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Abstract. The objective of this study was to develop a highly-detailed, agent-
based simulation to compare medical treatments against healthcare-acquired 
infections (HAIs). A complex hospital model was built using patient 
information and healthcare worker data from two regional hospitals in 
Southwest Virginia. A specific HAI, Clostridium difficile, was chosen among 
other HAIs as the pathogen for the study due to its increased prevalence in the 
United States. The complex hospital simulation was created using the first 
principles of agent-based simulation. The simulation was then tested using a 
disease model with two different scenarios: a baseline with no medical 
treatment antimicrobials, and the use of an antimicrobial (fidaxomicin). The 
model successfully simulated over 164,000 personal contacts between patients 
and healthcare workers. Each medical treatment was evaluated one hundred 
times using one month of real hospital data. The mean case count was 2.66 for 
scenario 1 and 2.33 for scenario 2. The highest case count for scenario 1 was 21 
cases whereas scenario 2 had a maximum of 11 cases. Understanding complex 
interactions between patients and hospital personnel could help hospitals 
understand transmission of infections while simultaneously reducing healthcare 
costs.       

Keywords: Complex systems, healthcare systems, healthcare-acquired 
infections, Clostridium difficile, agent-based simulation. 

1 Introduction 

Hospitals are by definition complex systems containing multiple subsystems. The 
environment inside a hospital is a collection of interactions between numerous 
subsystems. Hospital subsystems include the internal and external environment, personnel, 
and technology. Although sometimes the subsystems may seem to work autonomously, 
there is an overarching objective that governs all of them. This goal aims to improve 
health of the patients by performing tasks unique to that subsystem. Take for example the 
interactions between the environmental services or janitorial department and the nursing 
staff within an intensive care unit (ICU). The objective of the environmental services 
department is to ensure that all surfaces in a patient room are cleaned and sanitized. 
Members of this department have very specific standard work that includes directives on 
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how to sanitize, what surfaces to clean, and cleaning times for each room and major area. 
Nurses, on the other hand, have a very different mission. They are tasked with patient care 
by following physician orders for treatment. If a patient’s room needs to be cleaned, but at 
the same time the patient needs a particular treatment, there might be a conflict of 
objectives between the two subsystems. While at times it may appear that both subsystems 
are competing for the same space to conduct different activities, they share one goal. Their 
end goal is to guarantee that the patient regains health and that he is not harmed further 
during his stay in the hospital. 

Healthcare-acquired infections (HAIs) occur within this complex system. Interactions 
between multiple subsystems such as hospital personnel, patients, and technology can 
create a difficult environment to identify and treat HAIs. In order to investigate this type of 
environment without reducing it to a very simplistic model, one can utilize highly-resolved 
simulations. Highly-resolved simulation refers to agent-based simulation models that can 
evaluate infection exposure, interventions and individual behavior change for populations 
in the hundreds of millions, while maintaining the resolution of the individual agent. This 
study is unique in its kind because it combines very specific factors. First, it makes use of 
multiple populations inside a hospital. These populations include patients, physicians, 
nurses, respiratory therapists, occupational therapists, speech therapists, physical 
therapists, and environmental services associates. Second, it utilizes actual patient data in 
the form of electronic medical records. Third, the study uses the technique of shadowing 
hospital workers to develop activity schedules from multiple disciplines to include in the 
simulation. Lastly, due to the amount of data being processed, it is clear that less advanced 
simulation software would not be able to calculate the interactions of thousands of agents 
in an efficient manner. The use of highly-resolved simulation was essential for the 
epidemiological study. For this reason it is necessary to combine the resolution of highly-
resolved simulation with the power of high performance computing. 

1.1 Objective of the Study 

The objective of the study was to develop a highly-detailed, agent-based simulation to 
compare medical treatments against healthcare-acquired infections (HAIs). In order to 
achieve this objective the number of daily exposures and contacts between patients 
and healthcare workers was obtained through a hospital simulation. By determining 
these contacts, their durations, and locations it was possible to suggest to hospital staff 
better treatment measures against HAIs. This paper represents the initial stages of the 
study and therefore looks at the practicability of conducting highly-resolved 
simulations for hospitals.  

