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Abstract. In sets with a fractal dimension greater than 1, the average number of 
neighbors increases with distance. For that reason spherical pulses propagate 
outward in systems with nearest neighbor interactions. In sets with a negative 
fractal dimension, such as the set of individual coordinates of a population of a 
small city, the average number of neighbors decreases with distance in a precise 
way relating the number of neighbor to the fractal dimension of the set. We 
study the propagation of diffusive pulses and waves on such sets. We find that 
on sets with negative fractal dimension, the velocity of pulse peak is negative 
(i.e. the median radius of circular pulses decreases as a function of time). 
Eventually the pulse broadens and disappears. We discuss applications in 
physical systems, such as the spreading of heat and sound, as well as 
applications in social systems, such as the spread of infectious diseases and the 
spread of rumors.  
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1 Introduction 

Many interesting objects can be thought of as finite sets with a large number of 
elements. Social networks consist of a finite set of people. Solid objects, such as a 
copper wire, a snow crystal, or the branches of a tree are made of a finite number of 
molecules. The relative position of the elements with respect to their neighbors (or 
distribution) determines if the object is called one dimensional, two dimensional, or 
three dimensional. For instance, in a sheet of paper, the molecules are mostly located 
near a two dimensional plane. Therefore the sheet is called two dimensional. When 
the same molecules are arranged along a line, like in a thread, the resulting object is 
called one dimensional. And if the molecules agglomerate into a spherical lump, the 
object is called three dimensional.  

There are several methods to quantify the dimension of a set. The Hausdorff 
dimension [1] and fractal dimension [2] use estimates of the volume of the set at 
various levels of course graining to determine the dimension of the set. The 
correlation dimension [3] uses a count of the number of neighboring elements in close 
proximity to determine the dimension of the set.  
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The algorithm for computing the correlation dimension is much simpler than the 
algorithm for computing the fractal dimension, but the correlation dimension 
sometimes produces unintuitive results. For instance, the correlation dimension of a 
sheet of paper is 3, because at distances less than the thickness of the sheet, the 
number of neighbors with radius R scales like in a three dimensional object.  

There is another issue with the correlation dimension: the surface problem. That is, 
for elements which are close to the surface of a D dimensional object with a “lump” 
geometry and with a dimension D > 1, such as a sphere or a circle, the object appears 
D-1 dimensional near the surface. If the elements are sorted in terms of their distance 
from the center of mass, the largest group is the group near the surface of the object. 
Therefore for the largest group of elements the object appears to be D-1 dimensional. 

In this paper we introduce a definition of dimension which overcomes these 
problems.  

2 Objects with a Negative Fractal Dimension 

We consider objects which are made of N elements. The positions of the elements are 
xi, where i=1,..,N. We compute the distance of the elements from the center of mass 
xc = (1/N) Σi=1,…,N xi, and count the number of elements C(r), which are within a shell 
of radius r =  k Δr and width Δr from xc, where k=1,2,3,…, that is, 

C(r)= Σi=1,…,N H(|xi-xc|- k Δr) - H(|xi-xc|- k Δr - Δr), 
(1) 

where r=|xi-xc| is the distance of the element from the center. H is the Heaviside step 
function. For an object with a common shape, such as a sphere or a square, C(r) is a 
power law within a certain range of r-values, where the exponent is one less than the 
intuitive dimension of the object. Therefore the fractal dimension is defined as  

D = 1 + d (ln C) / d(ln r). 
(2) 

Figure 1 and Fig. 2 show a circular object and a star-shaped object along with  
their corresponding functions C(r) and D(r). Both objects consist of about 3200 
elements. In the star shaped object, the elements are on a square grid with side length 
1. In the star-shaped object, the position of the elements (x,y) satisfies the condition:  
|x|<200 and |y|<200 and (|y|<=|x| and |y| <= 250/|x|α or |x|<=|y| and |x| <= 250/|y |α), 
where α > 0. 

The fitting function for the number of elements at distance r from the center for the 
circular object in Fig. 1a is: ln C =  1.0467 ln r + 1.6791, for 0 < r < 32.  The 
continuous line in Fig. 1b is a graph of the fitting function. With Eq. 1 we obtain a 
numerical value for the dimension D = 2.05, for 0 < r < 32.  Fig 1c is a graph of the 
numerical value of the fractal dimension D versus the radius and the theoretical value.      
Fig. 1d shows that the numerical value for the fractal dimension is in good agreement 
with the intuitive value.   
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Fig. 1. Plot (a) shows a circular object. The colors indicate the amplitude of a spreading pulse 
(red =very high, green=high, blue =low, black = very low).  The elements are located at the 
intersections and corners. The lines indicate connections between elements.     Plot (b) shows a 
histogram of the numbers of elements versus their distance from the center of mass for bin size 
Δr=1. The lines are least-square fits. Plot (c) shows the dimension D versus the distance from 
the center. The dashed line indicates the theoretical value, D=2. 

The fitting function for the number of elements at distance r from the center for the 
star-shaped object (Fig. 2a, Fig. 2b) is: ln C =  1.0643  ln r + 1.6403, for 0 < r < 19 
and ln C =  -1.3339  ln r + 8.1032, for 18 < r < 100.  The continuous line in Fig. 2c is 
a graph of the fitting functions. With Eq. 1, we obtain a numerical value for the 
dimension D = 2.06, for 0 < r < 32 and D = -0.33, for 18 < r < 100.   Fig 2d is a graph 
of the numerical value of the dimension D versus the radius and the theoretical value.  

