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Abstract. This paper addresses the need of predicting system insta-
bility toward critical transitions occurred in complex systems. A novel
information dynamic spectrum framework and a method for automated
prediction of system trajectories are proposed. Our framework goes be-
yond unidirectional diffusion dynamics to investigate heterogeneously
networked dynamical systems with transient directional influence dy-
namics. Our method automatically analyzes the input time series of
system instability to predict the instability trajectories toward critical
transitions.
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1 Introduction

In complex social-technological systems, self-organized emerging interactions
provide the benefits of exchanging information and resources effectively, yet at
the same time increase the risk and pace of spreading attacks or failures. A
small perturbation on a complex system operating in a high-risk unstable region
can induce a critical transition that leads to catastrophic failures. In this work,
we propose to avoid catastrophic failures by detecting early warnings of critical
transitions and predicting the likelihood of system trajectories.

A review on early warning signals for critical transitions, originated in the
ecological domain, can be found in [8]. Signals such as increased temporal cor-
relation, skewness, and spatial correlation in population dynamics are used to
quantify the phenomena of critical slowing down as early warning indicators
of critical transitions. The reviewed methods in [8] have only been applied to
homogeneous lattices, not heterogeneously networked dynamical systems. The
very recent review in [9] highlights the critical role of heterogeneous network
structures in anticipating critical transitions.

There are a few recent works of early warning signals for heterogeneously net-
worked dynamical systems [6,7]. A spectral early warning signals (EWS) theory
is developed to detect the approaching of critical transitions and estimate the
system structure and network connectivity near critical transitions using the co-
variance spectrum. Although Spectral EWS quantifies how much entities of a
system are moving together, the symmetric nature of covariance spectrum does
not permit the analysis of directional influences among entities.
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There have been attempts in identifying directional influence in complex sys-
tems using transfer entropy [10]. In [11], symbolic transfer entropy (STE) is
proposed to analyze brain electrical activity data for the detection of the asym-
metric dependences, and to identify the hemisphere containing the epileptic fo-
cus without observing actual seizure activity. In [4], the transfer entropy matrix
is used on financial market data to analyze asymmetrical influence from ma-
ture markets to emerging markets. Although global transfer entropy quantified
in [4,11] showed promising results in analyzing financial and neurophysiological
data, they fail short to quantify local transfer entropy [5] changing in structure
and time. Moreover, these papers do not predict system instability.

To detect critical transitions and predict instability trajectories, we propose
an information dynamic spectrum framework to quantify directional influences
in heterogeneously networked dynamical systems. Our framework is based on a
novel Associative Transfer Entropy (ATE) measure which decomposes the pair-
wise directional influence of transfer entropy to associative states of asymmetric,
directional information flows. We transform multivariate time series of complex
systems into the spectrum of Transfer Entropy Matrix (TEM) and Associa-
tive Transfer Entropy Matrix (ATEM) to capture information dynamics of the
system. We develop the novel spectral radius measure of TEM and ATEM to
detect early warning signals of source-driven instability, and induce directional
influence structure to identify the source and reveal dynamics of directional in-
fluences. The nature of convex growth of spectral radius of TEM and ATEM
prior to critical transitions enables us to generate the probabilistic light cones of
system trajectories using natural logarithmic curve modeling. We demonstrate
our methods on (1) early detection and prediction of instability of non-Foster cir-
cuit, (2) changes of directional influences in Latin America stock indices during
2008 financial crisis, and (3) asymmetric derivers in Wikipedia editing behaviors.

2 Information Dynamics Spectrum

Given the time series of a system of m elements: X(t) = [x1(t), x2(t), , xm(t)]T ,
the Transfer Entropy (TE) from source xj to destination xi is defined as [10],

Txj→xi =
∑
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where D is the set of all possible values of (xi,t+τ , x
(k)
i,t , x

(�)
j,t ). TE quantifies the

amount of information transferred from xj to xi and is asymmetric. More details
can be found in [10].

2.1 Associative Transfer Entropy

The idea of the proposed associative transfer entropy is to decompose TE by
constraining associated states of processes. It is often important to distinguish
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the types of the information flow, in addition to the amount of information flow.
We propose a new measure, Associative Transfer Entropy (ATE) at state Dk,
for i �= j defined by:

TDk
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∑
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where Dk is a subset of D that represents a certain associated state between
xi and xj . The purpose of ATE is to capture information transfer between two
variables for a particular state association. For the simplest example, we can
decompose TE into two influence classes: one positive ATE+ and the other
negative ATE−. Therefore ATE in this case is able to distinguish two situations
where the amount of information transfer is the same but have opposite effects:
one source drives the destination the same direction and the other source drives
the destination the opposite direction.

