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Abstract. In this paper, we reinterpret the most basic exponential
smoothing equation, S t+1 = (1 − α)St + αXt, as a model of social
influence. This equation is typically used to estimate the value of a series
at time t + 1, denoted by S t+1, as a convex combination of the current
estimate St and the actual observation of the time series Xt. In our
work, we interpret the variable St as an agent’s tendency to adopt the
observed behavior or opinion of another agent, which is represented by a
binary variable Xt. We study the dynamics of the resulting system when
the agents’ recently adopted behaviors or opinions do not change for a
period of time of stochastic duration, called latency. Latency allows us to
model real-life situations such as product adoption, or action execution.
When different latencies are associated with the two different behaviors
or opinions, a bias is produced. This bias makes all the agents in a pop-
ulation adopt one specific behavior or opinion. We discuss the relevance
of this phenomenon in the swarm intelligence field.

Keywords: Consensus, Collective Decision-Making, Self-Organization,
Swarm Intelligence.

1 Introduction

The old adage “When in Rome, do as the Romans do” summarizes the intuition
that it is sometimes wise to imitate the behavior of seemingly more knowledge-
able individuals, especially when we are in a new environment. Recent research
has provided evidence that imitating is indeed the best thing to do even in situ-
ations previously thought to require individuals to rely more on themselves [15].
When agents1 are under pressure to choose an adaptive action, that is, an ac-
tion that provides them with some benefit, imitation can be seen as a filtering
process that allows agents to collectively discard actions that provide the lowest

1 We use the term agent to refer to an entity, be it an animal or an artifact, such as
a robot or a piece of software, capable of autonomous perception and action.

K. Glass et al. (Eds.): COMPLEX 2012, LNICST 126, pp. 244–255, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Binary Consensus via Exponential Smoothing 245

rewards [15]. This phenomenon may explain why in nature doing what others do
is a strategy frequently used by different groups of animals. For example, ants
choose the same paths other ants choose by following pheromone trails [8], sheep
move in the same direction other sheep move [14], and we humans tend to cross
the road whenever we see other people do so [5].

Given that imitation is a strategy used by animal groups as different as insect
colonies and human crowds, we wonder to what extent individual imitation in-
duces a good collective decision-making mechanism for groups of artificial agents.
In particular, we would like to know whether imitation is an individual strategy
that allows a large group of agents to make good collective decisions by consen-
sus. As a step toward answering this question, in this paper we introduce and
study the dynamics of an agent-based model in which individual agents tend to
perform the action most commonly performed by other agents. In our model,
presented in detail in Section 2, each agent’s behavior is governed by a rule sim-
ilar to the basic exponential smoothing equation used for data filtering and time
series forecasting [6,10]:

S t+1 = (1− α)St + αXt (1)

where St is the estimate of a time series at time t, Xt is the actual value of the
time series at time t, and α determines the strength of the error correction.

In this paper, we interpret the variable St as the tendency of an agent to
imitate an observed behavior, perform an observed action, or adopt an opinion
externalized by another agent.2 The variable Xt encodes the behavior, action,
or opinion of another agent. The parameter α ∈ [0, 1] controls the strength of
the imitation tendency. At the two extremes, if α is equal to zero, an agent is
insensitive to any social influence; if α is equal to one, an agent directly copies the
behavior, action, or opinion of another agent. Since the behavior of all the agents
is governed by the same rule, the collective dynamics of the group is determined
by the dynamics of a system of coupled exponential smoothing equations.

In Section 3, we study the dynamics of the system in the cases where agents
may or may not influence other agents at all times. An example of a situation
where an agent may influence other agents at all times is when someone decides
to buy a product that is visible to others (e.g., someone buys a tablet computer
that is frequently used). The very fact that the bought item is visible, gives
information to an observer agent (e.g., that the tablet is useful) that may increase
its tendency to buy the same product. There are also situations where agents
may not influence others at all times. For example, in a robotics application, a
robot that decides to go from one point to another is only visible to other robots
while it is in their close vicinity. Thus, robot actions or choices may be observed
by other robots only in a confined region of the robots’ operating environment.
The time that passes between two product adoptions or two executions of an
action, is modeled as latency, which is a period of time of stochastic duration
during which agents do not update their tendency or state. In our examples, a

2 In the text, we use the terms behavior, action, or opinion depending on the context.
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person who is evaluating a product or a robot executing an action are modeled
as latent agents.

