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Abstract. In many multi-agent systems (MAS), it is desirable that the
agents can coordinate with one another on achieving socially optimal
outcomes to increase the system level performance, and the traditional
way of attaining this goal is to endow the agents with social rationality
[7] - agents act as system utility maximizers. However, this is difficult
to implement when we are facing open MAS domains such as peer-to-
peer network and mobile ad-hoc networks, since we do not have control
on all agents’ behaviors in such systems and each agent usually behaves
individually rationally as an individual utility maximizer only. In this
paper, we propose injecting a number of influencer agents to manipulate
the behaviors of individually rational agents and investigate whether
the individually rational agents can eventually be incentivized to coor-
dinate on achieving socially optimal outcomes. We evaluate the effects
of influencer agents in two common types of games: prisoner’s dilemma
games and anti-coordination games. Simulation results show that a small
proportion of influencer agents can significantly increase the average per-
centage of socially optimal outcomes attained in the system and better
performance can be achieved compared with that of previous work.

1 Introduction

In certain multi-agent systems (MASs), an agent needs to coordinate effectively
with other agents in order to achieve desirable outcomes, since the outcome
not only depends on the action it takes but also the actions taken by others.
How to achieve effective coordination among agents in multi-agent systems is a
significant and challenging research topic, especially when the interacting agents
represent the interests of different parties and they have generally conflicting
interests.

It is well-known in game theoretic analysis that, if each agent behaves as an
individual utility maximizer in a game, and always makes its best response to
the behaviors of others, then the system can result in a Nash equilibrium such
that no agent will have the incentive to deviate from its current strategy [1]. The
equilibrium solution has its merits considering its desirable property of stability,
however, it can be extremely inefficient in terms of the overall utilities the agents
receive. The most well-known example is the prisoner’s dilemma (PD) game: the
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agents will reach the unique Nash equilibrium of mutual defection if the agents
act as individually rational entities, while the outcome of mutual cooperation
is the only optimal outcome in terms of maximizing the sum of both agents’
payoffs. In certain domains, nevertheless, a more desirable alternative is a social
optimal solution [7], in which the utilitarian social welfare (i.e., the sum of all
agents’s payoffs) is maximized.

One approach of addressing this problem is to enforce the agents to behave
in a socially rational way - aiming at maximizing the sum of all agents’ utilities
when making their own decisions. However, as mentioned in previous work [4],
this line of approach suffers from a lot of drawbacks. It will greatly increase the
computational burdens of individual agents, since each agent needs to consider
all agents’ interests into consideration when it makes decisions. Besides, it may
become infeasible to enforce the agents to act in a socially rational manner if
the system is open in which we have no control on the behaviors of all agents
in the system. To solve these problems, one natural direction is considering how
we can incentivize the individually rational agents to act towards coordinating
on socially optimal solutions. A number of work [4,9,8,5] has been done in this
direction by designing different interaction mechanisms of the system while the
individual rationality of the interacting agents is maintained and respected at
the same time. One common drawback of previous work is that certain amount
of global information is required to be accessible to each individual agent in the
system and also there still exists certain percentage of agents that are not able
to learn to coordinate on socially optimal outcomes (SOs).

In this work, we propose inserting a number of influencer agents into the
system to incentivize the rest of individually rational agents to behave in a
socially rational way. The concept of influencer agent is first proposed by Franks
et al [2] and has been shown to be effective in promoting the emergence of high-
quality norms in the linguistic coordination domain [11]. In general, an influencer
agent is an agent with desirable convention or prosocial behavior, which is usually
inserted into the system by the system designer aiming at manipulating those
individually rational agents into adopting desirable conventions or behaviors.
To enable that the influencer agents exert effective influences on individually
rational agents, we consider an interesting variation of sequential play by allowing
entrusting decision to others similar to previous work [6]. During each interaction
between each pair of agents, apart from choosing an action from its original
action set, each agent is also given the option of choosing to entrust its interacting
partner to make a joint decision for both agents. It should be noted that such
a decision to entrust the opponent is completely voluntary, hence the autonomy
and rationality of an agent are well respected and maintained. The influencer
agents are socially rational in the sense that they will always select an action
pair that corresponds to a socially optimal outcome should it becomes the joint
decision-maker. Besides, each agent is allowed to choose to interact with an
influencer agent or an individually rational agent, and then it will interact with
a randomly chosen agent of that type. Each agent (both individually rational
and influencer agents) uses a rational learning algorithm to make its decisions
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in terms of which type of agent to interact with and which action to choose, and
improves its learning policy based on the reward it receives from the interaction.
We evaluate the performance of the learning framework in two representative
types of games: PD game and anti-coordination (AC) game. Simulation results
show that a small proportion of influencer agents can efficiently incentivize most
of the purely rational agents to coordinate on the socially optimal outcomes
and better performance in terms of the average percentage of socially optimal
outcome attained can be achieved compared with that of previous work [5].

