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Abstract. This research considers an economic intervention i.e. a paid
sick leave policy to control an Influenza epidemic. Research has shown
that “presenteeism” i.e. sick workers coming to work, costs employers
more than “absenteeism” because sick workers put their coworkers at
risk and are less productive.

We examined the costs and benefits of a paid sick leave policy through
its effect on productivity,medical costs and attack rate.We considered two
kinds of workers’ behavior: honest and rational. Honest workers take sick
leave for days they are sick; but rationalworkers take all available sick leave.
We ran agent-based epidemic simulations on large scale social contact net-
workswith individual behaviormodeling to study the coevolution of policy,
behavior, and epidemics, as well as their impact on social welfare.

Our experimental results indicate that if the workers behave honestly,
the society’s economic benefits increase monotonically with the number
of paid sick days, however if the workers behave dishonestly but ratio-
nally, the society’s welfare is maximized when the number of paid sick
days is equal to the number of mean days of sickness. This research
shows that paid sick leave can be used as an effective policy instrument
for controlling epidemics.

Keywords: epidemics, simulation, influenza, public health, economic
analysis, social welfare, sensitivity analysis.

1 Introduction

Global disease outbreaks, such as H1N1 and H5N1, have severe morbidity, mor-
tality, and economic consequences. For instance, the World Bank estimated in
2008 that a flu pandemic could cost $3 trillion, affect 70 million people worldwide
and decrease the world gross domestic product by 5% [9]. Small and timely in-
terventions can sometimes prevent isolated outbreaks from becoming epidemics
or they may hold back the epidemics enough to deploy vaccines to the masses.
In the absence of vaccines or antivirals, social distancing may be the only vi-
able measure available in the early period of the epidemics. Previous researchers
have studied a variety of intervention strategies, both pharmaceutical and non-
pharmaceutical, to control the spread of an infectious disease. These include
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social distancing strategies such as school closure, work place closure and quar-
antine [5,13]; and pharmaceutical strategies such as distribution of vaccines and
antivirals [8, 18, 19], as well as herd immunity [1, 2].

This paper focuses on an economically driven intervention, i.e. a paid sick leave
policy that allows the workers to stay home from work without loss of income.
The authors believe that the sick leave policy as a tool to contain epidemics has
not been studied in detail in the health care literature, but noteworthy exceptions
are [11–13, 17]. Work by Gilleskie [11] explores the endogenous decision making
of medical care consumption and absenteeism by sick employees in order to un-
derstand the behavior that contributes to increasing health care costs. The study
of [17] goes one step further and incorporates an epidemiological model to the
labor market and its consequent impact on absenteeism. It examines the endoge-
nous determination of the optimal sick leave ratio. In particular, it looks at how
sick leave serves to decrease the transmission rates, reduce the spread of disease
and increase the social welfare, using a theoretical model. Authors in [12] show
that sick leave results in an abrupt decrease in the magnitude of the epidemics.
Work by [13] simulates the effectiveness of a set of potentially feasible interven-
tion strategies including the liberal leave policy using three different simulation
models developed separately. Simulation results show that the liberal leave policy
along with increasing community and workplace social distancing can reduce the
disease prevalence significantly. This paper uniqueness lies in the fact that it uses
an individual based detailed simulation model to do a parameterized study and
considers both epidemiological and economic factors in detail.

Previous researchers have pointed out that presenteeism may be more dam-
aging than absenteeism [14]. From public health viewpoint, it is desirable to
reduce the disease attack rate, defined as the fraction of the population being
infected. A liberal sick leave policy will discourage sick employees from coming
to work which will help contain the disease; but it will affect the productiv-
ity of the society. To see whether a sick leave policy is indeed an effective tool
for controlling the epidemics and whether it is economically efficient, our paper
considers a variety of sick leave policies and worker behavior. The analysis takes
a social welfare point of view to study the cost effectiveness by comparing the
productivity loss of the sick workers with the socio-economic gain caused by a
lower attack rate in the population.

