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Abstract. Opinion clustering arises from the collective behavior of a social 
network. We apply an Opinion Dynamics model to investigate opinion cluster 
formation in the presence of community structure. Opinion clustering is 
influenced by the properties of individuals (nodes) and network topology. We 
determine the sensitivity of opinion cluster formation to changes in node 
tolerance levels through parameter sweeps. We investigate the effect of network 
community structure through rewiring the network to lower the community 
structure.  Tolerance variation modifies the effects of community structure on 
opinion clustering: higher values of tolerance lead to less distinct opinion 
clustering. Community structure is found to inhibit network wide clusters from 
forming. We claim that advancing understanding of the role of community 
structure in social networks can help lead to more informed and effective public 
health policy. 
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1 Introduction 

Network science plays an important role in public health policy. Social, contact and 
organizational networks have been shown to affect various aspects of health. Public 
health researchers increasingly apply social network research to population health 
problems [1] in areas of infectious disease propagation [2], obesity [3], smoking [4], 
and even happiness [5].  

Understanding the effects of social network topology is essential to crafting 
optimally effective public health policy. Social network research is increasingly 
focusing on the presence and effects of community structure within various networks. 
Community structure refers to heterogeneous degree distributions that result in groups 
of nodes more densely connected to each other than to the rest of the network [6]. 
This understanding of community structure can be traced back to Granovetter’s 
research which found that two nodes having friendship relationships with a third node 
are more likely to be connected to each other [7]. Community structure is also a factor 
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in homophily, where nodes with similar characteristics tend to be more highly 
connected to one another than nodes with dissimilar characteristics [8]. Community 
structure has been shown to play an important role in the dynamics of networks 
through social diffusion [9].  

Opinion Dynamics (OD) is a powerful social-network modeling technique 
integrating research findings from sociology and statistical physics. Conceptually OD 
traces its origins to Cartwright and Harary’s structural balance theory which posits that 
an individual’s opinion regarding another person or idea is influenced by those with 
whom he/she shares positive social ties [10]. The mathematics and algorithms of OD are 
derived from the Ising spin model which captures spin alignment of adjacent particles 
within a lattice.  OD models extend the particle interaction concepts of statistical 
physics to include structural balance theory to produce a generalizable method of 
modeling the flow of ideas, opinions and concepts through social networks [11].  

Several different implementations of OD models have been proposed; for a 
comprehensive review, see Castellano, Fortunato and Loreto [11]. The basic 
assumptions of opinion dynamics can be extended to capture various facets of social 
dynamics. Some of these modifications include continuous-valued states, bounded 
confidence models using tolerance, and network moderated interactions to introduce 
social structure into the model. Opinion dynamics initially provided insight into the 
fundamental dynamics of information spread in networks and well-mixed 
populations. More recently, OD has been used to investigate the diffusion of 
agricultural practices in farming communities [12], the formation of extremist groups 
in larger communities [13], and the effects of influence-based interventions on 
differential social structures, including gendered networks [14].  

Opinion dynamics is useful in studying the formation of opinion clusters. Opinion 
clusters are an emergent result of the collective interactions of people within a 
network influenced by their individual characteristics and the network structure. 
Various groups in nature display clustering behavior including flocks of birds [15], 
bacterial colonies [16], fish schools [17], and human behavior such as walking 
patterns [18]. Recent work that has highlighted the effect of opinion clusters on a 
system includes studies that show how clusters of unvaccinated individuals can lead 
to a dramatic increase in disease outbreak probability [19]. In a study of individual 
characteristics affecting opinion cluster formation, Schelling presented an exhaustive 
study using a spatial proximity model [20]. Studies on opinion cluster formation 
within adaptive networks [21] have elucidated network influences on opinion clusters.  

In this paper, we address the role of individual node properties and the role of 
network topology on opinion cluster formation within and among communities. Section 
2 documents the model formulation used in this investigation. Section 3 describes the 
experiments we performed and the results from these experiments. Section 4 presents a 
discussion of potential applications of our findings to public health. 