The remainder of the paper is organized as follows. An overview of related
work is described in Section 2. In Section 3, we give a description of the problem
we investigate in this work. In Section 4, the learning framework using influencer
agents we propose is introduced. In Section 5, we present our simulation results to
compare the performance under the learning framework using influencer agents
with previous work. Lastly conclusion and future work are given in Section 6.

2 Related Work

Hales and Edmonds [4] first introduce the tag mechanism originated in other
fields (e.g., artificial life and biological science) into multi-agent systems research
to design effective interaction mechanism for autonomous agents to achieve de-
sirable outcomes in the system. They focus on the Prisoner’s Dilemma game
(called PD game hereafter), and each agent is represented by 1 + L bits. The
first bit indicates the agent’s strategy (i.e., playing C or D), and the remaining L
bits are the tag bits, which are used for biasing the interaction among the agents
and are assumed to be observable by all agents. In each generation each agent is
allowed to play the PD game with another agent with the same tag string. The
agents in the next generation are formed via fitness proportional reproduction
scheme together with low level of mutations on both the agents’ strategies and
tags. This mechanism is demonstrated to be effective in promoting high level of
cooperation among agents when the length of tag is large enough. However, there
are some limitations of this tag mechanism. Since the agents mimic the strategy
and tags of other more successful agents and the agents choose the interaction
partner based on self-matching scheme, an agent can only play the same strategy
as that of the interacting agent. Thus socially rational outcome can be obtained
if and only if the agents need to coordinate on identical actions.

McDonald and Sen [8][9] propose three different tag mechanisms to tackle the
limitations of the model of Hales and Edmonds. Due to space limitation, here we
only focus on the third mechanism called paired reproduction mechanism since
this is the only one that is both effective and practically feasible. It is a special
reproduction mechanism which makes copies of matching pairs of individuals
with mutation at corresponding place on the tag of one and the tag-matching
string of the other at the same time. The purpose of this mechanism is to preserve
the matching between this pair of agents after mutation in order to promote the
survival rate of cooperators. Simulation results show that this mechanism can
help sustaining the percentage of coordination of the agents at a high level in
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both PD games and Anti-Coordination games (AC games hereafter), and this
mechanism can be applied in more general multi-agent settings where payoff
sharing is not allowed. However, similar to Hales and Edmonds’ model [4], these
mechanisms all heavily depend on mutation to sustain the diversity of groups in
the system. Accordingly this leads to the undesired result that the variation of
the percentage of coordination is very high.

Considering the disadvantages of evolutionary learning (heavily depending
on mutation), Hao and Leung [5] develop a tag-based learning framework in
which each agent employs a reinforcement learning based strategy to make its
decisions. Specifically, they propose a Q-learning based strategy in which each
agent’s learning process is augmented with an additional step of determining how
to update its Q-values, i.e., update its Q-values based on its own information or
information of others in the system. Each update scheme is associated with a
weighting factor to determine which update scheme to use each time and these
weighting factors are adjusted adaptively based on a greedy strategy. They eval-
uate their learning framework in both PD game and AC games and simulation
results show that better performance can be achieved in terms of both average
percentage of socially optimal outcomes attained and the stability of the system
compared with the paired reproduction mechanism [8].

3 Problem Description

The general question we are interested in is how individually rational agents can
learn to coordinate with one another on desirable outcomes through repeated
pairwise interactions. In particular, we aim to achieve socially optimal outcomes,
under which the utilitarian social welfare (i.e., the sum of all agents’ payoffs) is
maximized. At the same time, we desire that the rationality and autonomy of
individual agents be maintained. In other words, the agents should act indepen-
dently in a completely individually rational manner when they make decisions.
This property is highly desirable particularly when the system is within an open,
unpredictable environment, since the system implemented with this kind of prop-
erty can largely withstand the exploitations of selfish agents designed by other
parties.