A detailed experimental design considers a variety of scenarios based on the
number of paid sick days allowed, disease type, the behavior of the workers and
the compliance level of the employers with the sick leave policy. The worker
behavior is assumed to be of two types: rational and honest. In case of rational
behavior, the workers take the maximum number of sick days available regardless
of how long they are sick for, but in case of honest behavior, a sick worker takes
off only the number of days s/he is sick for. Honest behavior can also be thought
of as a proxy for full information sharing, or symmetric information between
the employer and employees; and the rational behavior can be interpreted as
partial information sharing or asymmetric information between the employer and
employees [17]. Our simulation results show that if employees behave honestly,
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a liberal sick leave policy would maximize the social benefit but if they behave
rationally, the social benefit is maximized when the paid sick days are equal to
the mean number of sick days. In the rational case, a liberal sick leave policy
reduces the overall social welfare.

The paper is organized as follows: Section 2 explains the disease model, ex-
periment parameters and the methodology. Section 3 describes the simulation
results and provides a discussion from both epidemiology and economics point of
view. In Section 4 shows results of the sensitivity analysis and the final section
concludes the paper.

2 Methodology

2.1 Disease Model

This study assumes that an “Influenza-like-illness” is spreading across a synthetic
population representing the city of Miami, Florida, via people-to-people contacts.
The simulation is run using EpiFast, a fast agent-based epidemic simulation
tool [6]. The disease model, the synthetic population modeling, and the people-
to-people contact network model are described in detail in [3,4,7,10]. Our disease
model assumes that the probability of transmission depends upon the health
states of the individuals and the duration of their simultaneous presence in a
small area.

The progression of disease within the host is based on the usual SEIR model
and the duration of each state [13, 15]: at any given time, each individual in
the population is in one of four health states: susceptible, exposed, infectious, or
removed (SEIR). For each individual, the incubation period duration is sampled
from a discrete distribution with mean 1.9 days and standard deviation 0.49 day;
the infectious period duration is sampled from a discrete distribution with mean
4.1 days and standard deviation 0.89 day.

We assume that only 66.7% are symptomatically sick and of those only two-
thirds are correctly diagnosed [13]. Only symptomatic people go to see the doctor
and encounter medical costs. The asymptomatic individuals behave as healthy
individuals but they can transmit the disease, although they are only half as
infectious as the symptomatic ones. The epidemic is seeded with five randomly
chosen individuals. Every day five new infections from external sources occur
within the population in addition to those generated by transmission. The sim-
ulation is run for 300 days. Reported results are based on an average of 25
simulation replicates.

2.2 Factorial Experiment Design

We consider the following 5 factors in our experimental design: disease type,
compliance level, maximum number of sick days allowed, workers’ behavior and
the productivity level of workers who work while they are sick. The disease
types are moderate flu or catastrophic flu. The compliance levels of the employ-
ers/workplace are set at 50% and 100%, which refers to the fraction of work
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Table 1. Factorial Design

Factor Description Values

Dis disease types: catastrophic and moderate flu. Cat, Moderate

Comp compliance: probability each workplace complies with the
sick leave policy

50%, 100%

Dmax sick leave policy: max number of sick days allowed to
diagnosed workers

3, 4, 5, 6

Beh workers’ behavior towards the sick leave policy: take the
exact sick days off (honest) or take the maximum possible
days off (rational)

rational, honest

e productivity level of those working while sick 20%, 50%, 80%

locations that comply with the sick leave policy. In the 50% compliance case,
only 50% of the work locations choose to comply and provide paid sick leave
to its employees. In the 100% case, all work locations and hence all workers are
given paid sick leave. However note that only diagnosed workers are allowed to
take sick leave.

Regarding the number of maximum paid sick days, workers can take sick leave
up to Dmax =3, 4, 5, or 6 days without any income loss. Workers’ behavior is
considered to be of 2 types, rational and honest; if rational, workers take all
available sick leave so the actual number of sick leave days taken is Dsl = Dmax.
In the honest case, eligible workers take off only when they are sick: Dsl =
min(Dsick, Dmax), where Dsick is the actual number of sick days. All of the
experimental factors are summarized in Table 1.

