takes respectively 3594 sec-
onds and 3960 seconds to find all the chordless cycles, see Table 3 . Time is
reduced by 3449 seconds (7409− 3960) which is more or less half of the total
running time (7409 seconds).

Similarly results are observed the even/odd division for “Floridabay“. It takes
2459 seconds for the first set and 2247 seconds for the second one, (see Table
3). In that case too, time is reduced by almost half (2110 seconds). Note
that a splitting the vertices in more than two sets will parallelize further the
computation for larger graphs.

5 Conclusion

In this paper, we presented an algorithm for enumerating all chordless cycles
in a given undirected graph. We also experimented the algorithm on real niche-
overlap graphs used in ecological studies, meaning the number of detected chord-
less cycles and the corresponding execution time. The algorithm is based on
several optimizations a depth-first search strategy including constraints of chord-
less path and chordless cycles. One important advantage of the algorithm is the
possibility to run the search concurrently on different nodes with a fair balanc-
ing of sets. It is also possible to change in a simple way the algorithm to find
particular chordless cycles, for example of specific length.

In future work, we will apply this algorithm on quantitative niche-overlap
graphs (including information on the weights of interactions) and we will analyze
the distribution of the weighted chordless cycles. Moreover we will try to clarify
the reasons why some ecological networks have many chordless cycles and others
do not.

Acknowledgment. The authors would like to acknowledge R. Bisdorff who
provided some initial ideas that contributed to this work.

324 N. Sokhn et al.

References

1. Cohen, J.: Food Webs and Niche Space. Princeton University Press, Princeton
(1978)

2. Sugihara, G.: Niche Hierarchy: Structure Assembly and Organization in Natural
Communities. PhD thesis, Princeton University, Princeton (1982)

3. Cohen, J., Briand, F., Newman, C.: Community Food Webs, Data and Theory.
Springer (1990)

4. Bersier, L.F., Baltensperger, R., Gabriel, J.P.: Why are cordless cycles so common
in niche overlap graphs? In: Ecological Society of America, Annual Meeting, p. 76
(2002)

5. Huxham, M., Beaney, S., Raffaelli, D.: Do parasites reduce the changes of triangu-
lation in a real food web? Oikos 76, 284–300 (1996)

6. Golumbic, M.: Algorithmic graph theory and perfect graphs, 2nd edn. Elsevier
(2004)

7. Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph. SIAM
J. Comput. 5, 90–99 (1976)

8. Tiernan, J.: An efficient search algorithm to find the elementary circuits of a graph.
Communications of the ACM 13, 722–726 (1970)

9. Tarjan, R.: Enumeration of the elementary circuits of a directed graph. SIAM J.
Comput. 2, 211–216 (1973)

10. Liu, H., Wang, J.: A new way to enumerate cycles in graph. In: AICT/ICIW, pp.
57–59 (2006)

11. Sankar, K., Sarad, A.: A time and memory efficient way to enumerate cycles in a
graph. In: ICIAS, pp. 498–500 (2007)

12. Johnson, D.: Find all the elementary circuits of a directed graph. SIAM J. Com-
put. 4, 77–84 (1977)

13. Spinrad, J.: Finding large holes. Inform. Process. Lett. 39, 227–229 (1991)
14. Nikolopoulos, S., Palios, L.: Hole and antihole detection in graphs. In: Proc. 15th

ACM-SIAM Sympos. Discrete Algorithms, pp. 843–852 (2004)
15. Hayward, R.: Weakly triangulated graphs. J. Combinatorial Theory Series B 39,

200–208 (1985)
16. Bisdorff, R.: On enumerating chordless circuits in directed graphs, http://

charles-sanders-peirce.uni.lu/bisdorff/documents/chordlessCircuits.pdf

17. Epp, S.: Discrete mathematics with applications, 2nd edn. Brooks/Cole Publishing
Company (1995)

http://charles-sanders-peirce.uni.lu/bisdorff/documents/chordlessCircuits.pdf
http://charles-sanders-peirce.uni.lu/bisdorff/documents/chordlessCircuits.pdf

	Identification of Chordless Cyclesin Ecological Networks
	1 Introduction
	2 Fundamentals about Graphs
	3 Algorithm Description
	3.1 Clarification of Some Steps in the Algorithm
	3.2 Space and Time Complexity

	4 Results
	5 Conclusion
	References

