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Abstract. The objective of this study was to develop a highly-detailed, agent-
based simulation to compare medical treatments against healthcare-acquired
infections (HAIs). A complex hospital model was built using patient
information and healthcare worker data from two regional hospitals in
Southwest Virginia. A specific HAI, Clostridium difficile, was chosen among
other HAIs as the pathogen for the study due to its increased prevalence in the
United States. The complex hospital simulation was created using the first
principles of agent-based simulation. The simulation was then tested using a
disease model with two different scenarios: a baseline with no medical
treatment antimicrobials, and the use of an antimicrobial (fidaxomicin). The
model successfully simulated over 164,000 personal contacts between patients
and healthcare workers. Each medical treatment was evaluated one hundred
times using one month of real hospital data. The mean case count was 2.66 for
scenario 1 and 2.33 for scenario 2. The highest case count for scenario 1 was 21
cases whereas scenario 2 had a maximum of 11 cases. Understanding complex
interactions between patients and hospital personnel could help hospitals
understand transmission of infections while simultaneously reducing healthcare
costs.

Keywords: Complex systems, healthcare systems, healthcare-acquired
infections, Clostridium difficile, agent-based simulation.

1 Introduction

Hospitals are by definition complex systems containing multiple subsystems. The
environment inside a hospital is a collection of interactions between numerous
subsystems. Hospital subsystems include the internal and external environment, personnel,
and technology. Although sometimes the subsystems may seem to work autonomously,
there is an overarching objective that governs all of them. This goal aims to improve
health of the patients by performing tasks unique to that subsystem. Take for example the
interactions between the environmental services or janitorial department and the nursing
staff within an intensive care unit (ICU). The objective of the environmental services
department is to ensure that all surfaces in a patient room are cleaned and sanitized.
Members of this department have very specific standard work that includes directives on

K. Glass et al. (Eds.): COMPLEX 2012, LNICST 126, pp. 165-178] 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



166 J.M. Jiménez, B. Lewis, and S. Eubank

how to sanitize, what surfaces to clean, and cleaning times for each room and major area.
Nurses, on the other hand, have a very different mission. They are tasked with patient care
by following physician orders for treatment. If a patient’s room needs to be cleaned, but at
the same time the patient needs a particular treatment, there might be a conflict of
objectives between the two subsystems. While at times it may appear that both subsystems
are competing for the same space to conduct different activities, they share one goal. Their
end goal is to guarantee that the patient regains health and that he is not harmed further
during his stay in the hospital.

Healthcare-acquired infections (HAIs) occur within this complex system. Interactions
between multiple subsystems such as hospital personnel, patients, and technology can
create a difficult environment to identify and treat HAIs. In order to investigate this type of
environment without reducing it to a very simplistic model, one can utilize highly-resolved
simulations. Highly-resolved simulation refers to agent-based simulation models that can
evaluate infection exposure, interventions and individual behavior change for populations
in the hundreds of millions, while maintaining the resolution of the individual agent. This
study is unique in its kind because it combines very specific factors. First, it makes use of
multiple populations inside a hospital. These populations include patients, physicians,
nurses, respiratory therapists, occupational therapists, speech therapists, physical
therapists, and environmental services associates. Second, it utilizes actual patient data in
the form of electronic medical records. Third, the study uses the technique of shadowing
hospital workers to develop activity schedules from multiple disciplines to include in the
simulation. Lastly, due to the amount of data being processed, it is clear that less advanced
simulation software would not be able to calculate the interactions of thousands of agents
in an efficient manner. The use of highly-resolved simulation was essential for the
epidemiological study. For this reason it is necessary to combine the resolution of highly-
resolved simulation with the power of high performance computing.

1.1  Objective of the Study

The objective of the study was to develop a highly-detailed, agent-based simulation to
compare medical treatments against healthcare-acquired infections (HAIs). In order to
achieve this objective the number of daily exposures and contacts between patients
and healthcare workers was obtained through a hospital simulation. By determining
these contacts, their durations, and locations it was possible to suggest to hospital staff
better treatment measures against HAIs. This paper represents the initial stages of the
study and therefore looks at the practicability of conducting highly-resolved
simulations for hospitals.