2.3 Interventions

2.4 Cost and Benefit Estimates

The procedure below describes the methodology used in estimating the economic
costs and benefits of a paid sick leave policy. The costs include medical costs
and loss in productivity of the sick workers. Benefits include lower attack rate
and hence gain in productivity. Information used to calculate the costs and
benefits include workers’ income, medical costs for treating sick workers, health
status, number of sick days, number of paid sick leave days used, and the age
of workers. Workers’ productivity is calculated based on their income in the
following manner: yi = 1.154Ii where yi is the daily productivity of worker i
and Ii is the income generated by worker i. We use a multiplier of 1.154 which
reflects the ratio of productivity to income in the US i.e. Gross National Product
(GNP) to Gross National Income (GNI) is GNP/GNI = 1.154.1

Let’s assume hi represents the health status of worker i, i ∈ [1..n] and hi is
a binary variable that takes value 1 if i is symptomatic and 0 if i is healthy

1 The ratio is calculated based on the US indices for year 2010. Data source: The
World Bank.
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or asymptomatic. Let εi = 1 represent that i is diagnosed and 0 otherwise.
We assume that the healthy and asymptomatic workers work at their full pro-
ductivity level but if a worker is symptomatic and working, the productivity is
e < 1. In our experiment design different parameter values are considered for e:
e = 0.2, 0.5, 0.8.

Let med represent the medical costs of treatment per person. For ages between
0-19, the average medical cost for treating flu is $249 per person; for 20-64, $400.7
per person; and for 65 and above, it is $415 per person. These numbers are based
on estimates given in [16]. We assume that the asymptomatic people do not have
medical expenditure.

med = (249×N0−19) + (400.7×N20−64) + (415×N65+) (1)

where Nx is the number of symptomatic people within x age bin.
The simulation experiments are done for a total of T = 300 days for the city

of Miami, Florida. Equation 2 shows the for worker i for the honest case i.e.
prodH , when the sick leave policy is in effect, while equation 3 shows the same
for the rational case (prodR). Dsick,i is the number of sick days for worker i and
Dmax is the maximum number of sick-leave days allowed by the policy. The first
line of both equations shows the productivity of the healthy and asymptomatic
workers as represented by hi = 0. The second line shows the productivity of
the workers who are symptomatic (hi = 1) but undiagnosed (εi = 0). The third
line represents the productivity of workers who are symptomatic (hi = 1) and
diagnosed (εi = 1).

prodHi =(1− hi)
T∑

t=1

yit (2)

+ hi(1− εi)

⎡

⎣
T−Dsick,i∑

t=1

(yit) +

Dsick,i∑

t=1

(yit)e

⎤

⎦

+ hiεi

⎡

⎣
T−Dsick,i∑

t=1

(yit) +

max(Dsick,i−Dmax,0)∑

t=1

(yit)e

⎤

⎦

prodRi =(1 − hi)
T∑

t=1

yit (3)

+ hi(1− εi)

⎡

⎣
T−Dsick,i∑

t=1

(yit) +

Dsick,i∑

t=1

(yit)e

⎤

⎦

+ hiεi

⎡

⎣
T−Dmax∑

t=1

(yit)−
max(Dsick,i−Dmax,0)∑

t=1

(yit)(1− e)

⎤

⎦

The loss in productivity for the above scenario is calculated by taking the
difference between the productivity when there is no sickness in the society and



218 S. Liao et al.

the productivity as calculated in equation 2 or 3 for the honest or rational case
respectively. Finally,

Net Social Benefit = Productivity−Medical Costs (4)

3 Results

3.1 Effect of the Sick Leave Policy on Epidemics

The epidemic curves derived from our simulation results are displayed in Figure 1
for the catastrophic flu and Figure 2 for moderate flu. In both figures, we show
the epidemic curve for the base case (i.e. no sick leave at all) and the curves for
Dmax values set at 3 days and 6 days only. The epidemic curves for Dmax = 4
and Dmax = 5 are very close to the 3-day and 6-day cases and are hence omitted
to avoid clutter. Table 2 shows the total attack rate, peak day and peak size for
all values of Dmax and compliance levels.