For a simple illustration, we simulate two time series x(t) and y(t) with a
binary difference between the current value and the next value, e.g. 1 repre-
sents an increment and 0 represents a decrement. The probabilities of incre-
ment/decrement are conditioned by the previous increment/decrement. Fig. 1
illustrates a few simulated data with the following setup. Let ẋ(t) = x(t)−x(t−1)
and ẏ(t) = y(t)−y(t−1). We fix conditional probabilities Pr(ẋ(t+1) = a|ẋ(t) =
b) = 0.5, Pr(ẏ(t + 1) = a|ẏ(t) = b) = 0.5, and Pr(ẋ(t + 1) = a|ẏ(t) = b) = 0.5,
where a and b are all combinations of 0 and 1. The only bias comes from
Pr(ẏ(t + 1) = a|ẋ(t) = b) = p. When p < 0.5, an increment in x is more
likely to cause an decrement in y, and an decrement in x is more likely to cause
an increment in y. Fig. 1 (a)-(f) show a few such simulated time series of length
1000 from arbitrary initializations with p = 0, 0.2, 0.4, 0.6, 1, respectively.

Fig. 2 plots the TE and ATEs as functions of p, for 0 ≤ p ≤ 1, averaged
over 100 trials for each p. In this binary case, we decompose TE in positive
association ATE+ and negative association ATE−, summing over the sets D+ =
{(ẏ(t + 1), ẋ(t), ẏ(t)) = (0, 0, 0), (0, 0, 1), (1, 1, 0), or(1, 1, 1)} and D− = {(ẏ(t +
1), ẋ(t), ẏ(t)) = (0, 1, 0), (0, 1, 1), (1, 0, 0), or(1, 0, 1)}, respectively. ATE+ sums
over positive association: ẏ(t+1) and ẋ(t) are both 0 or both 1. ATE− sums over
negative association: one of ẏ(t+1) and ẋ(t) is 0 and the other is 1. Therefore, as
p increases, ATE+ increases and ATE− decreases. One the other hand, TE does
not distinguish the types of influence between two time series. One can further
carry out the expectation values for ATE+ and ATE− in the case of (a): ATE+
= p log2(p/0.5) and ATE− = (1 − p) log2((1 − p/0.5). Near p = 1, ATE+ in
(c) is much smaller than ATE+ in (b), even though the positive influence from
ẋ(t) → ẏ(t + 1) is high. The explanation of this is that TE/ATE± negate the
amount of influence by itself: ẏ(t) → ẏ(t+1). The self-influence in (c) is 0.9, much
larger than that of (b), which is 0.6. Alternatively, TE/ATE± measures the net
influence, which is the external influence subtracted by the internal dynamics.
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(a) p = 0 (b) p = 0.2 (c) p = 0.4
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(d) p = 0.6 (e) p = 0.8 (f) p = 1

Fig. 1. Examples of simulated data generated from the following probabilities. The
conditional probabilities of Pr(ẋ(t+1)|ẋ(t)), Pr(ẏ(t+1)|ẏ(t)), and Pr(ẋ(t+1)|ẏ(t)) are
fixed and unbiased. The only bias is from x′(t) → ẏ(t+1): Pr(ẏ(t+1) = 0|ẋ(t) = 0) = p
and Pr(ẏ(t+1) = 1|ẋ(t) = 1) = p. The influence from x to y is negative when p < 0.5,
as seen in (a-c). Similarly, the influence from x to y is positive when p > 0.5, as seen
in (d-f).
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(a) Pr(ẏ(t+ 1)|ẏ(t)) = 0.5 (b) Pr(ẏ(t+ 1)|ẏ(t)) = 0.6 (c) Pr(ẏ(t+ 1)|ẏ(t)) = 0.9
Pr(ẋ(t+ 1)|ẋ(t)) = 0.5 Pr(ẋ(t+ 1)|ẋ(t)) = 0.7 Pr(ẋ(t+ 1)|ẋ(t)) = 0.8
Pr(ẋ(t+ 1)|ẏ(t)) = 0.5 Pr(ẋ(t+ 1)|ẏ(t)) = 0.5 Pr(ẋ(t+ 1)|ẏ(t)) = 0.5

Fig. 2. ATE is able to distinguish the types of influence in information transfer. The
TE, ATE+ and ATE− curves are functions of p = Pr(ẏ(t + 1) = 0|ẋ(t) = 0) =
Pr(ẏ(t+ 1) = 1|ẋ(t) = 1).