1.2  Healthcare-Acquired Infections

Healthcare-acquired infections are those infections defined as being transmitted and
acquired inside a healthcare facility. Healthcare facilities include hospitals, clinics,
outpatient facilities, and nursing homes. There are multiple types of pathogens that
can infect a patient or be transmitted within a healthcare facility. The transmission,
control and prevention, and treatment are very different for each type of infection.
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Clostridium difficile is a normal occurring bacteria in the intestinal flora, however
certain strains of the bacteria can cause Clostridium difficile-associated disease
(CDAD). CDAD can produce watery diarrhea with the mildest of cases, but can also
produce severe colitis requiring surgery in the harshest cases. The severe form of the
infection can also lead to death. CDAD has been linked to risk factors such as being
65 years-old or older, suffering a severe underlying illness, going through a
nasogastric intubation, taking antiulcer medications, having a prolonged hospital stay,
and receiving treatment with certain antibiotics [1, 2]. New treatments are currently
being developed to fight CDAD to include new antibiotics, fecal transplants, and a
new vaccine. Clostridium difficile was chosen as a model infection for this study due
to its prevalence in the hospital environment and chain of infection.

A recent review of data from the Healthcare Cost and Utilization Project (HCUP)
showed that the average cost of Clostridium difficile treatment could be as high as
$24,400 and the aggregate costs of all Clostridium difficile treatments in the United
States was $8,238,458,700 in 2009. Of the total $8 billion in Clostridium difficile
infections costs 67.9 percent was covered by Medicare, 9.1 percent by Medicaid, and
18.8 percent was covered by private insurance [3]. Several studies have estimated the
cost of individual treatment between $3,000 and $32,000 [4-7].

1.3 A Hospital as a Complex System

Hospitals are by virtue of their structure complex systems. Each hospital is a set
balanced connections of multiple subsystems and thousands of individual agents. The
personnel subsystem and the technological subsystem are two of the most important
subsystems in the hospital. The personnel subsystem is composed of all the
individuals that interact within the hospital. This subsystem includes patients, hospital
workers and hospital visitors. The technological subsystem is sometimes seen as
synonymous with machines or computers, but it also includes the knowledge shared
by the hospital personnel, the level of automation of its internal processes, and as
mentioned before the equipment that is utilized. Furthermore, the organizational
structure of a hospital can be daunting. A complex organizational structure can follow
a large number of procedures, rules, and guidelines. Nurses, as an example, can have
supervisors from different reporting structures. For example, a nurse can report to a
nurse manager, a resident doctor, and a chief of staff all at the same time. With nested
structures such as these, standard operating procedures can become complex and with
additional stress added to a person, errors are more prevalent [8].

In addition to the multiple subsystems there are thousands of individuals
interacting constantly within the walls of a hospital. For this study, one of the regional
hospitals had over 37,000 patients (non-recurring admissions) and over 4,000 hospital
workers. The same hospital had over 1,000 locations. The combination of personnel
and locations can produce millions of activities during a year inside a hospital.

Complex systems with so many individual parts interacting together are difficult to
study without reducing to very simplistic models. Most of the regularly used studies
do not have the capacity to analyze the number of agents that have been described
above. It is also impractical and costly to conduct complex experiments on
interventions in a hospital. The size of the overall population and the interactions of
the multiple subsystems make this task very difficult to achieve. In the past,
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researchers have looked at different types of study designs to test their hypotheses
such as case-control studies or retrospective studies. One of the weaknesses of a case-
control or a retrospective study is that experiments of this fashion would not be able
to encompass the detailed dynamics within a hospital. The use of highly-resolved,
agent-based simulation can help overcome these weaknesses. Highly-resolved
simulation uses data obtained from the population data sources to create a realistic
synthetic (in-silico) population. The in-silico representation of the population includes
information such as location, daily activities, age, and other important demographics
[9]. Even though all this information is incorporated into the simulation, the identity
of the patients and hospital workers are protected through anonymity. Highly-resolved
simulation has been used in the past to analyze possible interventions in response to
hypothetical disease outbreaks such as influenza [10, 11].