It is important to note that the epidemics do not change across honest and
rational cases, because in the SEIR model a recovered individual does not trans-
mit the disease to others and cannot be infected by others either. The honest
case and the rational case differ only when a sick worker recovers before Dmax is
reached: an honest worker will then go back to work while a rational worker will
remain off. But it does not matter any more with respect to the disease spread
because this worker is already recovered. Therefore the epidemic curves are the
same under these two cases and we show the curves only once.

Figure 1 and Table 2 clearly show that the sick leave policy has a significant
effect on the epidemic dynamics in catastrophic case. At 50% workplace com-
pliance, the sick leave policy of 5 days can reduce the peak size from 19,000 to
16,000, i.e. by 15%. It can be reduced by another 15% to 13,600 if the compli-
ance goes up to 100%. The effect is more prominent than it appears because

Fig. 1. Epidemic curves under the
catastrophic flu case

Fig. 2. Epidemic curves under the
moderate flu case
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Table 2. This table shows the percentage of people infected (attack rate), peak infec-
tion day (peak day), and the maximum number of infections on one day (peak size) in
the catastrophic and moderate flu cases along with the base case (no intervention)

scenario
catastrophic flu moderate flu

attack rate peak day peak size attack rate peak day peak size

base case 40.0% 93 19,000 20.0% 155 4,400
Comp=50%, Dmax=3 37.3% 98 16,700 17.4% 165 3,400
Comp=50%, Dmax=4 36.5% 98 16,200 16.9% 169 3,200
Comp=50%, Dmax=5 36.2% 99 16,000 16.7% 168 3,200
Comp=50%, Dmax=6 36.1% 98 16,000 16.7% 170 3,200
Comp=100%, Dmax=3 34.5% 101 14,600 15.1% 177 2,700
Comp=100%, Dmax=4 33.1% 101 13,800 14.3% 177 2,500
Comp=100%, Dmax=5 32.5% 101 13,600 13.9% 180 2,400
Comp=100%, Dmax=6 32.4% 102 13,400 13.8% 179 2,400

the targeted intervened people only account for at most 6% (in case of 100%
compliance rate) or 3% (in case of 50% compliance rate) of the total popula-
tion.2 The results show that the higher the compliance, the lower is the overall
attack rate and changes to the maximum number of sick days by even a single
day can cause statistically significant change to the attack rate and the medical
costs. See Section 4.1 for details. A longer sick leave results in lower attack rates
which is not surprising but the marginal effect due to an extra day of sick leave
is nonlinear. The sick leave policy can help postpone the peak day by 5-8 days
depending upon the compliance rate.

Similar pattern is found in Figure 2 and Table 2 for the moderate case. The
policy has even more significant effects. It reduces the peak size by 27% compared
to the base case (from 4400 to 3200) when compliance is at 50%. At 100%
compliance the peak size is reduced by another 25%. The peak day can be
delayed by 15 days at 50% compliance and another 10 days at 100% compliance.

For both catastrophic flu and moderate flu, the marginal effect of additional
one day sick leave is decreasing. When Dmax changes from 3 to 4, the effect on
attack rate reduction is fairly large but as we increase Dmax to 5 and 6 days,
the marginal effect of additional sick days on attack rate starts to decrease. This
can be explained by the fact that the mean infectious period is 4.1 days (see
Section 2.1) and hence most people stay infectious for 4 days; there are relatively
fewer people who stay sick for 5 or 6 days. Therefore the greater number of sick
leave days are not needed for a large proportion of the population and the
marginal improvement in the attack rate from the additional days drops.

3.2 Economic Benefit and Loss

In this section, we compare the economic gains and losses from the sick leave
policy. Our earlier analysis shows that the sick leave policy can significantly

2 This is because only one third of the population is workers. In addition, the attack
rate is at most 40%, the symptomatic rate is 2/3, and diagnosed rate is 2/3 which
makes the targeted people only a small fraction of the society.
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reduce the epidemic, but it is important to understand the cost as a result of
the policy. Sick leave policy gives opportunity to not only the sick workers to
stay home but also to recovered workers if they behave dishonestly. This results
in big loss in productivity which may not necessarily be offset by the benefit of
smaller attack rate and lower medical bills. We take a societal point of view to
see if there is an overall net benefit to the society from the sick leave policy.

