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Abstract. Hypernetworks generalise networks and hypergraphs, allowing 
relations between many things to be modelled by hypersimplices with richer 
structure than hypergraph edges. They provide a way of integrating bottom-up 
and top-down micro, meso and macrolevel dynamics in multilevel systems. 
They provide a natural way of representing social structures, enabling polices to 
be tested by computation and big data before they are implemented.  
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1 Introduction 

Social networks have been intensely studied since the nineteen sixties when 
computers enabled increasingly large social systems to be studied [1]. However most 
social systems involve networks of networks, and the interaction of many agencies 
and recent work has begun to explore the properties of coupled networks. To date the 
focus has been on binary relations between pairs of things analysed using network 
theory. Surprisingly the possibility of n-ary relations between any n things has 
received less attention, even though they are ubiquitous in all systems.  

Hypergraphs [2, 3] provided an early attempt to model relations between more than 
two things. They mark a big step forward in the study of higher relations but they are 
set-theoretic and lack the representational power needed for complex systems. 

A further step forward is to use simplices rather than hypergraph edges to represent 
related entities [4, 5, 6, 7]. The vertices of simplices are ordered, and they have a 
multidimensional connectivity structure. Algebraic topology provides much useful 
theory for representing coupled dynamical subsystems. Even so, the orientation of 
simplices and related algebraic operations in simplicial complexes have limited 
representational power for social systems. 

In contrast, hypernetworks [8, 9] have much richer structure to represent social 
dynamics. Hypernetworks are formed from relational simplices, otherwise called 
hypersimplices, in which the relational structure is explicit. Like the formation or 
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breaking of links in networks, the formation and disintegration of hypersimplices 
represent the discrete dynamics of systems. They generalise the dynamics of network 
formation, when vertices join or leave the system, and links are formed or cease to 
exist. The formation or disintegration of a hypersimplex is a structural event.  Such 
events mark time in systems, where this is related to but different from clock time. 
For example time series are usually (more or less) continuous mappings of simplices 
to numbers in clock time, but the formation or disintegration of the simplices are 
discrete events as the structure of the system changes. 

Hypersimplices are wholes formed their vertices as parts. This part-whole structure 
allows simplices at one level to become vertices at higher levels in multilevel 
systems, and the mappings defined on the simplices aggregate or disaggregate 
accordingly. This gives a way of representing and integrating the bottom-middle-top 
up-down-diagonal dynamics of complex multilevel systems of systems of systems.  

The state of a system at any instance in time is represented by its multilevel 
simplices and patterns of numbers defined on them.  Policy goals can be defined to be 
desirable system states, and policy can be defined as the decisions and actions 
intended to move the system onto trajectories that will achieve the goals. This paper 
will present hypernetworks as a generalisation of networks and show how they can be 
used for modelling complex systems in the context of policy and designing the future. 

2 Graphs, Networks, Hypergraphs, and Simplicial Complexes 

A graph is a set of points called vertices or nodes and a set of pairs of vertices called 
edges or links. Let V be a set of vertices, E = { (v, v’) | v and v’ belong to V }. Then G 
= (V, E) is a graph. An edge is directed or oriented if (v, v’) ≠ (v’, v).  A graph with 
directed edges is called a digraph. A network is a digraph with mappings assigning 
numbers to the vertices and the edges, f : V → R and f : E → R where R is a number 
system such as the integers, the rationals or the reals. In many networks f ( v, v’ ) 
represents a weighting or a flow from v to v’. A graph or network is bipartite if its 
vertex V set can be partitioned into two sets A and B, V = A ∪ B and A ∩ B = ∅, such 
that every edge can be written as ( a, b ) where a belongs to A and B belongs to B.     
The literature often uses the terms graph and network interchangeably. 

Graphs and networks are used to represent relationships between things. Let R be a 
relation between the sets A and B. Let V = A ∪ B and E = { (a, b) | a is R-related to b }. 
Then (V, E) is a graph. When numbers are assigned to its vertices and edges it is a 
network. For example, an airline network has vertices airports and edges the pairs of 
airports related by having direct flights between them. Then f- (a) can be the number 
of people leaving a and f+ (b) can be the number of people arriving at b with f (a, b) 
being the number of people flying from a to b in a given time. 

