Efficient Synchronization of Multiple Databases
over Broadcast Networks

Muhammad Muhammad, Stefan Erl, and Matteo Berioli

German Aerospace Center (DLR)
Institute of Communications and Navigation
82234, Oberpfaffenhofen, Germany
{Muhammad.Muhammad,Stefa_n.Erl,Matteo.Berioli}@dlr.de

Abstract. This work deals with the problem of synchronizing multiple
distributed databases over a broadcast network, such as satellite net-
works. The proposed method is based on introducing network coding
techniques besides extending the well-known database reconciliation al-
gorithm, the characteristic polynomial interpolation-based synchroniza-
tion (CPISync). One key element is to elect a master node that manages
the operations in a central manner. Performance is shown in terms of
completion time for full synchronization, and average number of pack-
ets exchange. Compared to point-to-point and traditional broadcasting
synchronization methods, the algorithm implementing network coding
allows reaching the lower-bound for the number of packets exchange.

Keywords: multiple databases synchronization, network coding, broad-
cast channels, satellite communications.

1 Introduction

A database consists of an organized collection of related data. A distributed
database system (DDBS) is a collection of multiple, logically interrelated
databases. These distributed databases are physically spread over a computer
network of multiple nodes, where any node can update its database at any
time. A database management system (DBMS) consists of software that controls
databases. The services provided include storage, access, security, backup and
some other facilities. The DBMSs can be categorized according to the database
model that they support such as relational databases, the type of computer they
support, and the query language that accesses the database such as SQL. Some
commonly used DBMSs are MySQL and PostgreSQL.

With the high demand on the usage of these DDBSs and due to the changes
that may occur on one or many sites discarding the others, data synchronization
algorithms have been deeply studied, see [I] and [2]. Additionally, several syn-
chronization and replication applications, to harmonize information and to keep
consistency of data among all points in the network managing these databases,
have been developed for the different DDBSs currently available, such as Cyber-
cluster and Maatkit.

R. Dhaou et al. (Eds.): PSATS 2013, LNICST 123, pp. 77-83 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

78 M. Muhammad, S. Erl, and M. Berioli

In spite of the great effort done by the scientific community in the field of
database synchronization, especially for CPISync, in terms of reducing the syn-
chronization traffic, this method mainly operates in a point-to-point environ-
ment, which limits the applicability of synchronizing multiple databases. In this
light, the aim of this work is to present a novel method for synchronizing mul-
tiple databases, namely, to make all datasets involved in the reconciliation pro-
cess have local access to all the data with further minimized traffic load that is
achieved by extending CPISync to multiple nodes, by applying network coding
principles and by changing the network topology to a star network.

Network coding [3J5] has been also applied to solve the problem of distributed
storage [10]. Distributed storage systems often introduce redundancy to increase
reliability. When coding is used, the repair problem arises, which addresses the
case if a node storing encoded information fails, then in order to maintain the
same level of reliability, encoded information need to be created at a new node.
A survey of network coding and distributed storage systems can be found in [13].
Some problems of distributed storage systems, like storage allocations, are ad-
dressed in [11I12]. However, our problem differs from that of the distributed
storage systems in the sense that our proposal does not aim to provide data
reliability in case of node failure, but to allow all involved nodes to acquire local
access to the complete dataset at any given time.

This paper is organized as follows. The next section gives background infor-
mation about the CPISync algorithm. Section Bl exploits different methods of
differences discovery in database synchronization using CPISync. In Section Hl
solutions for updating databases are given. The performance of the new methods
is evaluated in Section Bl Finally, a conclusion follows in Section [Gl

2 Background

Let us consider a network of nodes (distributed over a wide geographical area,
but can be served by a single satellite beam), where each node in the system is
maintaining a database. These datasets form a DDBS. The datasets may or may
not have common entries. Whenever a synchronization is required; may be on
demand, periodically, or after re-establishing the network connection in case of
node or link failure, a bidirectional merge of the involved databases takes place.
The operation of merging two databases can be separated in two subtasks: (i)
the finding of the differences between the two databases, and (ii) the bidirec-
tional data exchange to update the two databases and to guarantee that they
are identical.