2 Model Formulation 

An agent-based model is used to investigate the influence of individual and network 
characteristics on the formation of opinion clusters. We use a modified version of the 
opinion dynamics model of Deffuant and Weisbuch to model the flow of opinions in a 



 The Role of Community Structure in Opinion Cluster Formation 129 

 

network of heterogeneous agents. The Deffuant-Weisbuch model simulates the spread 
of opinions in a well-mixed population [12]. We modify the original model by 
mapping it to a directed network of agents. This directed network represents 
relationship ties such as friendship nominations where the directionality indicates 
non-reciprocal nominations. Incorporating edge directionality is supported by studies 
showing that friendship networks are often directed [22]. In addition, empirical 
studies on network-based properties of tobacco use have identified correlations 
incorporating directionality [23]. 

Agents have an individual opinion, modeled as a continuous variable in the range 
[0.0, 1.0], and a tolerance value indicating how open an agent is to the opinions of 
others. The tolerance value constrains opinion-changing interactions to agents whose 
opinions are within a tolerance bound. If the difference in opinion between two agents 
is less than the tolerance value, the agents can influence one another, incrementally 
changing opinions to become more similar to each other. Henceforth, the term node 
shall refer to an agent. At each time step the opinion of each node is updated using the 
following equation:  ݔ௜ሺݐ ൅ 1ሻ ൌ ሻݐ௜ሺݔ ൅ ଵ|ௌ೔| ∑ ሻݐ௝ሺݔ௜௝ൣߤ െ ௌ೔אሻ൧௝ݐ௜ሺݔ  . (1) 

In equation (1), ݔ௜ሺݐ ൅ 1ሻ represents the opinion of node i at the next time step. 
The opinion is updated by adding to node i’s current opinion the average difference 
between node i’s opinion and that of every one of its neighbors, ݔ௝ሺݐሻ, at the current 
time step ݐ. If the difference in opinion between node i and a neighbor is greater than 
the tolerance bound, the two do not influence one another. An edge weight, ߤ௜௝, 
allows for giving certain friendships more influence as might be the case for a family 
member or a close friend. 

Tolerance is an important feature of the model to study opinion cluster formation. 
As the model execution proceeds, opinions of nodes in various portions of the 
network tend to converge to common local mean values with the number and average 
size of the clusters determined by tolerance [12]. Higher tolerance values generate 
fewer, larger clusters.  Opinion clusters emerge from the network as a result of the 
constraint that tolerance places on the number of interactions that can take place. 
These clusters consist of groups of neighboring nodes with similar opinions. To be 
considered as part of a given opinion cluster, a node must both be reachable by every 
node in the cluster and hold an opinion within tolerance bounds of the most proximal 
nodes in the cluster to which it is connected.  

Opinion cluster formation is also influenced by network structure: node 
interactions only occur if an edge exists.  Random networks, such as Erdős-Rényi 
graphs, exhibit less distinct clustering properties than do scale free networks (Moore, 
et al, 2012 in review).   

The algorithm employed for cluster detection is a variant of the DBSCAN 
algorithm [24]. We have modified the algorithm to map it onto a network. The 
algorithm operates by mapping nodes to clusters if they are within the tolerance 
bounds of the initial cluster node and reachable via an edge of the node. This 
algorithm also removes the need to know a priori the number of clusters involved, 
which is most suitable for our application. 
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We investigate the influence of tolerance-constrained interactions in a network 
containing community structure by generating 250-node networks comprised of five 
communities. We vary tolerance over the range [0, 0.5], and examine the formation of 
opinion clusters within and among communities.  To investigate the contribution of 
community structure in the network, we decrease the community structure by 
increasing the number of edges between communities, adding random edges between 
nodes in different communities. 

3 Experiments 

We conducted two experiments to study the effects of individual-level constraints and 
network-level constraints on the formation of opinion clusters: one to study the effects 
of tolerance level and one to study the effects of network topology.  