We find that the numerical values for the dimension are in good agreement with 
the intuitive value. The star is expected to be 2-dimensional near the center, whereas 
for distances that exceed the solid area in the center, the dimension of the object is 
expected to be D = α+1, because the number of points inside the rays is approximately 
equal to the width of the rays W= 500/|y| α. 
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Fig. 2. Plot (a) shows a star-shaped object with α = 1.2. The colors indicate the amplitude of a 
spreading pulse (red =very high, green=high, blue =low, black = very low). Plot (b) shows an 
enlargement of Plot (a). The elements are located at the intersections and corners. The lines 
indicate connections between elements. Plot (c) shows is a histogram of the numbers of 
elements versus their distance from the center of mass for bin size Δr = 1. The lines are least-
square fits. Plot (d) shows the dimension D versus the distance. The dashed line indicates the 
theoretical value, D=2 for small distances and D= -α +1 = -0.2 for large distances from the 
center of mass.  

3 Diffusion on Objects with a Negative Fractal Dimension 

We assume that each element stores qi(n) particles at time step n, where n=1,2,3,...,T. 
The initial particle distribution is a square wave between R1 and R2, i.e. if R0 < r < R1 
then qi(0) = 1, where r2=xi

2+yi
2, otherwise qi(0) = 0. The elements and the connections 

form a grid.  
We assume that the particles do a random walk on this grid. The dynamics of the 

density of random walkers is asymptotically equivalent to a diffusion process. We 
model the diffusion process with a relaxation dynamics 

qi(n+1) = qi(n)  + λ Σj (qj(n)  - qi(n) ), (3) 
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where  λ=0.1 and where j represents indexes of all neighbors, i.e. all elements which 
are connected to element i. The colors in Figure 1a and Figure 1b represent the 
density of particles at time step n=10, where R0=7 and R1=10. Figure 2a and Figure 
2b represent the density of particles at time step n=50, where R0=40 and R1=45. 

 
Fig. 3. The median distance from the center of diffusion particles versus time for an object with 
dimension D=2 (a), and an object with dimension D= -0.33 (b) 

We find that the particles initially have a tendency to migrate towards the center in 
negative dimensional objects because there are more connected elements towards the 
center. On objects with a dimension greater than D=1, the particles tend to migrate 
away from the center because there are more connections to neighbors which are 
further away from the center. The median distance of the particles from the center is 
defined by the following inequality 

Σi=1,2,3,..,N  qi H(R2-xi
2-yi

2) < Q/2 (4) 

where Q= Σi=1,2,3,..,N  qi. Fig. 3 shows the dynamics of R.  
For circular objects, R increases (Fig 3a), whereas for the negative dimensional 

object R initially decreases (Fig. 3b). 

 

Fig. 4. The percentage of diffusion particles which are further away than the center of the initial 
square wave distribution versus time for an object with dimension D=2 (left) and an object with 
dimension D= -0.33 (right) 
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The quantity p tracks the percentage of particles which is further away than the center 
of the initial square wave  

p = (1/Q) Σi=1,2,3,..,N  H(xi
2+yi

2 –Rw
2), (5) 

where Rw
2 =(R1-R2)

2/4..  Rw is the center of the initial square wave distribution.  
Figure 4 shows the dynamics of p for an object with dimension 2 and object with 
dimension D=-0.33. On the D=2 object, the number of p increases whereas on the 
negative dimensional object p initially decreases. 

Another quantity which illustrates these tendencies to migrate towards or away 
from the center is the mean square deviation of the particles from the center 

<r2> = (1/N) Σi=1,2,3,..,N  qi (xi
2+yi

2). (6) 

Figure 5 shows the dynamics of <r2> for an object with dimension 2 and object with 
dimension D=-0.33. On the D=2 object the number of <r2> increases whereas on the 
negative dimensional object <r2> initially decreases.  

 

Fig. 5. The mean square deviation <r2> of diffusing particles from the center of the object 
versus time for a circular object (a) and for a star-shaped object with dimension D= -.33 

4 Discussion 

Diffusion on a two dimensional grid differs from diffusion on a three dimensional 
grid, because each node on a two dimensional grid has 4 neighbors and each node on 
a three dimensional grid has 6 neighbors. Similarly, diffusion particles appear to 
migrate away from the center of two and three dimensional objects because most 
neighboring elements are further away from the center than the element itself. This is 
different for objects with a negative dimension, since most neighboring elements are 
closer to the center than the element itself. Fig. 3 and Fig. 4 illustrate that in contrast 
to objects with dimension greater than 1, on negative dimensional objects, diffusing 
particles appear to migrate towards the center because the median distance from the 
center decreases due to an increasing number of particles is closer to the center than 
initially and because the mean square deviation of the particles from the center 
decreases. 
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Diffusing particles are equally likely to move to one of the neighboring elements. 
Many other systems behave in the same way. A sound wave spreads equally to all 
neighboring locations inside an object if the object is homogeneous. Similarly, heat 
spreads to all neighboring locations equally in solids, liquids and gases and charges in 
a resistor/capacitor network spread to all neighboring capacitors equally. Therefore 
we expect that acoustic pulses, heat pulses and charges spread like the pulse in Fig. 1 
and Fig 2.  We expect that in objects with a dimension greater than D=1, sound 
pulses, heat pulses, and charges distributions with radial symmetry tend to move 
outward, whereas in negative dimensional objects, these pulses move toward the 
center of the object. 

It is conceivable that social systems can have a negative dimension. For example, 
in most cities, the density of people is highest in the center and decreases gradually as 
a function of the distance from the city center. If the density ρ decreases like a power 
law with an exponent less than -1 as a function of the distance from the city, i.e. ρ = a 
rα, where α < -1, then the set of people in the city is an object with a negative 
dimension. If we assume that a rumor or infection starts at a certain distance from the 
city center and travels quickly from person to person, then the rumor or infection 
travels mostly towards the city center, i.e. more people close to the city center know 
about the rumor or are infected than those people further away. 
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