The former task requires an optimized algorithm for finding the differences.
For the work in this paper, CPISync [6] is considered. The latter task may be
non trivial in the case of a DDBS, but a lot of work has been done to provide
efficient solutions; especially over broadcast networks, where the concepts of reli-
able multicast can be exploited. In this respect, this work will focus on Network
Coding to perform the latter task. We will focus on a particular, yet simple,
Network Coding scheme, namely Random Linear Network Coding (RLNC) [4],

Multiple Databases Synchronization 79

which is representative of the general idea to exploit Network Coding for DDBS.
The next subsection will introduce the basics of CPISync.

2.1 CPISync

The work in [6] shows that CPISync has close-to-optimum performance, it has a
minimum comparison overhead that depends only on the amount of differences
between the synchronizing datasets, but not on the dataset size itself. In [7]
the authors tested CPISync and it was shown to be a promising solution for
synchronizing databases over satellite narrowband links.

A record in a database is a row that is constructed of multiple related fields.
In order to use CPISync, each record in the database can be represented by one
unique integer, e.g. by means of a hash function. This allows to associate to each
database A a set of integers S4 = {x1,x2,...,x,}, representing all records in
the database A. The key point of the CPISync algorithm is the conversion of a
database into a polynomial, which is called the characteristic polynomial of the
database. The characteristic polynomial of database A is defined as follows:

Xsa(Z) = (Z = 2))(Z —x2)(Z = w3) - (£ —). (1)

The idea is to manipulate these characteristic polynomials to discover the
differences between two databases, and this is done as explained in the following.

Let us assume we have two databases A and B, for which we can define two
characteristic polynomials as indicated in (Il) above. Let us also define Ay =
Sa\Sg, as the set of integers in A but not in B, and symmetrically Ap = Sg\Sa,
as the set of integers in B but not in A. If we knew all elements of the two
databases, we would be able to build the following rational function:

_ Xs.(Z) _ Xsansp(Z2) - Xa,(Z) _ Xa,(2)

T = %6(2) ™ Xsansn(Z) - Xag(Z) ~ Xay(2)' @)

This rational function has the interesting property that can be described by
only means of the two sets A4 and Ap. So if it were possible to build this function
without complete knowledge of the two databases, then it would be possible to
discover the differences between the two databases. This is the core principle of
CPISync. Curios readers are forwarded to [6] to find a detailed example on how
CPISync works.

The upper bound (m) of the actual symmetric differences is in reality difficult
to know or predict in many applications. For that reason, an improved CPISync
algorithm, called Partitioned-CPISync, was proposed in [§] to overcome this
drawback. The value of m is fixed a priori by the two hosts, and the algorithm
recursively divides each set into p partitions until the basic CPISync algorithm
can succeed with the pre-agreed upper bound m on the number of differences in a
single partition. In other words, the set S4 is partitioned into p non-intersecting
subsets, and if the basic CPISync fails in a subset, the algorithm keeps dividing
each subset into p subsubsets, and so on, until the differences can be discovered
by the basic CPISync algorithm.

80 M. Muhammad, S. Erl, and M. Berioli

The complexity of the Partitioned-CPISync was analyzed in [8]. Worst-case
bounds for communication and computation complexity are given there. When
assuming hashed indexes of the set that are randomly and uniformly distributed,
these worst-case bounds could be optimized to the following formulas for syn-
chronizing two databases.

The expected number of rounds r needed by the Partitioned-CPISync algo-
rithm for the reconciliation of two databases is at most:

T—2logp(mﬂj_1>+(9(1), (3)

with m denoting the actual number of differences between the two sets and p
denoting the partition factor, representing the number of non-overlapping parts
the set p is split up in each round. In one round several Basic-CPISync runs are
performed, because the evaluation values of individual parts p of the same level
do not depend on each other and can be generated and sent together.

The expected number of overall bits transmitted from one node to another in
order to determine the differences is at most:

8emkp (b+ 1)

b=28 b+1
emp(®+1)+ " "

: (4)
with e ~ 2.71828183 being the Euler number. The parameter k is the number
of additional evaluation values sent by the host to verify that the rational inter-
polation with the chosen m was correct. The parameter b is the length of the
hash value of a row in the database, which is used to calculate the characteristic
polynomial.

3 Phase I: Discovering the Differences

In this section, we propose, investigate, and compare different possibilities on
how to exploit CPISync to discover the differences inside a DDBS.

Assume a network of N distributed nodes is maintaining a DDBS. Each end-
point is handling a single database. The goal of phase I is that the system knows
which node is missing which packets and how all the nodes can be synchronized.