We use a similar network topology in both experiments. Our primary criterion for 
the network structure is that distinct community structure exists. We create our 
network by generating 5 communities  using the Erdős–Rényi model [25]. Each 
community consists of 50 nodes connected using an edge probability p = 0.1633 
resulting in 400 expected edges within each community. 

Once constructed, we randomly connect each individual community to every other 
community with a specified number of edges depending on the experiment (Figure 1). 
We don’t claim that this graph formation process generates networks representative of 
those in the real world, only that the generated networks contain distinct community 
structure, the condition under which we are interested in studying opinion clusters. 
Future studies will elicit the effects of using other network formation models more 
demonstrative of real-world topology. 

 
Fig. 1. An example network displaying community structure in which five densely connected 
communities are connected by more sparse inter-group edges 

3.1 Tolerance Experiment 

The OD model is run using networks with community structure.  The tolerance of 
each node is varied to determine the effect of tolerance on opinion cluster formation. 
For this experiment networks are generated with five distinct communities (Figure 1). 
Each community is connected to every other community by adding 25 edges at 
random between each community for a total of 250 additional edges. Using the 
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modularity metric proposed by Newman and Girvan [26] to provide a measurement of 
community structure, this network produces a modularity of ~0.72 indicating a high 
level of community structure. Initial opinion values of the nodes are uniformly 
distributed at the outset of the model run. Tolerance is increased over the range [0, 
0.5] in a series of simulations. For each simulation, a different stochastic realization 
of the example network is generated.  For each tolerance value, the model is run with 
100 stochastically-generated networks. 

We investigate two things. First, as tolerance increases, at what tolerance value does 
each community form a single majority-opinion cluster? Second, at what tolerance 
value does the entire network form a single majority-opinion cluster? In this context, a 
single-majority cluster contains a large percentage of the nodes in the relevant 
community or network. It is rare that clusters are entirely defined by communities as 
network topology can cause certain nodes to be drawn into a different community.  

3.2 Tolerance Results 

As illustrated in Figure 2, at a tolerance value of 0.0 every node maintains its baseline 
opinion; no opinion adjustment can take place. At this value each node forms its own 
opinion cluster. As tolerance increases, the number of clusters decreases while the 
average cluster size increases. 

 
Fig. 2. Tolerance values affect both mean cluster count and cluster size.  As tolerance increases 
the number of opinion clusters falls and the size of the clusters rises. 

Once tolerance has increased to a certain level, each of the five communities 
emerges as a single opinion cluster, as seen in Figure 3. Individual node opinions for a 
single community are plotted relative to tolerance values. As tolerance increases, node 
opinions begin to draw closer together. Finally, at a tolerance value of ~0.27 the 
nodes in the community converge to a single majority-opinion cluster. 



132 R.J. Hammer et al. 

 

 
Fig. 3. Density plot shows the effect of tolerance on equilibrium distribution of opinion in a 
single community. Opinion distributions develop clustering patterns at a tolerance value of 
0.05, become bimodally distributed at approximately 0.15 and coalesce to a single mean-value 
cluster at a tolerance of approximately 0.27. 

 

Fig. 4. Standard deviation of opinion distribution for each community. Note the transition in the 
rate of opinion deviation decline at 0.25. The tolerance value at which a community majority-
opinion cluster forms (0.27) is highlighted by the blue line. 
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Figure 4 shows a decrease in the standard deviation of node opinions for each 
community as tolerance increases. A sharp drop can be seen between tolerance values 
of ~0.14 to ~0.25, indicating minimal node interaction and opinion adjustment at low 
tolerance levels. 