1.2 Healthcare-Acquired Infections 

Healthcare-acquired infections are those infections defined as being transmitted and 
acquired inside a healthcare facility. Healthcare facilities include hospitals, clinics, 
outpatient facilities, and nursing homes. There are multiple types of pathogens that 
can infect a patient or be transmitted within a healthcare facility. The transmission, 
control and prevention, and treatment are very different for each type of infection. 
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Clostridium difficile is a normal occurring bacteria in the intestinal flora, however 
certain strains of the bacteria can cause Clostridium difficile-associated disease 
(CDAD). CDAD can produce watery diarrhea with the mildest of cases, but can also 
produce severe colitis requiring surgery in the harshest cases. The severe form of the 
infection can also lead to death. CDAD has been linked to risk factors such as being 
65 years-old or older, suffering a severe underlying illness, going through a 
nasogastric intubation, taking antiulcer medications, having a prolonged hospital stay, 
and receiving treatment with certain antibiotics [1, 2]. New treatments are currently 
being developed to fight CDAD to include new antibiotics, fecal transplants, and a 
new vaccine. Clostridium difficile was chosen as a model infection for this study due 
to its prevalence in the hospital environment and chain of infection. 

A recent review of data from the Healthcare Cost and Utilization Project (HCUP) 
showed that the average cost of Clostridium difficile treatment could be as high as 
$24,400 and the aggregate costs of all Clostridium difficile treatments in the United 
States was $8,238,458,700 in 2009. Of the total $8 billion in Clostridium difficile 
infections costs 67.9 percent was covered by Medicare, 9.1 percent by Medicaid, and 
18.8 percent was covered by private insurance [3]. Several studies have estimated the 
cost of individual treatment between $3,000 and $32,000 [4-7].  

1.3 A Hospital as a Complex System 

Hospitals are by virtue of their structure complex systems. Each hospital is a set 
balanced connections of multiple subsystems and thousands of individual agents. The 
personnel subsystem and the technological subsystem are two of the most important 
subsystems in the hospital. The personnel subsystem is composed of all the 
individuals that interact within the hospital. This subsystem includes patients, hospital 
workers and hospital visitors. The technological subsystem is sometimes seen as 
synonymous with machines or computers, but it also includes the knowledge shared 
by the hospital personnel, the level of automation of its internal processes, and as 
mentioned before the equipment that is utilized. Furthermore, the organizational 
structure of a hospital can be daunting. A complex organizational structure can follow 
a large number of procedures, rules, and guidelines. Nurses, as an example, can have 
supervisors from different reporting structures. For example, a nurse can report to a 
nurse manager, a resident doctor, and a chief of staff all at the same time. With nested 
structures such as these, standard operating procedures can become complex and with 
additional stress added to a person, errors are more prevalent [8].  

In addition to the multiple subsystems there are thousands of individuals 
interacting constantly within the walls of a hospital. For this study, one of the regional 
hospitals had over 37,000 patients (non-recurring admissions) and over 4,000 hospital 
workers. The same hospital had over 1,000 locations. The combination of personnel 
and locations can produce millions of activities during a year inside a hospital.   

Complex systems with so many individual parts interacting together are difficult to 
study without reducing to very simplistic models. Most of the regularly used studies 
do not have the capacity to analyze the number of agents that have been described 
above. It is also impractical and costly to conduct complex experiments on 
interventions in a hospital. The size of the overall population and the interactions of 
the multiple subsystems make this task very difficult to achieve. In the past, 
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researchers have looked at different types of study designs to test their hypotheses 
such as case-control studies or retrospective studies. One of the weaknesses of a case-
control or a retrospective study is that experiments of this fashion would not be able 
to encompass the detailed dynamics within a hospital. The use of highly-resolved, 
agent-based simulation can help overcome these weaknesses. Highly-resolved 
simulation uses data obtained from the population data sources to create a realistic 
synthetic (in-silico) population. The in-silico representation of the population includes 
information such as location, daily activities, age, and other important demographics 
[9]. Even though all this information is incorporated into the simulation, the identity 
of the patients and hospital workers are protected through anonymity. Highly-resolved 
simulation has been used in the past to analyze possible interventions in response to 
hypothetical disease outbreaks such as influenza [10, 11].      

1.4 Highly-Resolved Simulations 

In the past, simulations have been used on multiple occasions to help explain the 
complexities of health systems. Simulations are representations of complex systems, 
but they can never be a perfect representation of reality. Additionally, one cannot say 
that any kind of simulation is better than the other. Simulations that are more 
graphical and user-friendly have the advantage of a short learning curve and ease of 
use. People that unfamiliar with simulation can learn to use the software in a matter of 
hours. However, user-friendly simulations lack the resolution needed for analyzing 
large number of individual agents. On the other hand, one can find simulations that 
are computer code-intensive and that are not intuitively user-friendly. Written directly 
in language such as C, C++, or Java language, these type of simulations can provide 
better resolution for large amounts of data, but require training and users that are 
computer-code savy [12]. The selection of the right simulation software depends on 
the type of problem that a researcher seeks to answer. 