2.2 Local TE/ATE

We next consider dynamic data, by which we mean the amount of information
flow from one node to another is not constant. For dynamic data, we calculate the
TE/ATE of time series in a local time window, so that TE/ATE becomes a func-
tion of time. For illustration, we consider a two-node network, which produces
two time series x(t) and y(t), t = 1, ..., 1000. Let ẋ(t) = x(t)−x(t−1) and ẏ(t) =
y(t)− y(t− 1). Consider the binary case n = 2 for ẋ(t) and ẏ(t), where ẋ(t) = 1
represents increment and ẋ(t) = 0 represents decrement. We then simulate the
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data according to Pr(ẏ(t + 1) = 0|ẋ(t) = 0) = Pr(ẏ(t + 1) = 1|ẋ(t) = 1) = p1
and Pr(ẏ(t+1) = 0|ẋ(t) = 1) = Pr(ẏ(t+1) = 1|ẋ(t) = 0) = p2. In the simulated
data, the probabilities of associative influence change at t = 300 and 600. For
1 ≤ t < 300, p1 = [0.9, 1] and p2 = [0, 0.2]; for 300 ≤ t < 600, p1 = [0, 0.2] and
p2 = [0.9, 1]; and for 600 ≤ t ≤ 1000, p1 = [0.9, 1] and p2 = [0, 0.2]. Therefore,
initially x has a strong positive influence, then a strong negative influence dur-
ing the middle period, finally a strong positive influence again at the end. For
simplicity, we fix Pr(ẋ(t+1) = 0|ẏ(t) = 0) = Pr(ẋ(t+1) = 1|ẏ(t) = 1) = p1 and
Pr(ẋ(t+1) = 0|ẏ(t) = 1) = Pr(ẋ(t+1) = 1|ẏ(t) = 0) = p2. For larger number of
states, for example n = 4, one way to define the increment and decrement is: 0
and 1 represent decrement by 2 and 1, respectively and 2 and 3 represent incre-
ment by 1 and 2, respectively. Similarly, for n = 6 levels, 0, 1, 2, 3, 4, 5 represent
-3, -2, -1, 1, 2, 3, respectively. The top row of Fig. 3 shows the simulated data,
and the bottom row shows TE/ATE± as functions of time, which are calculated
with sliding window size = 100. We can see that ATE+ and ATE− are able to
capture the types of influence besides the amount of influence that change over
time. Note that for n > 2, one can decompose ATE into more than two states.
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Fig. 3. TE/ATE as functions of time in the dynamic case. Pr(ẋ(t + 1)|ẋ(t), ẏ(t)) is
fixed and unbiased for all cases and Pr(ẏ(t+ 1)|ẏ(t), ẋ(t)) is switched at time t = 300
and 600, indicated by the blue vertical lines. The number of increment and decrement
levels are n = 2, 4, 6 for (a), (b), and (c), respectively.

2.3 Spectral Radius of TEM/ATEM

The ATE Matrix (ATEM) TDk of a system of m elements is an m×m matrix
with ijth entry (TDk)ij = TDk

xi→xj
. Similarly, the ijth entry of the m × m TE

Matrix (TEM) is Dxi→xj . TEM has been used in [4] to reveal the asymmet-
ric influences from mature markets to emerging markets. For dynamic data, we
calculate pairwise local TE/ATEs to form TEM/ATEM. Since TE/ATE is di-
rectional, TEM/ATEM is non-symmetric. To identify the amount of information
transfer in the system, we calculate the spectral radius of the TEM/ATEM, the
largest absolute eigenvalue of the matrix.
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Since the TEM matrix is nonsymmetric, its eigenvalues are complex-valued.
We use the spectral radius of the TEM matrix to measure the total amount of
information flow of the entire network. Fig. 4 shows spectral radius of TEM as
a function of time for each simulated data. The data is simulated according to
the following pitchfork bifurcation equation:

xt = tanh(ct− 10)x− x3 + α� x+ σdω, (3)

where � represents graph Laplacian. Fig. 4 shows a few canonical structures
of graph: (a) chain, (b) directed chain, and directed binary trees, (c) downward
and (d) upward. The adjacency matrix A and Laplacian matrix L of (d) are:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0 0
0 2 0 −1 −1 0 0
0 0 2 0 0 −1 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

respectively. In the adjacency matrix, aij = 1 means there is a connection from
nodej to node i, and aij = 0 means there is not a connection from node j to
node i. The Laplacian matrix L = Din − A, where Din is the in-degree matrix
whose diagonal entry dii is the sum of ith row of A, the number of connections
going into node i. Fig. 4 plots the simulated time series and their spectral radius
of the TEM. We observe that before transitioning or bifurcation, the spectral
radius decreases rapidly, which provides early indication of system transitioning.
The spectral radius of TEM in these cases drops to the lowest point during
transitioning, due to the strong internal dynamics within each node, and TE
measures the pair-wise influence dynamics between nodes.

To efficiently estimate transfer entropy of continuous data, the method in
[11] uses the symbolization technique for permutation entropy [1]. This method
to estimate transfer entropy is robust and computationally fast. We adapt the
symbolization technique to calculate ATE. Specifically, the continuous-valued
time sequence {x(t)}Nt=1 is symbolized by first ordering the values of {x(t), x(t+
1), x(t+m)} with 1, 2, ,m and denoting x̂(t) = associated permutation of order
m the symbol of x(t) at t. Then we estimate the ATE of {x(t)}Nt=1 by calculating
ATE of {x̂(t)}Nt=1.

3 Numerical Results of Information Dynamic Spectrum

3.1 ATE Early Indication of Instability of non-Foster Circuit Data

Fig. 5 shows an ATE analysis of a non-Foster network [12]. The circuit is ini-
tially operated in the stable region, where there is no oscillation. Then a small
perturbation is added. It is unknown whether the circuit will become oscillatory
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(a) 9-node network of undirected chain (b) 9-node network of directed chain

(c) 7-node network of downward binary tree (d) 7-node network of upward binary tree

Fig. 4. Simulated pitchfork bifurcations with difference canonical graph structures. The
spectral radius of TEM decreases before bifurcation, which provides an early indication
for phase transition.

(unstable) or stay stable. We perform an ATE analysis to detect if the circuit will
become synchronized (unstable). The top plot of Fig. 5 is the circuit in voltage
over time. The bottom plot shows the TE/ATE± curves over time. The curves
are obtained from absolute sum of spectrum of TEM/ATEM±, respectively. We
found that the spectral radius of TEM/ATEM± also show similar outcome, but
since TEM is the sum of ATEM+ and ATEM−, the ATE+ curve will never cross
the TE curve. Thus, the absolute sum of the spectrum is more informative. As
shown in the plot, the ATE+ curve crosses over the TE curve near 800, indicat-
ing the increasing in synchronization. In addition, the ATE+ curve reaches peak
right before full synchronization, while the ATE− curve flattens because there
is no negative association.

3.2 TEMs Infer Directional Influences in Latin America Stock
Indices

We use TEMs of different periods to analyze the dynamics of the stocks indices
around a critical event and discover the directional structures in different periods.
Fig. 6 shows an analysis of a 9-node network in which each node represents a
Latin America stock market index. The indices are detailed in Table 1. The
top row of Fig. 6 shows the TEMs before, during, and after the 2008 October
Crash from left to right. The red color corresponds to a large value, while blue
corresponds to a small value. During crash, the total amount of information
transfer decreases. After the crash, the TEM came back to TEM before the
crash. Visualization of the network structure shows that Panama is strongly
influenced by Columbia and Brazil before and after the crash, yet during the
crash Panama is primarily driven by Mexico and Venezuela.
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Fig. 5. The system takes multivariate time series of observed system behavior as inputs,
and outputs the warnings and trends toward critical transitions with sources and paths
of propagations

Fig. 6. TEMs infer directional influences in Latin America stock indices before, during,
and after the 2008 October Crash