Our results are organized into two parts (visible vs. not visible latent agents).
We show that in both cases a population of agents adopts the same behavior,
that is, they reach a consensus. However, the actual consensus state when la-
tent agents are visible is the opposite than when latent agents are not. These
results are discussed in Section 4 in which we also describe the similarities and
differences that exist between our work and previously published works. Final
conclusions are given in Section 5.

2 Exponential Smoothing as a Social Influence Model

The model proposed in this paper is based on the notion that the actions and
opinions of others influence our own actions and opinions. When an agent is
exposed to the behavior, actions or the opinion of another agent, the observ-
ing/listening agent may be more likely to perform the observed behavior or
action, or adopt the opinion of the other agent. In this paper, we focus on the
case where there are only two observable behaviors/opinions. This model cap-
tures real-life scenarios where two options are available to the members of a
population, but only one can be chosen. For example, a person has to choose
between an Android or an iOS phone, a French voter must choose one of the two
candidates in the second round of the elections, and in laboratory conditions,
ants have to choose one of two paths between their nest and a food source.

Our model consists of a set of agents, each of which is in one of two possible
states, which represent the agent’s current behavior or opinion. We use the binary
variable Xi ∈ {0, 1} to represent an agent i’s state. This variable is in turn
governed by an internal real-valued variable Si and a threshold θ. The variable
Si can be thought of as the tendency of agent i to be in one of the two possible
states (hereafter, we refer to Si simply as agent i’s tendency). The threshold θ
is constant and common to all agents, while Si is variable and private to each
agent.

At each time step t of the system’s evolution, an agent i might be able to
observe the state of another random agent j �= i. When an agent observes the
state of another agent, the observing agent updates its tendency as follows:

S t+1
i = (1− α)St

i + αXt
j , (2)

where α ∈ [0, 1] determines how much importance is given to the agent’s latest
observation (Xt

j) as opposed to the agent’s accumulated experience (St
i ). After

updating its tendency, an agent updates its state as follows:

Xt+1
i =

⎧
⎪⎨

⎪⎩

1, if S t+1
i > θ

0, if S t+1
i < 1− θ

Xt
i , if 1− θ ≤ S t+1

i ≤ θ ,

(3)
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Fig. 1. Single agent behavior. Starting with an initialization of S0 = 0.5 and X0 = 0,
an agent observes a stream of state values plotted as dots with values 0 or 1. The black
line shows the evolution of the agent’s tendency and the gray line shows the evolution
of the agent’s state. In this simulation, α = 0.2 and θ = 0.8.

where θ ≥ 1
2 due to the symmetry of the actual threshold value that triggers

the adoption of one or another state. Thus, an agent’s state is a function of its
tendency and the threshold θ.

In Fig. 1, we show an example of the behavior of a single agent controlled by
the rules defined in Equations 2 and 3. In this example, the agent is exposed to
a controlled stream of state observations that repeatedly switches between 1 and
0. We can observe how an agent’s tendency follows the stream of observations
and the threshold rule makes the agent’s state behave like a comparator with
hysteresis. Combined, these two rules make an agent adopt a state that agrees
with the most commonly observed state at any point in time. This conclusion
can be reached if one expands Eq. 2 iteratively as

Sn
i = (1− α)nS0

i + α

n−1∑

k=0

(1− α)n−k−1Xk
I(k) , (4)

where Sn
i is the value of agent i’s tendency after n updates, S0

i is agent i’s
initial tendency, and Xk

I(k) is the state of the agent observed at time step k. A
multivariate random variable I is used to represent the fact that observed agents
are chosen at random, and thus I(k) is the index of the agent observed at time
step k. When 0 < α < 1, an agent’s tendency is a weighted moving average
of the agent’s observations with exponentially decreasing weights. Any possible
bias introduced by an initial tendency S0

i �= 1
2 vanishes when an agent performs a
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sufficiently large number of observations. Similarly, the weight of old observations
approaches zero as the number of observations increases. This means that only
the most recent observations have a significant influence on the observing agent’s
state. Thus, if the majority of the most recently observed states, that is, if the
most commonly observed behaviors, are encoded by Xk

I(k) = 1, the observing

agent will have a state Xt+1
i = 1. The same reasoning applies if the majority of

the most recently observed states are encoded by Xk
I(k) = 0.

The collective behavior of a population of agents controlled by the rules given
in Equations 2 and 3 is much richer and difficult to predict than the behavior of
a single agent. In this paper, we explore this system’s dynamics through Monte
Carlo simulations. The simulation study, presented in the next Section, is focused
on the effects that agent visibility, as explained in Section 1, has on the system’s
collective dynamics.