We split the scenarios in 4 cases and describe the results of each case in the
following subsections. Case 1 assumes people’s behavior to be “honest” and flu
to be of type “catastrophic”. Case 2 assumes the behavior to be “honest” and
flu to be of type “moderate”. Similarly, case 3 and case 4 assume behavior to be
“rational” and flu to be “catastrophic” and “moderate” respectively.

Case 1: Honest and Catastrophic. This section calculates the net benefit to
the society when the workers’ behavior is honest and the flu is of catastrophic
type. We measure change in attack rate, change in productivity (at different
levels of e) and change in the medical costs and compare it with the base case
of no sick leave. The results are shown in Table 3.

Results in Table 3 show that higher compliance rate and more sick leave lead to
lower attack rate and higher net social benefit to the society. As Dmax increases,
the diagnosed workers take more days off which changes the social contact net-
work and the probabilities for disease transmissions. The disease spread slows
down which is reflected in the lower attack rate compared to the base case.

However, the marginal effect of each additional sick day is decreasing since
most people are sick for 4 days according to the disease model. When Dmax = 3,
not enough sick leave is being given to cover the period of sickness so when it
increases from 3 to 4, there is a much higher drop in attack rate than when
Dmax increases from 4 to 5 or from 5 to 6. The change in productivity is greatly
affected by the parameter e which represents the level of productivity of sick

Table 3. Case 1: behavior is “honest” and flu type is “catastrophic”. Comp shows the
compliance rate, Dmax represents the maximum number of sick days allowed, ΔAttack
rate, ΔProductivity, ΔMedical and ΔNet Benefit represent the change in attack rate,
change in productivity, change in the medical costs and change in net social bene-
fits respectively as compared to the base case. The variable e represents the level of
productivity of people who are working while sick.

Comp Dmax ΔAttack ΔProductivity(millions) ΔMedical ΔNet Benefit(millions)
Rate e = 0.2 e = 0.5 e = 0.8 (millions) e = 0.2 e = 0.5 e = 0.8

0.5

3 -0.029 10.007 -0.362 -10.731 -15.450 25.457 15.088 4.719
4 -0.036 12.928 0.650 -11.628 -19.179 32.107 19.829 7.551
5 -0.039 14.025 1.072 -11.881 -20.675 34.700 21.747 8.794
6 -0.040 14.369 1.188 -11.993 -21.140 35.509 22.328 9.147

1

3 -0.056 19.865 1.677 -16.511 -29.344 49.209 31.021 12.833
4 -0.069 25.298 4.241 -16.815 -36.189 61.487 40.431 19.374
5 -0.075 27.543 5.415 -16.714 -39.147 66.690 44.562 22.434
6 -0.076 28.310 5.863 -16.584 -39.902 68.212 45.765 23.318
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workers. If e is small, there are fewer gains to be had from keeping sick workers
at work who are likely to spread the disease by just being present.

Hence at low levels of e, the gain in productivity caused by the lower attack
rate outweighs the loss in productivity caused by the sick leave policy. However,
when the productivity of sick workers jumps to e = 0.8, the loss in productivity
outweighs the gain, resulting in a net drop in productivity. Intuitively, this makes
sense since at e = 0.8 the sick workers are 80% as productive as healthy workers
so giving them sick time off will result in a big productivity loss. The change in
medical bills column shows that as the attack rate goes down, the medical costs
go down too.

The net benefit column in Table 3 accounts for both the productivity and the
medical costs. As Dmax increases the productivity increases, the medical costs go
down, and the net benefits go up. The last three columns show that the optimal
policy is Dmax = 6 because no matter what compliance rate is and what e is, the
net benefit is the highest. Such a result should be expected given the assumption
that workers behave honestly and take exactly the required number of sick days.
Giving more sick days off will only result in the sick workers taking the extra
sick days which will keep them out of the social network and hence keep them
from transmitting the disease. This policy will lower the attack rate and yet not
sacrifice productivity (because of no dishonest workers).