Specifically, in this paper we consider studying the learning problem in the
context of a population of agents as follows. In each round each agent chooses to
interact with another agent (i.e., to play a game with that agent), which is con-
strained by the interaction protocol of the system. Each agent learns concurrently
over repeated interactions with other agents in the system. The interaction be-
tween each pair of agents is formulated as a two-player normal-form game, which
will be introduced later. We assume that the agents are located in a distributed
environment and there is no central controller for determining the agents’ be-
haviors. Each agent can only know its own payoff during each interaction and
makes decisions autonomously.

Following previous work [4,8,5], we focus on two-player two-action symmetric
games for modeling the agents’ interactions, which can be classified into two
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different types. For the first type of games, the agents need to coordinate on
the outcomes with identical actions to achieve socially rational outcomes. One
representative game is the well-known PD game (see Fig. 1), in which the so-
cially optimal outcome is (C,C), however, choosing action D is always the best
strategy for any individually rational agent. The second type of games requires
the agents to coordinate on outcomes with complementary actions to achieve
socially optimal outcomes. Its representative game is AC game (see Fig. 2), in
which either outcomes (C,D) or (D,C) is socially optimal. However, the row
and column agents prefer different outcomes and thus it is highly likely for in-
dividually rational agents to fail to coordinate (achieving inefficient outcomes
(C,C) or (D,D)). For both types of games, we are interested in investigating
how the individually rational agents can be incentivized to learn to efficiently
coordinate on the corresponding socially optimal outcomes.

Fig. 1. Prisoner’s dilemma (PD) game
satisfying the constraints of T > R >
P > S and 2R > T + S > 2P

Fig. 2. Anti-coordination (AC) game
satisfying the constraints of H > L

4 Learning Framework

We first give a background introduction on the concept of influencer agent and
how it can be applied for solving our problem in Section 4.1. Then we describe
the interaction protocol within the framework in Section 4.2. Finally the learning
strategy the agents adopt to make decisions is introduced in Section 4.3.

4.1 Influencer Agent

The concept of influencer agent is firstly termed by Franks et al. [2], and there
is also a number of previously work with similar ideas. In general, an influencer
agent (IA) is an agent inserted into the system usually by the system designer in
order to achieve certain desirable goals, e.g., emergence of efficient convention or
norms [2]. Sen and Airiau [10] investigate and show that a small portion of agents
with fixed convention can significantly influence the behavior of large group of
selfish agents in the system in terms of which convention will be adopted in the
system. Similarly Franks et al. [2] investigate the problem of how a small set
of influencer agents adopting pre-fixed desirable convention can influence the
rest of individually rational agents towards adopting the convention the system
designer desires in the linguistic coordination domain [11].
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Since we are interested in incentivizing individually rational agents to behave
in the socially rational way, here we consider inserting a small number of influ-
encer agents, which are socially rational, into the system. To enable the influencer
agents to exert effective influence on individually rational agents’ behaviors, we
consider an interesting variation of sequential play by allowing entrusting de-
cision to others similar to previous work [6]. During each interaction between
each pair of agents, apart from choosing an action from its original action set,
each agent is also given an additional option of asking its interacting partner to
make the decision for both agents (denoted as choosing action F ). If an agent A
chooses action F while its interacting partner B does not, agent B will act as the
leader to make the joint decision for them. If both agents choose action F simul-
taneously, then one of them will be randomly chosen as the joint decision-maker.
The influencer agents are socially rational in that they will always select the so-
cially optimal outcome as the joint action pair to execute whenever it becomes
the joint decision-maker. If there exist multiple socially optimal outcomes, then
these socially optimal outcomes will be selected with equal probability. For those
individually rational agents, we simply assume that they will always choose the
outcome under which their own payoffs are maximized as the joint action for
execution, whenever they are entrusted to make joint decisions.