3 Simulations

We perform two sets of simulations. In both sets, when an agent changes state
from 0 to 1, or vice versa, it does not update its tendency or state for a period of
time of stochastic duration, called latency period [12,13]. During this time, we
say that an agent is latent. In the first set of simulations, latent agents are always
visible to other agents, that is, they can influence other agents while being latent.
This scenario models situations similar the iOS vs. Android example mentioned
earlier. For example, after adopting one of the two competing brands, a buyer will
not change immediately to the other brand, but rather evaluate the newly-bought
product for some time (which we model with the latency period). During this
evaluation time, other persons will observe the buyer and may be more inclined
to adopt the same product as a result of our natural tendency to do what others
do. In the second set of simulations, latent agents are not visible to other agents,
and therefore, cannot influence them. This scenario models situations like the
robotics example mentioned in Section 1. In a robotics application, states may
be interpreted as robot actions. The latency period models the duration of an
action execution during which the robot may not be able to interact with other
robots. Thus, latent robots cannot be observed by other robots.

An extra element in our simulations is known as differential latency [13]. This
scheme associates a different average duration of the latency period to each of
the two states of an agent. This is done in order to model situations where two
products have different sets of features, causing a buyer to spend more time
evaluating one of the competing products, or actions which have similar results
but that take different times to perform. With differential latency we expect
to alter the frequency with which one state is observed by the population of
agents, inducing a consensus on one specific state. The simulation of differential
latency proceeds as follows: While an agent is latent, it does not change state or
tendency. The difference between the two sets of simulations that are reported
in this section lies in the actions taken by the agents when their latency period
ends. In the observable latent agents case (see Section 3.1), an agent chooses,
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from the whole population, a random agent to observe after its latency period
ends. Then, the agent updates its tendency and becomes latent again for a period
whose duration depends on its (possibly new) state. In the case of nonobservable
latent agents (see Section 3.2), an agent whose latency period ends observes the
state of a randomly chosen non-latent agent. If there is none available, that is, if
all agents are latent, it waits until one becomes observable. This waiting time also
allows other agents that switch from latent to non-latent state to observe this
agent. As before, a state observation is used for updating an agent’s tendency
and state. The process of observing, updating tendency, updating state, and
becoming latent is repeated until the time steps counter reaches a certain limit.

In our simulations, the duration of latency periods are normally distributed.
The mean duration and standard deviation of the latency period associated with
state 1, denoted by μ1 and σ1 respectively, are equal to 100 and 10 time steps.
We keep the standard deviation of the latency period associated with the state
0 constant (σ0 = σ1) and test three different values for the mean duration of the
latency period μ0 = {μ1, 1.2μ1, 2μ1}. A ratio μ0/μ1 = 1 is used to observe the
system’s dynamics when both states are associated with equal latency periods.
The ratios μ0/μ1 = 1.2 and μ0/μ1 = 2 are used to observe the system’s dynamics
with high and low degrees of latency overlap respectively. We also explore the
effects of different combinations of values of α and θ on the system’s dynamics.
The maximum time step count is set to 10,000. A summary of our results is
presented next.

3.1 Observable Latent Agents

Let us first present the results obtained when latent agents are always visible.
In Fig. 2, we present a typical example of the evolution of the average ten-
dency across a population of 100 agents under the three tested latency period
conditions.

When the latency periods associated with the two states have equal average
duration, the final average tendency is approximately 0.5. This is the result of
approximately half of our simulations converging to a consensus on state 0 and
the other half on state 1. Thus, we conclude that independently of the values of
α, when μ0/μ1 = 1 the population of agents reaches a consensus on one of the
two states with equal probability.

When the latency periods have different average duration, agents whose state
is associated with the longest latency period are more likely to spread their state
to the rest of the population because their state remains “frozen”, and therefore
visible, for longer periods of time. This phenomenon induces a positive feedback
process whereby the state associated with the longest latency period is observed
more often, and therefore copied more rapidly than the other state until every
agent adopts the same state. In our simulations, state 0 is associated with the
longest average latency period. In Fig. 2 parts (b) and (c), we can see that
state 0 is the state that is more often adopted by the population. The effect of
the parameter α depends on the overlap of the duration distribution of latency
periods. With large overlaps (in our simulations, this is modeled with the case
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Fig. 2. Average tendency over the whole population (100 agents). In these simulations,
μ1 = 100, σ1 = σ0 = 10 time steps. The acceptance threshold θ is equal to 0.6 in all
cases. Averages obtained through 500 independent runs of a Monte Carlo Simulation.