Case 2: Honest and Moderate. The results under this scenario, as shown
in Table 4, are similar to case 1 in terms of the trend of the variables but
the magnitude of the numbers is smaller for moderate flu as compared to the
catastrophic flu. We still observe that Dmax = 6 is the optimal policy. The net
benefit increases with the increase in the number of sick days. Compared to
the catastrophic case, the policies are even more efficient when the productivity
parameter e = 0.8 i.e. the loss in productivity is much lower. From both these
cases, we can conclude that as long as workers are honest, a liberal sick leave
policy is the best, no matter what the parameter settings are.

Table 4. Case 2: behavior is “honest” and flu type is “moderate”

Comp Dmax ΔAttack ΔProductivity(millions) ΔMedical ΔNet Benefit(millions)
Rate e=0.2 e=0.5 e=0.8 (millions) e=0.2 e=0.5 e=0.8

0.5

3 -0.027 8.657 2.891 -2.874 -13.348 22.005 16.239 10.474
4 -0.032 10.221 3.624 -2.974 -15.738 25.959 19.361 12.764
5 -0.033 10.797 3.902 -2.993 -16.599 27.397 20.502 13.607
6 -0.034 10.984 3.979 -3.026 -16.855 27.839 20.834 13.830

1

3 -0.049 15.507 5.984 -3.540 -24.108 39.616 30.092 20.568
4 -0.057 17.853 7.264 -3.326 -27.849 45.703 35.113 24.523
5 -0.060 18.811 7.849 -3.114 -29.493 48.304 37.342 26.379
6 -0.061 19.068 7.992 -3.084 -29.904 48.972 37.896 26.820
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Fig. 3. Change in net benefit with hon-
est behavior and catastrophic flu

Fig. 4. Change in net benefit with hon-
est behavior and moderate flu

Figure 3 and 4 show the net benefits for different policies for case 1 and case 2
respectively. The net benefit is monotonically increasing as Dmax increases and
all cases result in positive net benefit, suggesting that all intervention strategies
are economically efficient.

Case 3: Rational and Catastrophic. Next we consider the scenario where
the workers behave rationally and the flu type is catastrophic. In the rational
case, the eligible workers use up all the available sick leave days.

Comparing the productivity in Table 5 with the productivity in the honest
case in Table 3 shows that rational behavior results in lower productivity at all
levels of e compared to the honest case. If workers stay home longer than they
are sick for, it causes a pure loss to the society because there is no gain due to
less disease transmissions. As a result the change in net benefit is smaller too.
In this case, the optimal policy changes to Dmax = 4. The effect of Dmax on net
social benefit becomes non monotonic. As Dmax increases from 3 to 4, the net
benefit improves but when Dmax increases from 4 to 5, the net benefit decreases.
This is again because the mean sick days in our model is 4.1 so most of the
people are sick for 4 days. If more than 4 days of sick leave is given, the loss
in productivity outweighs any gains from lower attack rate. The optimal policy,
Dmax = 6, under the honest case now becomes the least favorable especially
when e is high.

Case 4: Rational and Moderate. Finally, results for case 4 where rational
behavior is combined with moderate flu are presented in Table 6. Here the op-
timal policy is Dmax = 5 when e = 0.2, and Dmax = 4 when e = 0.8. Note that
when e = 0.2, the productivity loss from the extra day off (i.e. Dmax = 4 vs. 5)
by the sick workers is very little but their presence in the workforce increases the
attack rate and the medical costs, which makes it socially optimal to have Dmax

set at 5. Increasing it further i.e. to Dmax = 6 does not help as much because the
mean sick days are 4.1. However when e = 0.8 the productivity loss is high from
the extra day off and hence the optimal sick leave policy changes to Dmax = 4.
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Table 5. Case 3: behavior is “rational” and flu type is “catastrophic”

Comp Dmax ΔAttack ΔProductivity(millions) ΔMedical ΔNet Benefit(millions)
Rate e=0.2 e=0.5 e=0.8 (millions) e=0.2 e=0.5 e=0.8

0.5

3 -0.029 10.007 -0.362 -10.731 -15.450 25.457 15.088 4.719
4 -0.036 11.323 -0.955 -13.233 -19.179 30.502 18.224 5.946
5 -0.039 8.900 -4.053 -17.006 -20.675 29.576 16.623 3.670
6 -0.040 4.742 -8.439 -21.620 -21.140 25.882 12.701 -0.480

1

3 -0.056 19.865 1.677 -16.511 -29.344 49.209 31.021 12.833
4 -0.069 22.794 1.737 -19.319 -36.189 58.984 37.927 16.870
5 -0.075 19.664 -2.465 -24.593 -39.147 58.811 36.683 14.555
6 -0.076 13.713 -8.734 -31.182 -39.902 53.615 31.168 8.720

Figures 5 and 6 show the change in net social benefit when the behavior is
rational and flu is catastrophic and moderate respectively. The net benefit is no
longer monotonically increasing with the sick leave days.