1.4  Highly-Resolved Simulations

In the past, simulations have been used on multiple occasions to help explain the
complexities of health systems. Simulations are representations of complex systems,
but they can never be a perfect representation of reality. Additionally, one cannot say
that any kind of simulation is better than the other. Simulations that are more
graphical and user-friendly have the advantage of a short learning curve and ease of
use. People that unfamiliar with simulation can learn to use the software in a matter of
hours. However, user-friendly simulations lack the resolution needed for analyzing
large number of individual agents. On the other hand, one can find simulations that
are computer code-intensive and that are not intuitively user-friendly. Written directly
in language such as C, C++, or Java language, these type of simulations can provide
better resolution for large amounts of data, but require training and users that are
computer-code savy [12]. The selection of the right simulation software depends on
the type of problem that a researcher seeks to answer.

EpiSimdemics is a novel simulation software that looks at simulation in large
social networks. EpiSimdemics is a parallel scalable algorithm used to simulate the
spread of infectious diseases over extremely large contact networks. This algorithm
can also simulate other population factors such as fear and behaviors. The Network
Dynamics and Simulation Science Laboratory (NDSSL) at Virginia Tech developed
EpiSimdemics with the objective of studying the effects of pharmaceutical and non-
pharmaceutical interventions. EpiSimdemics is an agent-based simulation in which
every person is an individual agent. EpiSimdemics is based on social network theory,
but can overcome its limitations of use for only small groups of people. Prior studies
have utilized this tool for analysis of large populations at a scale of 100,000,000
people. In the simulation, agents and locations are identified as nodes in a network
graph (or a sociogram) and the edges between the nodes are considered contacts
between agents or visits of an agent to a specific location. Every activity for a
particular agent is defined in an activity schedule. The schedule determines the
location of the activity, the activity performed, and the duration of the activity.
Interactions between people are calculated using a stochastic model. If one or more
individuals are in the same location as an infected individual then they might or might
not become infected based on probability calculations. These probabilities are defined
in the simulation in the disease model, which we explain later on. Other simulation
models do not have the same level of resolution that EpiSimdemics has due to the
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ability to utilize extremely large populations through social networks. Other
advantages of EpiSimdemics are the ability to combine policy interventions as well as
individual behaviors in the same model. NDSSL has used EpiSimdemics for several
studies of large populations for multiple government agencies [13-15].

Furthermore, “first principles” or guidelines have also been developed by NDSSL[16].
The first step in developing the simulation is the creation of a synthetic population or
proto-population. In other models that describe epidemics or pandemics in large areas, the
use of massive databases was needed to replicate the population of a city [10], a region, or
an entire country [16, 17]. In the case of the hospital simulation, the study uses data
collected directly from patient records and shadowing of hospital workers to develop the
proto-population. The second step in developing highly-resolved simulations is to create
activity schedules for the entire proto-population. The third step is to create a disease
model that will be used to “infect” agents as they come in contact with other agents. All
these steps will be explained further in the next section.

EpiSimdemics has the distinct ability to quantify not only the number of agents
that become infected with a specific disease in the simulation but it can also identify
the contacts between individual agents in the simulation. These contacts occur for
different times depending on the activity and location of the person-agent. The
software can count the number of contacts and the time that each contact lasts. Figure
1 below, shows an example representation of contacts in an ICU’s social network.
Every time that there is an agent-to-agent contact the software keeps a record of its
location, time, and of the agents who interacted. This record is used to create the
sociogram or network diagram at each time step.
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Fig. 1. Contacts at different times in an ICU social network. In this representation of the
simulation different agents come into contact with each other causing a potential transmission
of the infection. With more contacts there is a higher probability of transmission. The red
circles represent patients, the blue crosses represent nurses, the green hexagons represent
transportation services, and the yellow triangle represents the nurse assistant.
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2 Methodology

The methodology of the study consisted of four phases: electronic data collection,
shadowing of hospital workers, disease modeling and simulation of the hospital. In
order to create a more realistic simulation the study gathered data that represented
reality as close as possible. For this reason, electronic medical records were requested
directly from the hospital. Additionally, the study included shadowing of different
hospital disciplines while hospital workers performed their daily activities. It is
difficult to obtain 100 percent validation on simulation models, however when the
agents in the model are based on accurate data directly from patient records and
activities from direct observation, the fidelity of a large portion of the simulation can
be verified.