3.3 ATE Reveals Wikipedia Motifs That Drive the Changes

The dynamics of editor behaviors of Wikipedia’s content is explored in [3] using
temporal motifs, which are temporal bipartite graphs with multiple node and
edge types for users and revisions. The first two rows or Fig. 7 shows 12 most
frequent motifs. For example, in the second row, the first motif from the left,
shows a minor edit of a Wikipedia page by an anonymous author, followed by a
revert from a registered user, then followed by a minor edit from an anonymous
author. The bottom row from left to right are global ATEM+, ATEM−, and
TEM 2001 to 2011. We see that by using ATEM+ and ATEM−, we can identify
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Table 1. Latin American stock market indices

1 2 3 4 5 6 7 8 9

BVPSBVPS Chile65 COLCAP CRSMBCT IBOV IBVC IGBVL Merval MEXBOL

Panama Chile Columbia Costa Rica Brazil Venzuela Peru Argentina Mexico

important motifs that drive the changes in other motifs. In particular, ATEM+
shows that motifs 1, 8 and 12 have the most positive influence on other motifs,
observing that “major add”, “revert”, and consecutive minor add by registered
users encourageWikipedia’s content growth. ATEM− shows that motif 9 has the
most negative influence on other motifs. TEM shows the asymmetric influence
among the motifs but the contrast is not as strong as ATEM+ and ATEM−.
Fig. 8 shows the TE/ATE± curves, spectral radii of local TEM/ATEM±, in
blue/red/green, respectively. There is a significant increase in the ATE+ curve
near 55, as an early indication of rapid growth in Wikipedia’s contents.
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Fig. 7. Most frequent motifs of Wikipedia from left to right and first row to second
row. (a) ATEM+ shows motifs 1, 8 and 12 have the most positive influence on other
motifs. (b) ATEM− shows motif 9 has the most negative influence on other motifs. (c)
TEM shows asymmetric influence among the motifs but the contrast is not as strong
as ATEM+ and ATEM−.

4 Probabilistic Cones for Trajectories Prediction

The heart of the prediction method is the model-based probabilistic light cone
prediction of instability trajectories using the spectral radius (TE/ATE±) of as-
sociative transfer entropy matrix, TEM/ATEM±. A MCMC method to predict
citation growth based on preferential attach models is described in [2]. However,
critical transitions is not discussed. Our method differs in model-based prob-
abilistic light cone generation using natural logarithmic curve modeling. Given
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Fig. 8. Information dynamics of Wikipedia motifs. Top: Wikipedia motif occurrence
in time. Bottom: TE/ATE± curves in blue/red/green, respectively. There is a signif-
icant increase in the ATE+ curve near 55, as an early indication of rapid growth in
Wikipedia’s contents.

ATE+/TE cross-over signature as the early warning signals of critical transition,
we set our goal to predict the likelihood of system trajectories. We first observe
that ATE+ and TE are maximized, at the same time ATE− flattened, prior to
the system switching to alternative stable regimes. We therefore apply model-
based statistical forecasting to estimate the likelihood of TE/ATE± trajectories.
Our prediction method will continuously output the update of probabilistic cones
as the system progresses.

We choose natural logarithm curves to model the growth rate of instability
trajectory as information transfer grows toward maximization prior to critical
transitions. We apply a moving time window over the observed spectral radius
(TE/ATE±) time series to derive the unknown coefficients and constants for
natural logarithm curves. For a given prediction time point, we generate the
probabilistic light cone based on 95% confidence intervals of predicted instability
trajectories with fitted natural logarithm curves.

4.1 Model-Based Forecasting

We propose a model-based statistical forecasting to estimate the TE/ATE trajec-
tories. An advantage of analyzing the TE/ATE curves is that TE/ATE removes
the spikes of the raw data. We have observed that the TE curve can be well
approximated by the natural logarithm with an unknown coefficient a and a
constant c:

g(t) = a ln(t) + c. (5)

Our observations of the TE/ATE curve in different types of data show that
the curve approaches its maximum gradually, instead of a spiking and sudden
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approach. The latter, convex increase, is very common, as in Schaffer’s auto-
correlation, variances, and other signals. We believe that TE/ATE serves as a
better a prediction function because the increase is more concave.