4.2 Interaction Protocol

From previous description, we know that there exist two different types of agents
in the system: influencer agents (IA) and individually rational (or ‘selfish’) agents
(SA). In each round, each agent is allowed to choose which type of agent to in-
teract with, and then it will interact with an agent randomly chosen from the
corresponding set of agents. This is similar to the commonly used interaction
model that the agents are situated in a fully connected network in which each
agent randomly interacts with another agent each round [10,12]. The only dif-
ference is that in our model the population of agents are divided into two groups
and each agent is given the freedom to decide which group to interact with first
but the specific agent to interact with within each group is still chosen randomly.
Our interaction model can better reflect the realistic scenarios in human society,
since human can be classified into different groups according to their personal-
ity traits and different persons may have different preferences regarding which
group of people they are willing to interact with.

Each agent uses a rational learning algorithm to make its decisions in terms
of which type of agent to interact with and which action to choose, and improves
its policy based on the rewards it receives during the interactions. Besides, each
agent chosen as the interacting partner also needs to choose an action to re-
spond accordingly depending on the type of its interacting agent. We assume
that during each interaction each agent only knows its own payoff and cannot
have access to its interacting partner’s payoff and action. The overall interaction
protocol is shown in Algorithm 1.
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Algorithm 1. Interaction Protocol

1: for a fixed number of rounds do
2: for each agent i in the system do
3: determine which type of agents to interact with
4: interact with one agent randomly chosen from the corresponding set of agents

5: update its policy based on the reward received from the interaction
6: end for
7: end for

4.3 Learning Algorithm

For the individually rational agents, it is natural that they always choose the
strategy which is a best response to its partner’s current strategy in order to
maximize its own payoff. If a learning algorithm has the property that it can
converge to a policy that is a best response to the other players’ policies when the
other players’ policies converge to stationary ones, then it is regarded as being
rational [1]. A number of rational learning algorithms exist in the multi-agent
learning literature and here we adopt the Q-learning algorithm [13], which is the
most commonly used.1 Specifically, each individually rational agent maintains
two different set of Q-tables: one corresponding to the estimates of the payoffs for
actions for interacting with influencer agents, QIA, and the other correspond-
ing to the estimates of the payoffs for the set of actions for interacting with
individually rational agents, QSA. In the following discussion, aIA refers to an
action when interacting with an influencer agent and aSA refers to an action
when interacting with an individually rational agent. In each round t, an indi-
vidually rational agent i makes its decision (which type of agent to interact and
which specific action to choose) based on the Boltzmann exploration mechanism
as follows. Formally any action aIA belonging to the set of actions available for
interacting with influencer agents is selected with probability

eQIA(aIA)/T

∑
aIA

eQIA(aIA)/T +
∑

aSA
eQSA(aSA)/T

(1)

Any action aSA belonging to the set of actions available for interacting with
individually rational agents is selected with probability

eQSA(aSA)/T

∑
aIA

eQIA(aIA)/T +
∑

aSA
eQSA(aSA)/T

(2)

The temperature parameter T controls the exploration degree during learning,
and initially it is given a high value and decreased over time. The reason is that
initially the approximations of the Q-value functions are inaccurate and the

1 Other rational learning algorithms such as WOLF-PHC [1] and Fictitious Play [3]
will be investigated as future work.



Achieving Social Optimality with Influencer Agents 147

agents have no idea of which action is optimal, thus the value of T is set to a
relatively high value to allow the agents to explore potential optimal actions.
After enough explorations, the exploration has to be stopped so that the agents
can focus on exploiting the actions that has shown to be optimal before.

An individually rational agent selected as the interacting partner makes deci-
sions depending on which type of agent it will interact with. If it interacts with
another individually rational agent, then it will choose an action from the set of
actions available for interacting with individually rational agents, and any action
aSA is chosen with probability

eQSA(aSA)/T

∑
aIA

eQSA(aSA)/T
(3)

If it is chosen by an influencer agent, then it will pick an action from the set
of actions available for interacting with influencer agents, and any action aIA is
selected with probability

eQIA(aIA)/T

∑
aIA

eQIA(aIA)/T
(4)