3.1 Solutions for Difference Discovery

Four solutions are proposed: one under the category of mesh network, and three
under the category of star network.

Mesh Network. A fully meshed comparison between all nodes is the easiest
way to run CPISync. In this scenario, every node is compared and synchronized
with every other node in the system in order to achieve a complete system
synchronization. There is no central coordination, to synchronize N databases
in this scenario, every node has to synchronize (on its own) with all the other
(N —1) nodes. This will result in a complete synchronization of the system

Multiple Databases Synchronization 81

after performing synchronization procedures by all nodes. This technique
considers the absence of a specific nodes set up, i.e., every node synchronizes its
database with a randomly chosen another node, such that any synchronization
process between any two nodes is performed only once. In this respect, the time
required to run the algorithm and end up with a fully synchronized system is:

N(N—-1)
2

N(N-1)

9 [T (2Ts + Toval + Tcalc) + 2T4ata + Ts]a (5)

Tmesh =
where Ty is the one-way signal delay between any two synchronizing nodes,
Teval is the time to receive the evaluations, and Tya.¢, is the time to receive the
missing data. The time for the calculation is summarized in Tecale. Tealc mainly
contains the time to perform the mathematical computations of the polynomial
interpolation. Ty depends on the chosen upper-bound m, the length of the
hash ID b and on the actual size |d;| of the differences set. For one complete run
of CPISync, Teyva can be expressed in dependence of b, the total number of bits
transmitted.

In this scenario, phase I (difference discovery) and phase II (update of the
differences) take place one after the other at each pairwise comparison, so they

both take place N(]\;_l) times.

Star Network. In a star network, one of the nodes is set to the role of the master
node that takes care of the synchronization. In phase I, the master (with set Sp)
gains the knowledge of its respective differences with S; (i = 1,...,N —1); and
receives the data d; from the other nodes. In fact the operation of updating
the master with the data d; from all nodes, is already part of phase II; it will
be mentioned in this section for the sake of understanding, but will not be
considered in the performance evaluation of phase I presented at the end of this
section. We present three methods on how to employ the CPISync algorithm
within a multiple node environment. The more practical Partitioned-CPISync
is used for our analysis as it is likely that several rounds of communication are
used, which may drastically increase the time that is needed for discovering the
differences between the nodes, especially for satellite networks with long round-
trip time (RTT).

Round-Robin. The easiest and most straight-forward approach to obtain global
view in the master node, since CPISync is originally suited for two sets, is a
round-robin-like synchronization. The master discovers its differences to every
node one after the other. After one full cycle, the differences between Sy and
each S; are known. Combining these differences results in the global set p. This
approach is shown in Figure The figure shows the Partitioned-CPISync
algorithm with taking two rounds of communication.

The master first sends its evaluations to the first node. This node tries to
interpolate the missing data elements, but in this example, not enough evaluation
values were sent. So it requests more evaluations from the master. After the
interpolation was successful in the second round, the node knows its d; and

82 M. Muhammad, S. Erl, and M. Berioli

sends it back to the master, including the request for the missing data (which
would be dp). In general, there are r rounds of communication between one node
and the master. The same is also done with the remaining N — 2 slaves. So the
number of runs of the CPISync algorithm is NV —1, and thus the complete number
of transmitted bits, the complete amount of rounds needed, and the computation
complexity for the CPISync in this scheme are multiplied by N — 1.

The time to complete the algorithm can be derived from Figure In each
round, the evaluation values are sent to a node (Ty + Teval) and a request is
sent back to the master (7). In the last round, also the time for sending the
data (Tyata) is required. The time for the calculation is summarized in T¢a)c. The
complete time results in:

T = (N - 1) [T(QTS + Toval + Tcalc) + Tdata] . (6)

Central Calculation. In the central calculation approach, all the computation
is moved from the nodes to the master. Here, the master requests evaluation
values from all nodes. The computation for the first node can be started as soon
as the evaluation values from the first node have been received. Figure
demonstrates this procedure. The request for the evaluation values is broadcast
to the slave nodes. The first node starts transmitting, and the calculation is
started as soon as the transmission is complete. Meanwhile the other nodes are
sending their values. If the algorithm takes more rounds, a new request is sent to
the corresponding node. After finishing the algorithm, the master has to request
the missing data from all the nodes, because it only knows what data is missing,
but it still does not have the data itself.