2.1 Data Collection

As explained before, the first step in creating a highly-resolved simulation is to
develop a synthetic or proto-population that resembles the real population with high
resolution and high fidelity. In order to achieve this detail of resolution it was
necessary to obtain actual data of the multiple populations that interact within a
hospital. Two regional hospitals from Southwest Virginia provided data for the study.
The first type of data obtained was in the form of electronic medical records. The
patient records were de-identified to protect patient information by the hospital before
submitting them to the research team. The electronic records included one year of
patients’ locations and activities throughout the hospital. The records included over
37,000 patients and over 400,000 single activities by the patients. The anonymous
data was stored on a SQL database and the information was protected by numerous
measures such as deidentification and restricted access only to those researchers
participating in the study.

2.2 Shadowing of Hospital Workers

The next phase of data collection was the shadowing of hospital workers. Hospital
workers are not typically tracked throughout the healthcare facility as they conduct
their daily routines. It was important for the study however, to obtain a realistic
representation of those daily activities in the form of vignettes. These vignettes are
schedules that summarize the most common activities that a worker would perform
throughout the day. The vignettes include locations, activities, contacts with other
people or technology, and durations of those activities and contacts. Table 1 below
shows the different healthcare disciplines that were observed during the study at the
two hospitals. Even though data exists on most departments for the hospitals, not all
the disciplines have been included currently in the simulation. Further work is needed
to develop specialty departments within the hospitals such as the emergency
department, the operating rooms, the neonatal unit, and the cafeterias.
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Table 1. List of hospital disciplines shadowed during the study

Intensive Care Unit (ICU)
Nurses

Vascular Intensive Care Unit
Nurses

Progressive Care Unit Nurses
Ostomy Nurses

Neonatal Intensive Care Unit
(NICU) Nurses

Dialysis Nurses

Emergency Department Nurses
Nurse Assistants

Infection Preventionists

Infection Control
Physicians

Resident Physicians

Respiratory Therapists

NICU Respiratory
Therapists

Physical Therapists

Occupational Therapists

Speech Therapists
Environmental

(Janitorial) Services

Dieticians

Social Workers

Case Managers

Imaging Specialists
(radiography/ultrasound)
Facility Managers
Phlebotomists
Laboratory Technicians
(General)

Laboratory Technicians
(specializing in Clostridium
difficile)

Figure 2 below shows an example of a vignette. As shown on the diagram a day
shift Intensive Care Unit (ICU) nurse arrives to the hospital in the morning and
participates in a shift meeting. Then, the nurse conducts a preliminary assessment of
his two patients. After that the nurse could continue to monitor patients, relieve
another nurse, or goes to the cafeteria to eat lunch. This information was coded into a
computer program that create multiple schedules for a large number of nurses that had
similar jobs. Stochasticity was also added into the program so that all nurses would
not be conducting the same activity at the same time and location.
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Fig. 2. Example of a vignette for an ICU nurse
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2.3  Disease Models

The next step in highly-resolved simulation is designing a disease model based on
the medical literature from the infection that will be used to “infect” the proto-
population. Information gathered from the literature or from the facility’s infection
prevention professionals to identify the problem served as a base to build the disease
model. The disease model is a probabilistic finite-state machine (FSM), a state-
transition model that is used on the entire proto-population. Probabilities and
distributions are fed into the FSM in order to develop a realistic model of how the
disease spreads inside the hospital. Figure 3 shows an example of a disease model for
Clostridium difficile.

s I o .
Bed linens /
Bed rails P4/7 9
Bathroom fixtures

Medical equipment

i
1
|
Equipment -p7.‘:
Hands of healthcare staff /’& p3, *1 :m ) L
[ N
Table 1 ps
’ /
(Contaminated by’ / - 22’
 Cdiff )“ - /
\‘ /plo
Legend p1
Untreated — \
\Antimicrobials R -
C. diff Antimicrobials —. —.