μ0/μ1 = 1.2), larger values of α have larger effects on the system’s dynamics.
In our simulations, with μ0/μ1 = 1.2 and α = 0.1, in 69% of the cases the
population reaches consensus on state 0, while with μ0/μ1 = 1.2 and α = 0.9,
the population reaches consensus on state 0 in 100% of the cases. With low
overlaps (in our simulations, when μ0/μ1 = 2), the parameter α affects more the
speed of convergence to consensus than the actual state on which the consensus
is reached.

3.2 Nonobservable Latent Agents

We now present the results obtained when latent agents are not visible to other
agents. In Fig. 3, we show the evolution of the average tendency across a popu-
lation of 100 agents under the three tested latency period distributions.
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Fig. 3. Average tendency over the whole population (100 agents). In these simulations,
μ1 = 100, σ1 = σ0 = 10 time steps. The acceptance threshold θ is equal to 0.6 in all
cases. Averages obtained through 500 independent runs of a Monte Carlo Simulation.

In Fig. 3 part (a), it is apparent that when the average duration of the la-
tency periods associated with each of the two states is equal (μ0/μ1 = 1), the
probability of the population to reach consensus on any of the two states is 0.5.
Thus, irrespective of whether latent agents are visible all the time or only when
they are in a nonlatent state, when the ratio μ0/μ1 = 1, a population of agents
governed by Eqs. 2 and 3 initialized with S0

i = 0.5 will reach a consensus on any
of the two states with equal probability.

In Fig. 3 parts (b) and (c), we see the results when μ0/μ1 = 1.2 and μ0/μ1 = 2,
respectively. When μ0/μ1 = 1.2, the smaller the value of the parameter α, the
higher the probability of the population to reach consensus on state 1, which
is associated with the shorter average latency period. This phenomenon occurs
because large values of α make agents favor copying over using their past expe-
rience. Therefore, when the average duration of the latency periods is similar,
the agents switch from one state to the other more rapidly with large values of
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α than with small ones. The result is that the frequency with which different
states are observed is increased and thus, the probability of reaching consensus
on only one state is decreased. The results in part (c) of Fig. 3 can be explained
using the same argument. In this case, the duration of the latency periods is
sufficiently different to induce a strong bias toward the state associated with the
shorter average latency period (in our case, state 1) even for α = 0.5. However,
just as in the previous case, a large value of α means that agents copy any ob-
served state, which produces switches that lead the system to consensus on any
of the two states with equal probability.

4 Discussion

In some situations, doing what others do may be beneficial to some agents but
not necessarily to the whole group. For example, if food is clustered in patches
and all the members of a group copy each other and exploit only one discovered
patch, very soon food in that patch will be depleted. A better strategy would
be to switch between exploitation and exploration behaviors to ensure everyone
has enough food [7]. However, there are also cases where imitation results in
the group reaching a state of consensus that benefits everyone in the group. For
example, the aforementioned trail-laying and following behavior of ants allows
them to find the shortest route from their nest to a food source [8]. The shortest
route is not only more energetically efficient, it also reduces the exposure to
predators. This last example also shows us that consensus can emerge even in
very large groups, which means that in these cases, consensus is the result of
multiple agent-to-agent interactions and not of agents knowing what everyone
in the group does. Therefore, the ability of large groups to reach consensus on
an action that benefits everyone in the group may be regarded as a form of
collective intelligence (also called swarm intelligence [2]).

In this paper, we explored some circumstances under which imitation makes
a population of agents reach a consensus. In particular, we studied the effects
of latency periods of different duration on the system’s dynamics. We saw how
imitation and latency induce a positive feedback process that eventually leads
the population to a consensus state. Imitation and positive feedback have been
already used successfully in some software-based swarm intelligence systems for
optimization. For example, in ant colony optimization (ACO) [4] algorithms,
very simple agents simulate ants following pheromone trails laid by other ants.
In ACO, these artificial ants move on a graph that represents adjacency rela-
tions between solution components to a combinatorial optimization problem.
At each decision point, ants are attracted toward nodes with higher levels of
“pheromone”, which is a numerical variable associated with each pair of solution
components i and j, denoted by τij . The result is an “emergent” optimization
process. At each iteration of an ACO algorithm, these pheromone variables are
updated using a rule that resembles the following equation:

τ t+1
ij = (1 − ρ)τ tij +Δτ , (5)
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where 0 ≤ ρ ≤ 1 is a parameter that simulates “pheromone evaporation”, and
Δτ is a quantity that reinforces a pheromone value. The similarity between
Equations 2 and 5 is apparent. However, in ACO algorithms, the quantity Δτ is
different across problems and ACO variants. Such heterogeneity makes a unified
approach to the study of the imitation dynamics that occur in ACO algorithms
practically impossible. Nevertheless, our model enables the study of the abstract
process of imitation and thus, any insights gained from its study may shed light
onto the operation of ACO algorithms for specific problems.