After the interaction in each round t, each agent updates its corresponding
Q-table depending on which type of agent it has interacted with. There are
two different learning modalities available for performing update [12]: 1) multi
learning approach: for each pair of interacting agents, both agents update their
Q-tables based on the payoffs they receive during interaction, 2) mono learning
approach: only the agent who initiates the interaction updates its Q-table and
its interacting partner does not update. In mono learning approach, each agent
updates its policy in the same speed, while in the multi learning approach, some
agents may learn much faster than others due to the bias of partner selection.
We investigate both updating approaches and the effects of both updating ap-
proaches on the system level performance will be shown in Section 5. Formally,
each agent updates its Q-tables during each interaction as follows depending on
which type of agent it has interacted with,

Qt+1
IA/SA(a) =

{
Qt

IA/SA(a) + αi(r
t
i −Qt

IA/SA(a)) if a is chosen in round t

Qt
IA/SA(a) otherwise

(5)
where rti is the reward agent i obtains from the interaction in round t by taking
action a. αi is the learning rate of agent i, which determines how much weight we
give to the newly acquired reward rti , as opposed to the old Q-value. If αi = 0,
agent i will learn nothing and the Q-value will be constant; if αi = 1, agent i
will only consider the newly acquired information rti .

For influencer agents, we do not elevate their learning abilities above the rest
of the population. They make decisions in the same way as individually rational
agents. The only difference is that the influencer agents behave in a socially
rational way in that they will always select the socially optimal outcome(s) as
the joint action pair(s) to execute whenever it is selected as the joint decision-
maker as described in Section 4.1.
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5 Simulation

In this section, we present the simulation results showing how the influencer
agents can significant influence the population’s behaviors towards socially op-
timality in two types of representative games: PD game and AC game. All the
simulations are performed in a population of 1000 agents. Following previous
work [2], we consider 5% of influencer agents in a population (i.e., 50 agents
out of 1000) to be an appropriate upper bound of how many agents can be in-
serted into a system in practical application domains. However, for evaluation
purpose, we perform simulations with the percentage of influencer agents up to
50 % in order to have a better understanding of the effects of influencer agents
on the dynamics of the system. We first give an analysis of the effects of the
number of influencer agents and different update modalities on the system level
performance in each game in Section 5.1 and 5.2 respectively, and then compare
the performance of our learning framework using influencer agents with that of
previous work [5] in Section 5.3.

5.1 Prisoner’s Dilemma Game

For the PD game, we use the following setting: R = 3, S = 0, T = 5, P = 1.
Fig. 3 shows the average percentage of socially optimal outcome in the system
when the number of influencer agents (IAs) inserted varies using mono-learning
update. When no IAs are inserted into the system (i.e., a population of individ-
ually rational agents (SAs)), the percentage of socially optimal outcomes (SOs)
achieved quickly reaches zero. This is obvious since choosing action D is always
the best choice for each individually rational agent when it interacts with an-
other individually rational entity in PD game. By inserting a small amount of
IAs with proportion of 0.002 (2 IAs in the population of 1000 agents), we can
see a significant gain in terms of the percentage of SOs attained up to 0.8. The
underlying reason is that most of SAs are incentivized to voluntarily choose to
interact with IAs and also select action F . Further increasing the number of IAs
(to 10 IA agents) can significantly improve the speed of increase of percentage
of SOs and also bring in small improvement of the percentage of SOs finally
attained. We hypothesize that it is because some IAs’ behaviors against SAs are
not optimal when the number of IAs is small, and more IAs can successfully
learn the optimal action against SAs when the number of IAs becomes larger.
However, as the number of IAs is further increased, the increase in the final value
of the proportion of SOs attained becomes less obvious. The reason is that with
the number of IAs increasing, there is little additional benefit on the behaviors
of IAs and the small amount of increase in the percentage of SOs is purely the
result of the increase of the percentage of IAs itself.

Fig. 4 shows the differences between updating using multi-learning and mono-
learning approach on the system level performance, i.e., the average percentage of
SOs attained in the system, in PD game. From previous analysis, we have known
that most SAs learn to interact with IAs and choose action F , thus IAs are given
much more experience and opportunities to improve their policies against SAs
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under multi-learning approach. Accordingly it is expected that higher level of
SOs can be achieved compared with that under mono-learning approach. It is
easy to verify that the simulation results in Fig. 4 are in accordance with our
predication.