At progressively higher tolerance values, the clusters begin to merge together into 
larger clusters until eventually the entire network coalesces into a single-opinion 
cluster. Each community reaches a single majority-opinion cluster at a tolerance value 
of ~0.27, while coalescence into a single network-wide opinion cluster occurs at a 
tolerance value of ~0.45 (Figure 5). The top portion of the two-part figure plots each 
individual opinion in the entire network at tolerance values from 0.0 to 0.5. The 
bottom portion of the figure shows a plot of the standard deviation in opinion for the 
entire network across the same range of tolerance values. Two rough transitions can 
be seen in the top portion. A transition occurs at the tolerance value of ~0.27, the 
point at which communities form single-majority clusters as demonstrated in previous 
figures. The final transition to a single majority-opinion cluster occurs at a tolerance 
of ~0.45, a finding verified by the plot illustrated in the bottom half of Figure 5 in 
which the standard deviation reaches a minimum at a tolerance value of ~0.45.  

 

Fig. 5. Individual node opinions for the entire network plotted relative to tolerance values 
(above) are shown in the context of the standard deviation of opinion for the entire network 
(below). The individual node opinions come into consensus at tolerance ~0.45 indicating the 
formation of the single majority-opinion network cluster.  

3.3 Topology Experiment 

We examine the role of topology in opinion cluster formation, specifically in regard 
to the structure of communities. The same process of generating a network with five 
distinct communities is utilized. Based on our findings from the previous experiment, 
every node is assigned a constant tolerance value of 0.27, the value at which distinct 
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community-wide opinion clusters form. Unlike the uniform distribution used in the 
previous experiment, here nodes in each community draw an initial opinion from one 
of five distinct opinion intervals ranging from low (0.00,   0.12) to high (0.88,   1.00). 
These intervals are defined in Table 1. 

Table 1. Opinion ranges assigned to each community for topology experiment 

Community 1 [0.00,  0.12]
Community 2 [0.22,  0.34]
Community 3 [0.44,  0.56]
Community 4 [0.66,  0.78]
Community 5 [0.88,  1.00]

 
The heterogeneous assignment of community opinion among the different 

communities and a homogenous assignment within each community serves to 
illustrate model operation in community networks which more realistically reflect the 
homophily to be expected in social networks. Where communities hold distinctly 
separate opinion intervals, the effect of blurring the community structure can be seen 
more clearly. One side effect of community-specific opinion distribution is that the 
communities come to consensus very quickly within themselves.  

The number of edges that connect the various communities is increased in a series 
of 100 runs starting with 0 edges and finishing with 250 edges. For each number of 
edge connections, 100 stochastic network realizations are modeled. Each edge 
increment lowers the amount of community structure until finally the network is a 
single densely connected community. 

We examine edge ratios of between-community edges to within-community edges 
to identify the relationship at which communities will converge to a single majority-
opinion cluster. That is, we ask to what degree community structure needs to be 
degraded to allow a majority cluster to form. Rather than varying tolerance to 
investigate cluster formation, we use network topology.  

3.4 Topology Results 

The modularity metric of Newman and Girvan is again used to measure the degree of 
degradation of community structure. A plot of modularity versus the ratio of between-
community edges to within-community edges, presented in Figure 6, demonstrates 
that as the ratio increases the community structure decreases. In light of the 
degradation of community structure, both the modularity and the edge ratio can be 
analyzed at the point at which the single majority network cluster forms. Two sharp 
transitions in modularity can be seen in this figure: the first steep drop occurs in the 
edge ratio range of ~0.11 to ~0.20, the second in the edge ratio range of ~0.27 to 
~0.31. This provides an understanding of what is happening to community structure 
as edges are added and at what edge ratio the community structure is obscured,  
giving us a clear picture of the modularity of the network when the communities 
converge.  
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Fig. 6. Modularity plotted versus the ratio of between-community edges to within-community 
edges. As edges are added between the communities, the community structure fades. At the 
ratio of ~0.31, community structure has been eliminated. 