EpiSimdemics is a novel simulation software that looks at simulation in large 
social networks. EpiSimdemics is a parallel scalable algorithm used to simulate the 
spread of infectious diseases over extremely large contact networks. This algorithm 
can also simulate other population factors such as fear and behaviors. The Network 
Dynamics and Simulation Science Laboratory (NDSSL) at Virginia Tech developed 
EpiSimdemics with the objective of studying the effects of pharmaceutical and non-
pharmaceutical interventions. EpiSimdemics is an agent-based simulation in which 
every person is an individual agent.  EpiSimdemics is based on social network theory, 
but can overcome its limitations of use for only small groups of people. Prior studies 
have utilized this tool for analysis of large populations at a scale of 100,000,000 
people. In the simulation, agents and locations are identified as nodes in a network 
graph (or a sociogram) and the edges between the nodes are considered contacts 
between agents or visits of an agent to a specific location. Every activity for a 
particular agent is defined in an activity schedule.  The schedule determines the 
location of the activity, the activity performed, and the duration of the activity. 
Interactions between people are calculated using a stochastic model. If one or more 
individuals are in the same location as an infected individual then they might or might 
not become infected based on probability calculations. These probabilities are defined 
in the simulation in the disease model, which we explain later on. Other simulation 
models do not have the same level of resolution that EpiSimdemics has due to the 
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2 Methodology 

The methodology of the study consisted of four phases: electronic data collection, 
shadowing of hospital workers, disease modeling and simulation of the hospital. In 
order to create a more realistic simulation the study gathered data that represented 
reality as close as possible. For this reason, electronic medical records were requested 
directly from the hospital. Additionally, the study included shadowing of different 
hospital disciplines while hospital workers performed their daily activities. It is 
difficult to obtain 100 percent validation on simulation models, however when the 
agents in the model are based on accurate data directly from patient records and 
activities from direct observation, the fidelity of a large portion of the simulation can 
be verified.   

2.1 Data Collection 

As explained before, the first step in creating a highly-resolved simulation is to 
develop a synthetic or proto-population that resembles the real population with high 
resolution and high fidelity. In order to achieve this detail of resolution it was 
necessary to obtain actual data of the multiple populations that interact within a 
hospital. Two regional hospitals from Southwest Virginia provided data for the study. 
The first type of data obtained was in the form of electronic medical records. The 
patient records were de-identified to protect patient information by the hospital before 
submitting them to the research team. The electronic records included one year of 
patients’ locations and activities throughout the hospital. The records included over 
37,000 patients and over 400,000 single activities by the patients. The anonymous 
data was stored on a SQL database and the information was protected by numerous 
measures such as deidentification and restricted access only to those researchers 
participating in the study. 

2.2 Shadowing of Hospital Workers 

The next phase of data collection was the shadowing of hospital workers. Hospital 
workers are not typically tracked throughout the healthcare facility as they conduct 
their daily routines. It was important for the study however, to obtain a realistic 
representation of those daily activities in the form of vignettes. These vignettes are 
schedules that summarize the most common activities that a worker would perform 
throughout the day. The vignettes include locations, activities, contacts with other 
people or technology, and durations of those activities and contacts. Table 1 below 
shows the different healthcare disciplines that were observed during the study at the 
two hospitals. Even though data exists on most departments for the hospitals, not all 
the disciplines have been included currently in the simulation. Further work is needed 
to develop specialty departments within the hospitals such as the emergency 
department, the operating rooms, the neonatal unit, and the cafeterias. 
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Table 2. Scenarios used in the simulation 

 Disease Model 1 Disease Model 2 
First Disease Link Exposure to Clostridium 

difficile, use of 
antimicrobials to trigger 
infection 

Exposure to Clostridium 
difficile, use of antimicrobials 
to trigger infection 

Treatments Tested No preventive or medical 
treatments 

Clostridium difficile 
antimicrobials for mild CDAD 
Clostridium difficile vaccine 
Clostridium difficile 
antimicrobials for severe 
CDAD 

Table 3. Parameters for the two scenarios 

Disease State Disease Link Probability Next Disease State 
Uninfected Untreated 0.95 Colonized 

Untreated 0.05 Not Colonized 
Antimicrobials 0.96 Colonized 
Antimicrobials 0.04 Not Colonized 
Vaccine  
(Scenario 2) 

0.25 Colonized 

Vaccine  
(Scenario 2) 

0.75 Recovered 

Colonized Untreated 0.50 Infected 
Untreated 0.50 Asymptomatic 

Infected Untreated 0.1 Severe CDAD 
Untreated 0.9 Mild CDAD 

Not Colonized None None None 
Asymptomatic None None None 
Severe CDAD Untreated 1.0 Death 