Imitation is also an important idea behind the particle swarm optimization
(PSO) [11] algorithm, which is another successful swarm intelligence algorithm
for optimization. In a PSO algorithm, agents move in an n-dimensional space.
Their positions represent candidate solutions to a continuous optimization prob-
lem. The stochastic rules used to update the particles’ position make particles
move toward the position of (i.e., imitate) their most successful neighbors. It
can be shown that the expected value of the i-th particle’s position obeys the
equation:

E(xt+1
i ) = wxt

i +
L+G

2
− wxt−1

i , (6)

where 0 ≤ w ≤ 1 is a parameter called inertia weight in the PSO jargon, L+G
2 is

the midpoint between the position of the particle’s best local neighbor, denoted
by L, and the position of the best particle of the swarm, denoted by G. Despite
the fact that the PSO algorithm is clearly a second order system, we can write
w = (1− α) for some 0 < α < 1, which makes Equation 6 resemble Equation 2.
Thus, our model seems to capture certain commonalities present in several swarm
intelligence systems with the advantage that our model is not focused on any
specific application. Future work should be aimed at determining the extent to
which the higher level of abstraction of Equation 2 is useful for the design and
analysis of swarm intelligence systems.

As a model aimed at understanding the dynamics of collective decision and
action, our model is not unique, and in fact, it shares many features with previous
models. For example, in Granovetter’s models [9] agents also use a threshold
to decide whether to do what others do, and in the Bass model [1] agents are
subject to social influence to decide whether to buy a product or not. Our model,
however, is more similar to models known as opinion formation models [3]. In
the large body of literature dealing with these kinds of models, we can find two
that are closely related to the model proposed in this paper. One of these models
was proposed by Scheidler et al. [16]. Their model consists of a population of
agents each of which has a memory of fixed size, which stores the values of the
last k observed states. If all of these states are all equal to, say state 1, then
the agent adopts state 1. The authors called this state update mechanism the
k-unanimity rule. Our model and the k-unanimity model are similar in that the
k-unanimity rule can be seen as a special case of our tendency mechanism. In
our case, we sum the values of the observed states with exponentially decreasing
weights tunable via the parameter α. The k-unanimity rule, on the other hand,
can be interpreted as a sum of the values of the observed states with equal
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weights. In both cases, a threshold determines whether an agent changes state
or not. The other model that is related to ours, is the so-called majority rule
model [13]. In the majority rule model, teams of three agents are repeatedly
formed, each time with different agents. When three agents form a team, they
exchange their states and the state of the team’s majority (that is, the state of at
least two of these agents) is adopted by all the agents in the team. The majority
rule may be seen as a distributed implementation of the k-unanimity rule with
k = 2. Another common element between our model and the majority rule model
is the concept of differential latency, which was first introduced in [13].

The model presented here may be seen as a more general model than the
aforementioned models because in many cases it is possible to find a value for
α that reduces Equation 2 to a simple average of the value of the last k ob-
served states. Therefore, it is possible to reduce our model to the k-unanimity
model. The majority model is also subsumed within our model because, as we
discussed earlier, the majority rule model is a distributed implementation of the
k-unanimity model. Thus, even though the dynamics at the individual level are
different, one can find a configuration of the model presented here that mimics
the dynamics of the majority rule at the collective level.

5 Conclusions

When an animal is part of a group, its behavior is influenced by the behav-
ior of other animals that are also members of the same group. The fact that
this phenomenon occurs across very diverse animal groups (including human
groups), seems to indicate that there are intrinsic benefits to imitation, or at
least action exploiting socially acquired information. In this paper, we introduce
a simple social influence model that can be seen as a system of coupled expo-
nential smoothing equations. The model is a binary decision model in which the
tendency of an agent to adopt one of the two available behaviors/opinions is
reinforced by the observation of another agent exhibiting a particular behavior
or holding a certain opinion. We explored the dynamics of the system when
agents can always be observed or when agents are observable only at certain
times. Both of these circumstances model real-life situations. We observe that
consensus is reached in both cases; however, the consensus state in one case is
the opposite of the consensus state in the other case.

Future work includes a more thorough study of the system’s dynamics and
parameters both in simulation and analytically. An application area that benefits
from our work is swarm intelligence. We discussed how our model captures the
essential dynamics of two families of swarm intelligence algorithms for optimiza-
tion, ACO and PSO, as well as collective decision-making processes in swarms
of robots.
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