 

Fig. 7. Effect of between-community to within-community edge ratio on mean community 
opinion and standard deviation. The mean community opinion (upper) plot shows consensus 
among the five communities commencing at ~0.065 with near complete consensus at ~0.28. The 
standard deviation (lower) plot shows the communities at consensus amongst themselves at the 
onset. 
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A broader look at the changing relationships within each of the five communities 
can be seen in Figure 7 where the five communities’ average opinions are plotted 
relative to edge ratios (top graph) as are the standard deviation of opinion for each 
community (lower graph). The mean opinion for each community starts to draw 
together at an edge ratio of ~0.065 and moves together more sharply at ~0.28. The 
standard deviation graph indicates that the communities are in consensus from the 
start based on the assigned tolerance value and the initial distribution range for each. 

The standard deviation in opinion for the network can be observed in Figure 8. 
Two transition points can be seen: the first occurs at the edge ratio of ~0.08 where the 
first steep drop ends; the second transition can be seen at the edge ratio of ~0.30 when 
the standard deviation finally levels out near 0. This provides further evidence that the 
communities have converged and the network has formed a majority cluster near an 
edge ratio of ~0.28. As seen earlier in Figure 6, the last steep drop of modularity 
concludes at the edge ratio of ~0.31 which highlights the fact that the network can 
converge once community structure has been obscured to a high enough degree. In 
this case, the convergence takes place when structure has been obscured to the point 
of an edge ratio of ~0.28 (as seen in Figure 7) and a modularity value near 0. In terms 
of this network, a ratio of 0.28 indicates that a total of 2000 edges exist within the 
communities and a total 560 edges connect the communities. 

 

Fig. 8. Effect of in-community to inter-community edge ratio on overall network standard 
deviation 

The opinion cluster size should also level out at ~0.28. We observe this in Figure 9. 
Additionally it is of note in Figure 9 how quickly cluster size grows with just a small 
increase in the edge ratio. However, in order to achieve a majority cluster very close 
to the total number of nodes, an edge ratio ~0.28 must exist.  
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Fig. 9. Effect of between-community to within-community edge ratio on mean opinion cluster 
size. Mean cluster size can be seen to level out in the vicinity of an edge ratio of ~0.30, very 
near the point at which community opinions converged in the previous results (0.28). 

These results indicate that community structure plays a role in the attainment of 
network-wide consensus. Even though communities are able to come to internal 
consensus, the community structure must be diminished to a certain degree in order to 
overcome the network-level constraint placed on opinion cluster formation. The 
results shown indicate that once an edge ratio of ~0.28 has been reached, the 
communities converge to form a single majority opinion cluster. 

4 Discussion 

We have presented an opinion dynamics model highlighting the role that community 
structure plays in the formation of opinion clusters. Using the individual constraint of 
tolerance, communities form single majority-opinion clusters at the relatively low 
tolerance value of ~0.27. A majority network-wide cluster forms at a tolerance value 
of ~0.45. We also found that community structure can inhibit the formation of a 
majority network opinion cluster when a constant tolerance value is imposed on a 
level which constrains the communities to single majority-opinion clusters. To 
overcome this network-level constraint, the community structure must be obscured to 
a certain degree by the establishment of inter-community relationships. In the case of 
the given topology, an edge ratio of between-community edges to within-community 
edges needed to be ~0.28 in order to overcome network constraints. This indicates 
that tolerance can be driven by means other than individual characteristics. Simply 
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increasing the ratio of inter-community edges to intra-community edges promotes the 
formation of a majority opinion cluster. 

Understanding the role that community structure plays in the spread of opinions or 
behaviors may be important to designing and implementing effective public health 
policies. The results we have presented can be used to gain insight into how 
communities in social networks will respond to policies. For example, consider the 
issue of implementing a public health policy in a high school. In high schools, 
community structure takes the form of cliques involving different groups of students. 
For a policy intervention to reach every group of students, the constraints implied by 
individual- and network-level characteristics must be taken into account. Students in 
marginalized communities often occupy peripheral positions on social networks and 
are excluded from participation in core communities by both individual differences 
and by the network of relationships connecting individuals. A more comprehensive 
understanding of these fundamental influences can help refine the design of field-
based studies to elicit empirical data on dynamic network formation in high schools, 
and can ultimately contribute to more effective policy formation. 
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