Surgery ... >
Contact —_—

Fig. 3. Disease model for Clostridium difficile

The disease model represents the different health states that any agent in the
simulation can be in at any particular time. For this study two different scenarios
were used to compare several treatments. Both scenarios had nine health states:
uninfected, colonized, not colonized, infected, asymptomatic, severe CDAD, mild
CDAD, death, and recovered. The first scenario was a control or baseline therefore
No medical or preventive treatment was utilized. The second scenario incorporated
Clostridium difficile antimicrobials for mild and severe CDAD as well as a vaccine to
avoid infection. Specific antimicrobials have been identified as a risk factor for
Clostridium difficile. For this reason, use of antimicrobials is the first health state
(uninfected) as a link towards the next step, colonization, if the agent was exposed to
the pathogen. Table 2 and 3 below shows the parameters utilized for the different
disease models.
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Table 2. Scenarios used in the simulation

Disease Model 1

Disease Model 2

First Disease Link

Exposure to Clostridium
difficile, use of
antimicrobials to trigger
infection

Exposure to Clostridium
difficile, use of antimicrobials
to trigger infection

Treatments Tested

No preventive or medical
treatments

Clostridium difficile
antimicrobials for mild CDAD
Clostridium difficile vaccine
Clostridium difficile
antimicrobials for severe
CDAD

Table 3. Parameters for the two scenarios

173

Disease State Disease Link Probability Next Disease State
Uninfected Untreated 0.95 Colonized
Untreated 0.05 Not Colonized
Antimicrobials 0.96 Colonized
Antimicrobials 0.04 Not Colonized
Vaccine 0.25 Colonized
(Scenario 2)
Vaccine 0.75 Recovered
(Scenario 2)
Colonized Untreated 0.50 Infected
Untreated 0.50 Asymptomatic
Infected Untreated 0.1 Severe CDAD
Untreated 0.9 Mild CDAD
Not Colonized None None None
Asymptomatic None None None
Severe CDAD Untreated 1.0 Death
Clostridium difficile antimicrobials 0.68 Recovered
(Scenario 2)
Clostridium difficile antimicrobials 0.32 Death
(Scenario 2)
Mild CDAD Clostridium difficile antimicrobials 0.85 Recovered
(Scenario 2)
Clostridium difficile antimicrobials 0.15 Severe CDAD
(Scenario 2)
Untreated 1.0 Severe CDAD
Death None None None
Recovered None None None
3 Results

3.1 Simulation Runs and Parameters

This study simulated the entire patient population of the hospital for an entire year.
Particular importance was given to the ninth floor of the simulated hospital for the
purposes of studying the interactions of the multiple populations of hospital workers. Only
hospital workers of the ninth floor and their activities were simulated due to the
complexity of creating additional departments for the hospital such as the emergency
department and the operating room. These departments will be included in further
simulations. The study was conducted for thirty days of hospital activities and it included
agents acting as patients, physicians, nurses, respiratory therapists, occupational therapists,



174 J.M. Jiménez, B. Lewis, and S. Eubank

speech therapists, physical therapists, and environmental services associates. Each of the
agents had individual activity schedules that identified each location, activity type, and
duration. Each simulation of thirty days ran through 100 iterations for each scenario.

3.2  Assumptions and Simplifications

In order to run the simulation in a fast and efficient manner some assumptions were
made regarding the model. The model does not distinguish between the ages of the
agents. In reality, the age of the patient is an important risk factor as people over 65
years old are more likely to be infected with HAIs than younger people. Additionally,
the medical condition of the agents did not play a factor in the simulation with the
exception of those individuals that are under an antimicrobial regiment. Infections
other than CDAD were not taken into account. The next assumption was that every
agent in the in-silico hospital population could be infected. Similarly, all agents could
progress through the disease models equally with no difference on whether they were
patients or hospital workers. Finally, the study assumed a ‘“barrier” around the
hospital for agents. This means that once a patient-agent left the premises of the
hospital, the infection and the disease model did no longer affect him.