The degree of a vertex a in a graph is the number of edges (a, b) in the graph. The  
out-degree of a vertex a in a directed graph is the number of edges (a, b) in the graph 
and the in-degree of a vertex b is the number of edges (a, b). For example Figure 1(a) 
shows twenty six girls with links to their favourite two dining partners. The degree of 
Adele is 5, and her in-degree is 3. The out-degree of all the girls is 2. 
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(a) Network of girls’ preferred dining partners. (Source: de Noy et al [10]). 
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(b) Hypergraph of girls’ preferred dining partners 

Fig. 1. Networks and hypergraphs 

The edges of graphs are restricted to having two vertices. Hypergraphs remove this 
restriction. Let R be a relation between set A and B. In principle, given a set B, any 
class of subsets of B is a hypergraph. Let R(ai) be the set of all members of B that are 
R-related to ai, where ai is in A, R(ai) = { bj | for all bj with ai R bj }. Then HA(B, R) = 
{ R(ai) | for all ai in A} is a hypergraph. Figure 1(b) shows the hypergraph of the 
relation HGirls(Girls, Rdining_prepference). The hypergraph edge R(gi) is the set of all girls 
whose first or second choice of dinner companion is girl gi. 

In the network representation of the dinner partners data, the in-degree is a measure 
of the popularity of a girl. For example, Eva and Marion each have six girls who like 
their company, and Edna and Hilda have four. By comparison none of the girls has  
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Ella, Irene, Laura, or Alice as their first two preferences. The hypergraph 
representation adds information to this by explicitly listing the girls. Also the 
hypergraph representation has a different kind of connectivity through the 
intersections of the edges, which may have more than two vertices. 

Hypergraphs provide a way of modelling n-ary relation when n > 2. However, 
hypergraphs lack the structure needs to make some fundamental distinctions. For 
example, consider the relation between the set of words and the alphabet. Then, for 
example R(dog) = {d, o, g} and R(god) = {g, o, d}. But set-theoretically {d, o, g} = 
{g, o, d}, so R(dog) = R(god). This can be overcome by using simplices.  

Let V be a set of vertices. The sequence of vertices 〈 v0, v1, …, vp〉 is defined to be 
an abstract p-simplex. A p-simplex has a geometric realisation as a polyhedron in an 
n-dimensional space, n ≥ p. For example, the geometric representation for 〈 v0, v1, v2〉 
is a triangle in 2-D space, that for 〈 v0, v1, v2, v3〉 is a tetrahedron in 3-D space, and so 
on. The simplex 〈 v0, … , vp〉 is a p-dimensional face of the simplex 〈 v’0, … , v’q〉 if 
{v0, … , vp} ⊂ {v’0, … , v’q}. For example the tetrahedron 〈 v0, v1, v2, v3〉 has four 
triangular faces, 〈 v0, v1, v2〉, 〈 v0, v1, v3〉, 〈 v0, v2, v3〉 and 〈 v1, v2, v3〉. A set of 
simplices with all its faces is called a simplicial complex. 

The geometric realisation of a single vertex, 〈 v1〉 is a point, and the geometric 
realisation of a 1-dimensional simplex 〈 v1, v2〉 is a line oriented from v1 to v2. Thus 
every network is a 1-dimensional complex, and simplicial complexes generalise 
networks to higher dimensions. 