Fig. 3. Average percentage of SOs with
different number of IAs under mono-
learning update (PD game)

Fig. 4. Mono-learning approach v.s.
multi-learning approach in PD game
(IA = 2, 20, 100, 500)

5.2 Anti-coordination Game

In AC game, the following setting is used to evaluate the learning framework:
L = 1, H = 2. Fig. 5 shows the average proportion of socially optimal outcomes
attained in the system when the number of influencer agents varies. Different
from the PD game, when there is no influencer agents inserted in the system,
most of the selfish agents (up to 85%) can still learn to coordinate with each
other on socially optimal outcomes. Initially the percentage of socially optimal
outcomes is very high because most of the agents learn that choosing action
F is the best choice which prevents the occurrence of mis-coordination. How-
ever, gradually the agents realize that they can benefit more by exploiting those
peer agents choosing action F by choosing action C or D and thus this in-
evitably results in mis-coordination (i.e., achieving outcome (C,C) or (D,D))
when these exploiting agents interact with each other. Thus the average per-
centage of socially optimal outcomes gradually drops to around 85%. Besides,
the mis-coordination rate converges to around 15 %, which can be understood
as the dynamic equilibrium that the system of agents has converged to, i.e., the
percentages of agents choosing action C, D, and F are stabilized.

Significant increase in the average percentage of socially optimal outcome at-
tained (up to almost 100%) can be observed when a small amount of influencer
agents (2 IAs out of 1000 agents) is inserted into the system. This can be ex-
plained by the fact that the SAs learn to entrust those IAs to make the joint
decisions and also the IAs choose between the two socially optimal outcomes
randomly. There is little incentive for the SAs to deviate since most of SAs have
learned to interact with IAs and respond to SAs with action C or D, thus there
is no benefits to exploit other SAs due to high probability of mis-coordination.
When the number of IAs is further increased (the number of IAs is 50), there
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is little performance increase in terms of the percentage of socially optimal out-
comes achieved, and we only plot the case of IA = 50 for the purpose of clarity.

Fig. 6 shows the differences between updating using multi-learning and mono-
learning approach on the system level performance, i.e., the average percentage
of SOs attained in the system, in AC game with different number of IAs. Different
from PD game, we can observe that slightly lower percentage of SOs is attained
under multi-learning approach. We hypothesize that it is due to the fact that
there exist two different socially optimal outcomes in AC game and thus it
becomes easier for the agents to switch their policies between choosing these two
outcomes and increase the chances of mis-coordination when they update their
policies more frequently under multi-learning approach.

Fig. 5. Average percentage of SOs with
different number of IAs under mono-
learning update (AC game)

Fig. 6. Mono-learning approach v.s.
multi-learning approach in AC game
(IA = 2, 10, 100, 500)

5.3 Comparison with Previous Work

We compare the performance of our learning framework using influencer agents
with that of the tag-based learning framework [5] in both PD game and AC
game. The number of influencer agents are set to 50 (5 % of the total number of
agents) in our learning framework. The experimental setting for the tag-based
learning framework follows the setting given in [5].

Fig. 3 and 5 show the performance comparisons with the tag-based learning
framework in PD game and AC game respectively. For both cases, we can observe
that there is a significant increase in the average percentage of SOs under our
learning framework using influencer agents. Besides, the rate in which the agents
converge to SOs is higher than that using the tag-based learning framework. The
underlying reason is that under the tag-based learning framework, the agents
learn their policies in a periodical way, and the coordination towards socially
optimal outcomes requires at least two consecutive periods’ adaptive learning
between individual learning and social learning. Also our learning framework
using IAs can better prevent the exploitations from SAs since the IAs act in the
same way as SAs if their interacting partners do not choose action F . Accord-
ingly, higher percentage of SAs can be incentivized to cooperate with IAs and
thus higher percentage of socially optimal outcomes can be achieved.
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6 Conclusion and Future Work

In this paper, we propose inserting influencer agents into the system to ma-
nipulate the behaviors of individually rational agents towards coordination on
socially optimal outcomes. We show that a small percentage of influencer agents
can successfully incentivize individually rational agents to cooperate and thus
achieve socially optimally outcomes.

As future work, we are going to give detailed analysis of the learning dy-
namics of both types of agents (IAs and SAs) in order to better understand the
effects of influencer agents. Another interesting direction is to apply this learning
framework to other MAS domains (e.g., other types of games), and investigate
the effects of influencer agents on the learning dynamics of individually rational
agents as well.
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