The transmitted bits, rounds and computation are the same like in the round-
robin method, but since the single CPISync processes are more parallelized than
in the previous method, the total time required to finish the algorithm will be
shorter. Depending on the more time-intensive process, the interpolation or the
reception of the evaluations, the total time for the algorithm is:

o 2T + (N - 1)(T Teval + Tdata)v if Teval > Tealc (7)
“ 2T + (N - 1)(T Teatc + Tdata)v if Teale > Toval

The calculation for one node will be done while other nodes are still trans-
mitting, or the reception is performed while other nodes’ interpolations are still
in progress, respectively.

Broadcast Fvaluations. In contrast to the previous method, in this approach the
evaluation values of the master’s set are broadcast. Then each node does the in-
terpolation on itself and discovers its differences to the master. Figureshows
this approach. Evaluation values needed for further rounds can be broadcast as
soon as the first request arrives and following request for the same round can
be ignored. Other nodes can buffer the further evaluations if their calculation
is not yet finished. After the nodes finished their calculations, they send their
additional data d; and a request for the data they are missing to the master.

Multiple Databases Synchronization 83

sl Ls] [su]
e A
y K
HDZ T
P =] 3] G
T, :
5 K R [s]
3)cal:]T@c T{W o ‘ ‘ ‘ ‘ ‘ ‘
Tl et s, S, Sy
\ W H Dcalc caIcC:|T(m
e (| o™ Sl (e || T | wewet]
Evaliag, Toaa N{ / \ el
@ @ yﬁom} e
[T,
(a) Round-Robin-like de- (b) Master computes differ- (¢) Evaluations are broad-
ployment of CPISync. ences centrally. cast.

Fig. 1. Several techniques in obtaining differences in broadcast medium

Because the evaluation values are broadcast and the interpolation is done
fully parallel across all nodes, the only parameter that depends on the number
of nodes is the transmission time T4, When sending the missing data back to
the master node. The total required time with this approach is then:

Ty = T(Q T + (Teval + Tcalc) + (N - 1) Tdata)- (8)

3.2 Comparison

In this section, we provide lower and upper bounds on the number of CPISync
processes to discover the complete differences between any two synchronizing
databases. From the previously discussed methods, it is clear that the number
of CPISync processes in master-slave mode (Pﬁlilssync) is reduced due to the
deployment of the star network. However, this will increase the complexity of
the algorithm at the master node as the number of slaves increases. But, this
difficulty will be linked only to the master end-point. Therefore, the number of
CPISync processes is always: (N — 1).

Alternatively, when more and more nodes use CPISync in a mesh network,
the complication will be on each device to track the changes occurring and the
next node to connect to. This makes the number of CPISync processes grows
up to: N(A;*l). So the number of CPISync calls grows with the square of the
number of databases IV, whereas for the master-slave approach it grows linearly
with N. In addition, in the mesh-network approach also phase II (update of
the differences) is called N(Agfl) times, whereas in the master-slave approach it
can be performed just once and more efficiently, by exploiting network coding

principles (this will be explained in the next section).

84 M. Muhammad, S. Erl, and M. Berioli

Process completion time in seconds

—©&— Round-robin
—*— Central Calculation
—&— Broadcast

n n

i i
0 20 40 60 80 100
Number of database nodes

Fig. 2. Time for obtaining the differences using Star network topology

For these reasons the mesh-network approach can be discarded as it is the one
with the highest complexity. Now we compare the three different methods for
the star network, namely, round-robin, central calculation, and broadcast evalua-
tions. We assume a satellite link with a signal delay Ty = 300 ms and a bit-rate
of 1 Mbps. Each node has an additional data |d;| = 500 rows, and each row has
a size of 1 KB. The CPISync parameters are set to b = 32, p =4, k = 4 and
m = 50, which results in an average number of r = 4 rounds and b = 1.6 Mbit.
This results in Teya1 = 1.6s. The calculation time is assumed with T¢a. = 1s.

For sending and receiving data, a simple ideal channel model (i.e. with no
packet error rate (PER)) with time slots is assumed. Only one node is allowed
to send at each time slot, and the data sent from several nodes to one receiver
arrives one after the other. For transmitting data no specific protocol is assumed
and acknowledgments for each packet received or packet sizes are irrelevant.

Figure 2] shows the required time for the three methods with the above pa-
rameters as a function of the number of nodes V. Since all the methods include
a transfer of the missing data to the master at the end of the algorithm, we
ignored Tygata in this graph, since this is in fact part of what we defined as phase
II (update of the differences).