Clostridium difficile antimicrobials  
(Scenario 2) 

0.68 Recovered 

Clostridium difficile antimicrobials 
(Scenario 2) 

0.32 Death 

Mild CDAD Clostridium difficile antimicrobials 
(Scenario 2) 

0.85 Recovered 

Clostridium difficile antimicrobials 
(Scenario 2) 

0.15 Severe CDAD 

 Untreated 1.0 Severe CDAD 
Death None None None 
Recovered None None None 

3 Results 

3.1 Simulation Runs and Parameters 

This study simulated the entire patient population of the hospital for an entire year. 
Particular importance was given to the ninth floor of the simulated hospital for the 
purposes of studying the interactions of the multiple populations of hospital workers. Only 
hospital workers of the ninth floor and their activities were simulated due to the 
complexity of creating additional departments for the hospital such as the emergency 
department and the operating room. These departments will be included in further 
simulations. The study was conducted for thirty days of hospital activities and it included 
agents acting as patients, physicians, nurses, respiratory therapists, occupational therapists, 
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speech therapists, physical therapists, and environmental services associates. Each of the 
agents had individual activity schedules that identified each location, activity type, and 
duration. Each simulation of thirty days ran through 100 iterations for each scenario.     

3.2 Assumptions and Simplifications 

In order to run the simulation in a fast and efficient manner some assumptions were 
made regarding the model. The model does not distinguish between the ages of the 
agents. In reality, the age of the patient is an important risk factor as people over 65 
years old are more likely to be infected with HAIs than younger people. Additionally, 
the medical condition of the agents did not play a factor in the simulation with the 
exception of those individuals that are under an antimicrobial regiment. Infections 
other than CDAD were not taken into account. The next assumption was that every 
agent in the in-silico hospital population could be infected. Similarly, all agents could 
progress through the disease models equally with no difference on whether they were 
patients or hospital workers. Finally, the study assumed a “barrier” around the 
hospital for agents. This means that once a patient-agent left the premises of the 
hospital, the infection and the disease model did no longer affect him.    

3.3 Exposures and Contacts 

A very interesting point of the simulation is to be able to observe the different 
contacts that occur between in-silico agents. The average number of activities for the 
entire month was 8,234 activities. The total number of agent-to-agent contacts during 
the 30 days was 164,176. These contacts are represented on figure 5 as a sociogram. 
Every node in the sociogram represents an agent-person. When two agent-persons are 
in the same location at the same time they are considered in contact with each other. 
An edge or line represents their contact. 

3.4 Scenario Summary 

Two graphs were obtained from the multiple iterations of the simulation. Each graph 
includes the cumulative case count of infected agents for each of the two scenarios as 
explained in section 3.1. Each scenario was run 100 times with different probability 
seeds for each run. The stochasticity of the models based on the seeds explains the 
differences in the number of cases from one curve to another. During one of the 
iterations for scenario 1 the number of cases grew to 21, whereas in several other 
iterations there were no cases at all. It is important to understand that the purpose of 
the simulation is not to replicate the exact results from the two regional hospitals but 
to evaluate the possible contacts between the different populations. These contacts 
and exposures can later be analyzed for improving systemic interventions such as 
hand washing, education programs, or better disinfection in rooms. The cumulative 
case curves are presented to show the disease transmission in a manner that is 
consistent, but not exactly the same as an actual hospital. Scenario 1 had an average 
number of cases of 2.66, compared to 2.33 from scenario 2.  The highest number of 
cases for scenario 2 was only 11 compared to 21 on scenario 1. Figures 5 and 6 show 
the cumulative cases for scenarios 1 and 2.    
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the visitors to the hospital. Visitors can be a very important factor in the transmission 
of infections. Visitors are susceptible to infections, especially if their demographics 
carry any of the risk factors for a specific disease. Hospital visitors are also more 
mobile than patients and could potentially transmit infections to different locations 
inside and outside of the hospital. The demographics of the population should also be 
included to future iterations of the study. Risk factors linked to the demographics of 
the agents could give further insight into effective treatment. The current simulation 
model did not include all the floors of the hospital due to the complexity of certain 
specialty departments. Further models should include every floor and department of 
the hospital to include the operating room and the emergency department. 

In order to increase the realism of the simulation multiple hospitals could be added to 
the simulation. This network of hospitals could work similar to a state or regional health 
department evaluating an outbreak. Finally, the realism of the simulation could increase if 
other infections, not necessarily other HAIs, would be added into the activity files.  
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