3.3  Exposures and Contacts

A very interesting point of the simulation is to be able to observe the different
contacts that occur between in-silico agents. The average number of activities for the
entire month was 8,234 activities. The total number of agent-to-agent contacts during
the 30 days was 164,176. These contacts are represented on figure 5 as a sociogram.
Every node in the sociogram represents an agent-person. When two agent-persons are
in the same location at the same time they are considered in contact with each other.
An edge or line represents their contact.

3.4  Scenario Summary

Two graphs were obtained from the multiple iterations of the simulation. Each graph
includes the cumulative case count of infected agents for each of the two scenarios as
explained in section 3.1. Each scenario was run 100 times with different probability
seeds for each run. The stochasticity of the models based on the seeds explains the
differences in the number of cases from one curve to another. During one of the
iterations for scenario 1 the number of cases grew to 21, whereas in several other
iterations there were no cases at all. It is important to understand that the purpose of
the simulation is not to replicate the exact results from the two regional hospitals but
to evaluate the possible contacts between the different populations. These contacts
and exposures can later be analyzed for improving systemic interventions such as
hand washing, education programs, or better disinfection in rooms. The cumulative
case curves are presented to show the disease transmission in a manner that is
consistent, but not exactly the same as an actual hospital. Scenario 1 had an average
number of cases of 2.66, compared to 2.33 from scenario 2. The highest number of
cases for scenario 2 was only 11 compared to 21 on scenario 1. Figures 5 and 6 show
the cumulative cases for scenarios 1 and 2.
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Fig. 4. Network diagram of the in-silico hospital population during one month

Scenario 1: Baseline, no treatment

20

Cases

Fig. 5. Cumulative case curves for scenario 1. Scenario 1 is the baseline scenario and did not
include any medical or preventive treatment against the infection.
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Scenario 2: Antimicrobial and vaccine treatment

20—

Cases

Fig. 6. Cumulative case curves for scenario 2. Scenario 2 included medical treatment of the
infection through the use of a vaccine and a new antibiotic called fidaxomicin.

4 Conclusions and Future Work

A hospital is a complex system composed of multiple subsystems and thousands of
individuals that work for the health of the patients. It is difficult and impracticable to
perform complex experiments taking into consideration multiple populations within a
hospital. The use of highly-detailed simulation for the study of healthcare-acquired
infections can be of great use not only for researchers but also for healthcare
professionals. In an era where “every penny counts” for healthcare system managers a
simulation can represent an easy and affordable tool to understand infection control.
This initial paper represents the first steps in our study of simulations of HAIs. The
study provided evidence that simulation of a large complex system with high
resolution and high fidelity is practicable. One of the advantages of this type of
simulation is that real data from hospitals, such as electronic medical records, can be
modified to create in-silico representations of people. The simulation was able to
produce interesting results that should be studied further. One of the important results
is that for over 164,000 contacts between agents, the highest number of cases was
only 21. This is significant because it could explain that the current prevention
practices in the hospitals are effective. Further study is needed in the area of
simulation of prevention and control of HAISs.

Additional work in the study of HAIs in hospitals is already being performed at
NDSSL in diverse areas to improve the simulation performance. First, to ensure the
completeness of the hospital system it is necessary to add additional in-silico
populations. These populations should include the entirety of the hospital workers and
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the visitors to the hospital. Visitors can be a very important factor in the transmission
of infections. Visitors are susceptible to infections, especially if their demographics
carry any of the risk factors for a specific disease. Hospital visitors are also more
mobile than patients and could potentially transmit infections to different locations
inside and outside of the hospital. The demographics of the population should also be
included to future iterations of the study. Risk factors linked to the demographics of
the agents could give further insight into effective treatment. The current simulation
model did not include all the floors of the hospital due to the complexity of certain
specialty departments. Further models should include every floor and department of
the hospital to include the operating room and the emergency department.

In order to increase the realism of the simulation multiple hospitals could be added to
the simulation. This network of hospitals could work similar to a state or regional health
department evaluating an outbreak. Finally, the realism of the simulation could increase if
other infections, not necessarily other HAIs, would be added into the activity files.
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