As expected, the round-robin method performs worst, as all nodes are synchro-
nized serially, resulting in many rounds of communication and a long processing
time. The central-calculation approach is a bit faster, because it is more paral-
lelized and, depending on the properties of the channel and the master, either
the channel or the processor in the master node are fully utilized. The best
performance was given by the broadcast method, which can achieve a similar
performance like a two-node synchronization, as the only time dependent on the
number of nodes is the transmission of the data itself.

Multiple Databases Synchronization 85

4 Phase II: Update of the Differences

Let us denote the complete set of the database records by p = {Py, Ps, ..., Pk},
this is the set of packets (or records) that every node should have after syn-
chronization, with K = |p|. Additionally, let us denote by ¢; the set of packets
missed by node i. The set of records available at node i is .S;.

As mentioned previously, in a mesh network, the complexity will be at ev-
ery node by monitoring the nodes to synchronize to; also, the processing power
will be higher, because of the polynomial interpolation due to the one-to-one
relationship.

For the synchronization process to take place, the nodes are re-arranged in a
star network (i.e. Master-Slave). Otherwise, they can have a mesh network com-
munication infrastructure. The rationale behind this topology is to allow network
coding to reduce the bandwidth utilization and the delay and to minimize the
complexity at the other nodes while keeping it at the central point.

Our algorithm allows to further reduce the traffic load related to the synchro-
nization of multiple databases. This load is already minimized by CPISync for two
synchronizing databases. Nevertheless, when harmonizing multiple databases,
keeping the one-to-one relation introduces a large overhead, since synchronization
will follow a mesh network topology. This overhead is reduced with our technique,
which works as follows. First, one of the databases engaged in the synchronization
process is selected as a master, say node 0 (whose set is Sp), to coordinate the over-
all reconciliation activity. The other nodes will be slaves. Secondly, the master will
ask each slave to transmit the differences with its respective data by broadcasting
its evaluation points to the other nodes, which is the fastest method according to
Section[3l At this point, the master has a complete knowledge of what data every
other database has and what it needs for a complete system synchronization. The
master has now built the set p that is the complete database and he knows what
every node is missing, i.e. he knows that node i is missing the set of records ¢;. The
master builds the set of the records that are missed by at least one node, this set
can be indicated as ¥ = p\ ﬂf\:ll S;. Let A=|¥| be the number of records in this
set. Finally, the master node linearly combines the packets required in the set ¥
using the RLNC technique and broadcast these coded packets to the slaves. In this
way the number of packets that the master needs to send to update all slaves is
drastically reduced; this will be shown in the next section.

5 Performance Evaluation

The performance of the proposed technique is analyzed in this section in terms
of the average number of exchanged packets.

5.1 Average Number of Packets Exchange

In this section, the expected number of retransmissions (E [P]) will be evalu-
ated according to two simulation schemes. In the first scheme (scheme A), the

86 M. Muhammad, S. Erl, and M. Berioli

databases to be synchronized have the same size (K) with a uniformly distributed
set of differences. Scheme B, on the other hand, features the possibility that the
synchronizing databases are of different sizes also having uniformly distributed
differences. In the latter scheme, the different sizes will simulate the nodes being
idle for some time.

In the two above mentioned schemes, the performance metric measure will
be the expected number of packets exchange (i.e. the packets that have been
interchanged during the synchronization process) in order to achieve a complete
system harmonization. The simulations consider three techniques for synchro-
nizing N datasets. The first one uses pure CPISync in a mesh network, where
every node checks with all its peers about new information until all the nodes
have the full set of packets (p). The average number of packets exchange grows
with the square of the number of nodes (as previously explained):

d N(N-1)

E[P}Mesh = 1—¢ 2 ’

9)

where d is the average number of differences between any two synchronizing
databases and € is the PER.

The second method uses a star network, but without network coding, see 3.1l
Instead, after the master pulls the differences from the other nodes, it broadcasts
all the data packets (p) and each user will take or drop packets according to its
need. The average number of packets exchange in this case is:

K

E[Plpe = (N -Dd+ " .