4 Sensitivity Analysis

4.1 Epidemiological Variables

This section performs a detailed sensitivity analysis of the compliance rate,
disease type and the maximum number of sick leave available on the two re-
sponse variables i.e. the attack rate and medical costs using analysis of variance
(ANOVA). Given that the human behavior and productivity level (e) can only
affect the economic variables but not the epidemiological variables, we consider
them separately. There are three factors which affect the attack rate and the
medical costs: maximum sick leave days (Dmax), compliance rate (C) and dis-
ease type (Di). The 3-factor ANOVA model below shows how the factors are
related to the response variable:

yijsk = α+ βj + γs + δk + βγjs + γδsk + βδjk + βγδjsk + εijsk (5)

Table 6. Case 4: behavior is “rational” and flu type is “moderate”

Comp Dmax ΔAttack ΔProductivity(millions) ΔMedical ΔNet Benefit(millions)
Rate e=0.2 e=0.5 e=0.8 (millions) e=0.2 e=0.5 e=0.8

0.5

3 -0.027 8.207 2.598 -2.874 -13.348 22.005 16.239 10.474
4 -0.032 9.172 2.731 -3.573 -15.738 24.910 18.469 12.165
5 -0.033 8.452 1.713 -4.889 -16.599 25.051 18.312 11.710
6 -0.034 6.984 0.136 -6.576 -16.855 23.840 16.991 10.279

1

3 -0.049 15.058 5.691 -3.540 -24.108 39.616 30.092 20.568
4 -0.057 16.561 6.127 -4.169 -27.849 44.411 33.977 23.680
5 -0.060 15.760 4.954 -5.716 -29.493 45.253 34.447 23.777
6 -0.061 13.779 2.859 -7.923 -29.904 43.684 32.764 21.981
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Fig. 5. Change in net benefit with ra-
tional behavior and catastrophic flu

Fig. 6. Change in net benefit with ra-
tional behavior and moderate flu

where y represents the response variable i.e. attack rate and medical costs; α is
the constant term, the main effects or factors are β = Dmax, γ = C, δ = Di; ε is
the error term and the rest are interaction terms. Subscript i represents replicates
and takes values 1 . . . 25; j = 3,4,5,6; k = 50%, 100%; and s = catastrophic,
moderate flu.

The sensitivity results as measured by ANOVA show that all three factors
significantly affect the attack rate and the medical costs (p-value < 1%). Both
response variables are sensitive to the choice of policy days, disease type and the
compliance rate. All interaction terms are significant too (p-value < 1%).

In particular, we are interested in understanding if different number of sick
leave days make a significant difference in the outcome variables. For this, we
conduct Tukey’s honestly significant difference (HSD) test to do a pairwise com-
parison. It considers all possible pairs of means and finds the ones that are
significantly different. It is often used in conjunction with ANOVA. Suppose μi

and μj are the means of two different treatments, and μi > μj , then Tukey’s
test statistic qs is:

qs =
μi − μj

SE
(6)

where SE is the standard error of the data in question. The results of Tukey’s test
of different sick days (Dmax) are shown in Table 7 in the Appendix. All pairwise
comparisons are significant, so 3, 4, 5, 6 days are all significantly different from
each other in terms of their effects on the attack rate and the medical cost.