To estimate the coefficient a, instead of fitting the TE/ATE curves determin-
istically with the logarithmic function in (5), we estimate the rate of change
with various discrete time steps. This generates a prediction cone. Taking the
derivative of (5), we have ĝ′(t) = a

t . We obtain the following discretized version
for the unknown a : �g

�t
= a

1

t
. (6)

For a fixed timestep �t in a window [Tstart, Tend], we use the least squares to
solve the unknown a. First, we write the following matrix equation:

⎡

⎢⎢⎢⎢⎣

1
t1+�t/2

1
t2+�t/2

...
1

tk+�t/2

⎤

⎥⎥⎥⎥⎦
a =

⎡

⎢⎢⎢⎢⎣

g(t1+�t)−g(t1)
�t

g(t2+�t)−g(t2)
�t
...

g(tk+�t)−g(tk)
�t

⎤

⎥⎥⎥⎥⎦
, (7)

where t1, , tk+�t ∈ [Tstart, Tend]. The approximation of a�t for the fixed timestep
�t is then obtained by

a�t = argmina

∥∥∥∥∥∥∥∥∥∥

⎡

⎢⎢⎢⎢⎣

1
t1+�t/2

1
t2+�t/2

...
1

tk+�t/2

⎤

⎥⎥⎥⎥⎦
a−

⎡

⎢⎢⎢⎢⎣

g(t1−�t)−g(t1)
�t

g(t2−�t)−g(t2)
�t
...

g(tk−�t)−g(tk)
�t

⎤

⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥
2

, (8)

The constant corresponding to this timestep is then c�t = g(Tend) − a�t

ln(Tend). Therefore, the predicted value for the future time Tend + td is

F�t(td) = a�t ln(Tend + td) + c�t. (9)

4.2 Probabilistic Light Cone and Error Estimation

Now that we have established a method to estimate the constants c and a, we
can generate a probabilistic light cone at each time as we vary the δt to obtain
multiple estimations of c and a. Therefore, a probabilistic light cone at a given
time consists of a collections of natural logarithm curves starting from that point.

To estimate the error of this prediction for the immediate next timestep, we
calculate the following:

error�t(i) = g(ti +�t)− [a�t ln(ti +�t) + c(i)], (10)

where c(i) = g(ti−1)− a�t ln(ti−1).
Let E be the collection of all error�t over all timesteps�t and let σ = standard

deviation of E. Let G be the collection of all predicted value G�t(td) over all
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Fig. 9. Dark blue: actual trajectory. Green: predicted trajectory. Light blue: 95% con-
fidence interval of predicted trajectory. Magenta: actual trajectory points outside the
95% confidence interval.

Fig. 10. Red: prediction light cone. Blue: actual TE trajectory. Green: predicted value.

timesteps �t and μ =mean(G). Therefore, the 95% confidence interval for the
future time Tend + td is

CI = [μ− 1.96
σ√
N

,μ+ 1.96
σ√
N

], (11)

where N is the size of E.
Fig. 9 shows the 95% confidence interval in light blue. Two out of 36 points of

the actual trajectory were outside the 95% confidence interval, right before the
non-Foster circuits are fully synched around time t = 1500. Fig. 10 shows two
snapshots of the light cone produced according to the method described above
and the predicted trajectory.
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Fig. 11. Error distribution for each prediction leap time step. As expected, a smaller
prediction leap time step td gives more accurate prediction, and as td increases, the
error distribution flattens out. (g) MSE of prediction values increases as prediction
timestep increases.

To see how far ahead in tim td one can predict the value in relation with error,
the distribution of errors for each time td is plotted in Fig. 11. As the time leap
td increases, the distribution of errors starts to flatten out, because the error
increases. This is shown in Fig. 11 (g), where the curve is the mean squared
error of the prediction values versus time leap td.

5 Conclusions

We proposed a novel information dynamic spectrum framework for automated
detection of critical transitions and identification of directional influences. We
have shown that the framework is able to: (1) provide an effective measure
fro quantifying associative, asymmetric directional influence rather than sym-
metric influence, (2) provide an effective formulation that capture system-wise
directional influence, rather than pair-wise influence and (3) provide an effective
measure for detecting instability in systems with directional influence dynamics.
Within this framework, we further proposed a method that analyzes the time
series of complex systems to predict instability trajectory toward critical transi-
tions. This enables the advancement of predicting dynamics of complex systems.
The advantages include: (1) provide system trajectory prediction using instabil-
ity signals (TE/ATE±) which capture information that cannot be discerned by
looking at (or predicting) individual signal alone and (2) provide model-based
prediction with x% (e.g. 95%) confidence interval prediction of system trajec-
tories beyond conventional deterministic predictions or complicated probability
state space predictions.
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