The sets of girls identified as hypergraph edges in Figure 1 can also be viewed as 
the vertices of simplices. Let two simplices be q-near if they share a q-dimensional 
face. The transitive closure of the q-nearness is the q-connectivity relation. It partit-
ions sets of simplices into q-connected components. A listing of the q-connected 
components is called a Q-analysis, which can be succinctly summarised by a 
skyscraper diagram (Fig. 2). At q = 1 five distinct components emerge. The first is for 
Ellen who is liked by Ella and Irene at the bottom left of Figure 1. The second is 
Hazel, Betty and Hilda which form a group at the bottom right of Figure 1. Next 
comes Edna with Mary, Jane and Adele at the top right of Figure 1. Ada and Cora 
form a small components at the top left of Figure 1. The largest component clusters 
around the popular Eva and Marion at the top centre of Figure 1. Q-analysis reveals 
structure that is not obvious in the network representation, and also provides a more 
tractable way of computing Galois pairs of simplices for bipartite relations [2, 9]. 
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Fig. 2. The Q-analysis skyscraper diagram for the girls’ dining preference relation 
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Figure 3 shows five faces, f1, f2, f3, f4, and f5 made of the shapes s1, s2, s3, s4, s5 and 
s6.  These face shapes can be represented by the simplices σ ( f1) = 〈 s1, s3, s5, s6〉, σ ( f2) 
= 〈 s1, s4, s5, s6〉, σ ( f3) = 〈 s2, s3, s5, s6〉, and σ ( f4) = 〈 s2, s4, s5, s6〉, σ ( f5) = 〈 s2, s3, s5, 
s6〉. 

 
 
 
  f1               f2              f3                 f4              f5             s1               s2             s3        s4       s5      s6  

Fig. 3. Faces made up from shapes   

Using simplices also has problems. For example, σ (f3) = 〈 s2, s3, s5, s6〉 = σ (f5), and 
the simplex representation cannot discriminate them. Let R be a relation on an ordered 
set of four vertices 〈 x1, x2, x3, x4〉, defined as: place x2 under the centre of x1; place x3 
above and to the left of the centre of x1;  place x4 above and to the right of the centre 
of x1. Let 〈 x1, x2, x3, x4; R〉 be defined to be a relational simplex, or hypersimplex. 
Now σ ( f3) = 〈 s2, s3, s5, s6; R〉 while σ ( f5) = 〈 s2, s5, s3, s6; R〉, so that σ ( f3) ≠ σ ( f5).  

A hypernetwork is defined to be a collection of hypersimplices. Generally 
hypernetworks support patterns of numbers that represent properties and flows 
through the system being modelled. The relationship between the structures defined 
here is given in Figure 4. 

 
 
 

Graph                                Digraph                                 Network 

Hypergraph                     Simplicial Family                   Hypernetwork 

more 
structure 

more 
structure 

more 
structure 

more 
structure 

generalise                                        generalise                                        generalise 

 

Fig. 4. The relationship between graphs, network, hypergraph and hypernetworks 

3 Multilevel Structure 

Hypersimplices provide a method of representing multilevel structure.  Imposing an 
n-ary relations on sets of elements creates objects at higher levels. E.g. the three 
blocks a, b, and c are assembled by R into a structure, R: {a, b, c } → 〈 a,  b,  c ; R 〉 
and given the name arch. If the elements exist at, say, Level N then the structured 
object exists at a higher level, say Level N+1. Here the higher level structure has an 
emergent property not possessed by its elements, namely there is a ‘gap’ between the 
assembled blocks. 
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Fig. 5. Aggregating Level N parts to Level N+1 wholes, and aggregating numbers 

One of the challenges of modelling complex systems is to integrate micro and 
macro theories of behaviour. From a policy perspective, the target systems almost 
always include people as social and economic systems. Social systems have structures 
at many levels, from the individual at micro levels through organisations and 
institutions at meso levels to nations and international structures at macro levels. 
Alongside this are economic considerations with individual’s costs and benefits at the 
microlevel aggregated through social groups at meso levels to the costs and benefits 
perceived by the Finance Ministry, European Bank or the World Bank at macro level. 
Alongside this there are considerations of the particular system being managed, such 
as ‘health’, ‘welfare’, ‘transport’, ‘environment, ‘food’, ‘education’, ‘housing’, and so 
on. Each of these has its micro, meso and macro levels. How can the impact of policy 
be understood across these entangled multilevel systems of system of systems? 