4.2 Economic Variables

Next, we analyze the sensitivity of the economic variables such as productivity
and net social benefit. Besides the epidemiological factors, the economic variables
are also affected by workers’ behavior and their productivity levels during sick
days. Hence we have a total of five factors i.e. Dmax, compliance (C), disease
type (Di), behavior (B), productivity level of sick workers (e). Now the ANOVA
model represents 5 factors:

yijsklm = α+ βj + γs + δk + ζl + λm + I + εijsklm (7)
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where y represents the response variable i.e. productivity and net benefit. Note
that this productivity is the overall productivity of the society as opposed to
e which represents the productivity level of sick workers. β = Dmax, γ = C,
δ = Di, ζ = B, λ = e, I represents all the interaction terms and ε is the error
term. The sensitivity results as measured by ANOVA show that all five factors
are significant (p-value < 1%) in explaining productivity and the net benefit.
Most interaction terms are significant too (p-value < 1%). Due to space limit, in
Table 8 we only show the interaction terms that are not significant at 1% level.

The results of Tukey’s test (omitted due to space limit) show that Dmax =
3, 4, 5, or 6 days are all significantly different from each other in terms of their
effects on the productivity and net benefit (p-value< 10%). Specifically, although
Dmax = 5 and Dmax = 6 yield very similar net benefit in the honest case, and
Dmax = 4 and Dmax = 5 have similar net benefit in the rational case, they are
still statistically significantly different.

5 Summary and Conclusions

This research aims to study the role of an economic intervention i.e. a paid sick
leave policy, as an instrument, to effectively control an influenza epidemic. A lib-
eral paid sick leave policy discourages sick workers from coming to work which
reduces the transmission of the disease among the workers and hence the society
but affects the productivity of the society. The analysis takes a social planner’s
point of view to study the cost effectiveness of such a policy. We consider pro-
ductivity loss due to the sick leave policy and compare it with the benefits from
reduced attack rate and lower medical bills. Our experiments test a variety of
scenarios based on the number of paid sick days and behavior of the workers.
The number of maximum sick days considered are 3, 4, 5 and 6. The worker
behavior is assumed to be of two types: rational or honest. In case of rational
behavior, the workers take the maximum number of sick days available but in
case of honest behavior, only the necessary number of sick days are taken. The
simulation results show that if workers behave honestly, a liberal sick leave policy
is the most optimal since the social gains increase with the increase in the num-
ber of paid sick days. If the workers behave rationally and take the maximum
available sick days, however, it is optimal to have paid sick days to be equal to
the mean number of sick days.
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Appendix: Tables for Sensitivity Analysis

Table 7. Pairwise comparison of factor Dmax. * represents significance at 10%.

attack rate medical cost

grp vs grp group means mean diff HSD-test group means mean diff HSD-test

3 vs 4 -4.03 -4.84 0.81 61.21* -20.56 -26.59 6.02 94.98*
3 vs 5 -4.03 -5.18 1.16 87.04* -20.56 -25.31 4.75 74.91*
3 vs 6 -4.03 -5.28 1.25 94.08* -20.56 -26.95 6.38 100.62*
4 vs 5 -4.84 -5.18 0.34 25.83* -26.59 -25.31 1.27 20.07*
4 vs 6 -4.84 -5.28 0.43 32.87* -26.59 -26.95 0.35 5.64*
5 vs 6 -5.18 -5.28 0.09 7.04* -25.31 -26.95 1.63 25.71*

Table 8. Sensitivity analysis of economic variables. Only interaction terms not signif-
icant at 1% level are shown. All factors are significant at 1% level.

Factor
Productivity Net Benefit

DF SS F value DF SS F value

B:e 2 3.58E-28 2.23E-27 2 7.25E-28 5.24E-28
Dmax:B:e 6 4.28E-28 8.89E-28 6 3.43E-28 8.26E-29
C:B:e 2 1.67E-28 1.04E-27 2 1.64E-28 1.19E-28
Di:B:e 2 5.42E-29 3.37E-28 2 4.68E-28 3.38E-28
Dmax:C:B:e 6 1.31E-27 2.72E-27 6 1.46E-27 3.51E-28
Dmax:Dis:B:e 6 8.67E-28 1.80E-27 6 7.22E-28 1.74E-28
C:Di:B:e 2 1.19E-27 7.43E-27 2 6.17E-28 4.46E-28
Dmax:C:Di:B:e 6 4.10E-28 8.52E-28 6 1.56E-27 3.75E-28
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