4 Hypernetworks and Policy 

Macro-level 
(continuous dynamics) 
 
 
 
Meso-levels 
(continuous & discrete 
 dynamics) 
 
 
 
 
Micro-level 
(discrete dynamics) 

 

Fig. 6. The challenge of modelling multilevel systems of systems of systems 
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Figure 6 illustrates the challenge of creating coherent multilevel theories to support 
policy. At the microlevel the dynamics emerge from the interactions of individuals. 
Currently a favoured scientific way of investigating the microlevel behaviour is agent-
based simulation, which generates two-level dynamics at the level of the individual 
and the emergent behaviour of the community. Simulations do not give ‘predictions’ 
of future system behaviour, but give insights in to possible system behaviour and, at 
best, estimate the likelihood for a policy to have its desired outcome at that level. 
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Fig. 7. Admissions to English NHS hospitals for assault involving 13 to 14 year olds. [11] 

Figure 7 illustrates macro-level statistics that provide a macro-level snapshot in the 
terms of Figure 6. They come from a report entitled ‘Dying to Belong’ published in 
2009 by the Centre for Social Justice (CSJ) which gives an in-depth analysis of street 
gangs in Britain [12]. 

Between 6th and 10th August in 2011 London and other British cities experienced 
violent riots, looting, arson, assault and robbery. Many thousands of lawless people 
took to the streets including rival street gangs acting together.  

The report ‘Ending Gang & Youth Violence’, published in November 2011 by the 
Secretary of State for the Home Department was the basis for a policy response to the 
riots. “One thing that the riots in August did do was to bring home to the entire 
country just how serious a problem gang and youth violence has now become.” [13] 
This report set out detailed policy plans for the agencies to work together, including 
providing support to local areas; preventing young people becoming involved in 
serious violence; pathways out of violence and gang culture; punishment and 
enforcement to suppress the violence of those refusing to exit violent lifestyles, and 
partnership working to join up local area responses to gangs and youth violence. 

The 2012 CSJ report ‘Time to Wake Up’ questions the effectiveness of the police 
practice of identifying and removing gang ‘elders’: “it seems that an unintended 
consequence of the arrest of senior gang members has been to heighten tensions and 
violence. … There was a consensus that the current gangs neither have [no] cohesive 
leadership, which is resulting in increased chaos, violence and anarchy. [14]  

These reports discuss the problem of gangs at the macro level of state policy, at 
meso level of local authority policy, and at the microlevel of dealing with individuals. 
For example, ‘Ending Gang and Youth Violence’ documents the life of “Boy X”  
from his birth to  his seventeen year old crack cocaine addicted mother to life 
imprisonment for murder at age twenty one, and his many contact points with the 
social and emergency services (Fig. 8). [13] 
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Fig. 8. The lifecycle of a gang member (Source: HMG: Ending Gang Youth Violence [13]) 

If this were the story of just one person it would be regrettable but not an issue for 
policy. Figure 8 is a kind of model of the life of this individual at the microlevel and 
his interactions with the mesolevel social and emergency services. Implicitly it is 
intended to generalise to classes of individuals at higher mesolevels of aggregation. 
Policy cannot target individuals at the microlevel but requires models of the behaviour 
of individuals within classes or higher level aggregate entities, i.e. hypernetworks. 
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The various reports on gangs cited above contain propositions about the behaviour 
of gang members. These include postulating classes of ‘Elders’ and ‘Youngers’ and 
their modes of interaction at the microlevel, and classes of rival gangs and their 
modes of interaction at higher mesolevels. Much of this is empirically based and 
forms a theory of gang behaviour on which to base policy. What can formal 
modelling with hypernetworks add to this? 

Social policy is inevitably expressed in natural language within a legal framework 
for implementation. In comparison, technical or formal models of systems are stated 
in their own language which may include mathematics and computation, but they are 
always embedded in a metalanguage such as vernacular English. This is as true in 
engineering as it is in social administration.  

The problem with the theories in the reports cited above is that their vernacular 
models are untestable before implementation. For example, the failure of the 2011 
police policy to remove Elders from gang was predicted in 2009 [12] but this was 
ignored or overlooked by the police. Why? Perhaps due to predictions presented in 
natural language carrying little more weight than opinions because the outcome of 
their premises and logic cannot be demonstrated before empirical testing on the street.  

Technical models can translate vernacular models into formal theories that can be 
implemented in computers to generate their logical and empirical consequences. 
Given the many possible initial conditions such models must be run many times to 
characterise the space of possible policy outcomes. For policy purposes the output of 
the computational model will again be evaluated in a vernacular metalanguage, but 
the intermediate step of computation can add a lot in terms of understanding the real 
social system and its dynamics. 

Many hypersimplices can be abstracted from Figure 8, e.g. 〈 neglected by parents, 
parental substance abuse, parental violence; Rexperienced_0-5〉 suggests a child at high risk. 
The hypersimplex 〈 outbursts of aggression as school, involved in street violence, 
many visits to A&E; Rexperienced_10-15〉 indicates a child becoming increasingly violent 
and dangerous, while 〈 regularly late and truant, school low attainment, excluded 
from school;; Rexperienced_10-15〉 is a likely precursor to 〈 joined a local gang, selling 
Class A drugs, early and repeat offending, drug and alcohol abuse; Rexperienced_16-21〉. 

In many cases subsequent enquires discover that neighbours, welfare agencies, 
schools, the police and even the postman had evidence of tragic events to come, but 
this evidence was not ‘joined up’ as a hypersimplex. This is an easy conclusion but it 
is difficult to rectify the lack of structure to prevent further incidents. How can micro-
level individuals join up the information spread across their mesolevel organisations? 
How can institutional structures such as 〈 welfare agencies, schools, police, postman, 
milkman; Rshare_and _synthesie_information〉 be formed and run at politically bearable costs? 

5 Hypernetworks, Big Data and Policy Informatics 

Recently it has become clear that the dynamics of society are carried by an unprecedented 
flux of data. Big Data includes billions of phone calls, text messages, emails, financial 
transactions, personal data, and so on. Data mining has well established techniques for 
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abstracting useful information from these data, and many involve discovering 
hypersimplices and relationships between them in hypernetworks. 

Policy informatics is the process of building computer models of social systems 
with the explicit intention of using them as policy tools. Increasingly these models 
have the structure shown in Figure 6, with massive microlevel simulations creating 
more aggregate information at higher levels. For example, the TRANSIMS system 
developed at Los Alamos National Laboratory in the nineteen nineties simulates the 
trip making of millions of travellers in US cities, including explicit representations of 
each individual traveller, their family structure, their activity patterns and so on. 

Policy informatics is built on social informatics, the process of building computer 
models of social systems to investigate their dynamics. Social informatics is not 
necessarily policy-driven and can be pure research. Today big data plays an important 
part in social informatics and the development of new models of social processes. 

Policy informatics may answer the question of forming institutional structures able 
to synthesise atomic social data for policy purposes. In future it is likely that 
computers will shift from having their constructs supplied by humans to them 
abstracting ‘relevant’ constructs for themselves, where a construct is a hypersimplex, 
of subordinate constructs assembled by a relation. To illustrate this consider the faces 
shown in Figure 3. What is the correct way of grouping these faces? For example, the 
faces could be aggregated on the basis of round versus square, or they could be 
aggregated on the basis of smiles versus frowns. Of course there is no ‘correct’ way 
of aggregating them, only more or less useful way of aggregating them. 

Hypernetworks provide essential structure for computer systems to build 
vocabularies automatically for searching big data in policy informatics. [9] 

6 Conclusions 

Network theory is fundamental in both social informatics and policy informatics.  
Hypernetwork generalise networks and hypergraphs, allowing relations between 
many things to be modelled by hypersimplices which have much richer structure than 
edges in hypergraphs. Hypersimplices provide a coherent way of representing 
multilevel systems to integrate their bottom-up and top-down micro-, meso- and 
macrolevel dynamics. They provide a natural way of representing structures in a 
policy context, and this enables polices to be tested by computation before they are 
implemented with possibly unexpected consequences. Hypernetworks have 
immediate interpretation as data structures and can bridge the gap between vernacular 
models and computation of social processes. Hypernetworks will play an important 
role in the use of big data in social informatics and policy informatics, and will play a 
central role in future policy formulation and implementation. 
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