(10)

Finally, applying network coding techniques in a star network only on packets
that have not been correctly received by all slaves. The expected number of
packets exchange can be evaluated using:

E[Plye = (N —1)d + LAS] s, (11)

where A is the number of linear combinations with elements from a Galois field
of GF (29) and ¢ is chosen as an optimal value of § = L to overcome the link
erasures. Additionally, a large GF (29) (with ¢ =8, i.e. a symbol = 8 bits) is
chosen in order to reduce the probability of having linearly dependent equations
and hence not ask for retransmissions, as proposed by [9]. Although it is very low,
but there still exists a decoding failure probability (due to the linear dependency
among the linear equations of the system), which is represented by e.

Let us consider that € is an upper-bound on ¢, i.e., € > . This leads to
identify an upper-bound on the average number of packets exchange for the
network coding case of synchronizing N databases:

A

EPlve < (N=1d+

=K [P]NC' (12)

Multiple Databases Synchronization 87

number of packets exchange

- [—e—CPisync Mesh
I+ | —w— CPISync Star-Broadcast

—e— CPISync Mesh
—s— CPISync Star-Broadcast
—8— CPISync Star-Network Coding

: | —=—CPIsync Star-Network Goding|

K =500,d =100

0 100 200 300 400 500 600 700 800 900 1000 107° 107 10°
Number of users (N) Number of differences

10' 10°

(a) Average number of packets exchange (b) Average number of packets exchange
as a function of N as a function of number of differences

Fig. 3. Average number of packets exchange versus N and PER

5.2 Results

The following results represent the average number of packets exchange for syn-
chronizing multiple databases after 100 runs.

Figure plots the simulation results of (@), (I0) and () as a function of
N using scheme A. The graph shows that for small values of N, the performance
of network coding is slightly better than the broadcasting scenario. However, us-
ing a mesh network the expected number of packets exchange grows logarithmic
with the number of users. The simulation used a database size K = 500 records
with 100 uniformly distributed differences and PER € = 0.

The chart in Figure also simulates scheme A. But here, the results are
shown as a function of the number of differences. The number of users N is set
to 100, the database size K = 500 and PER ¢ = 0. As it can be realized,
linearly combining packets in a star network forms a lower bound for all other
techniques. Further, as the number of differences gets really low or very high,
the number of packets exchange is the same for a mesh or broadcast scenarios,
respectively.

The plots in Figure represent the case when some (say 30 %) of the total
N = 100 databases were off-line for a period of time. Therefore, they are miss-
ing relatively large amount of data in addition to the existence of few differences
of the information they acquire with the other databases. It is clear the ineffi-
ciency of the point-to-point synchronization in terms of bandwidth utilization.
Also, with the network coding approach, the packets exchange is very low for
low-to-moderate differences values. However, as the latter value increases, the
number of transmitted packets in a network coding scheme is similar to the sim-
ple broadcasting scenario. Nevertheless, this behavior is due to the fact that no
packet erasures on the channel were considered.

In the last simulation, shown in Figure a realistic scenario is implemented
using scheme A, where packet erasures with probability € occur on the downlink
from the master node. For N = 100, K = 500 and number of differences of

88 M. Muhammad, S. Erl, and M. Berioli

[—e— CPISync Mesh
=—w— CPISync Star-Broadcast
—&— CPISync Star-Network Coding|

10}

\ ‘
8 8

Average number of packets exchange

3

N, =70, K, =500, N, = 30, K, = 350

Average number o packets sxchange
3

—w— CPISync Star-Broadcast
—&— CPISync Star-Network Coding

N = 100; K =500, d = 150,

10°

107 107 10' 10° 10° 107 107" 10°

10" 10°
P — Pk i
(a) Average number of packets exchange (b) Average number of packets exchange
as a function of number of differences as a function of PER (¢)

with different database sizes (K1, K2)

Fig. 4. Average number of packets exchange versus number of differences and PER

150 with low-to-moderate PERs, both techniques (i.e. broadcasting and network
coding) are comparable. However, for large values of €, network coding is more
appropriate and efficient because a single linear combination can reveal infor-
mation about several missing native packets that have to be all retransmitted in
case of simply broadcasting the information.

One last thing, by applying network coding, a coding delay (D = D, + D) is
added to the synchronization process. On the master side, the packets have to be
encoded with delay denoted by D.. Additionally, on the slave’s side, a decoding
delay Dy is realized due to the idle time the node has to wait to receive the coded
block and to decode using Gaussian elimination techniques. However, compared
to the RT'T for requesting lost packets, the coding delay D is negligible. This is
especially true for satellite networks with a high RTT. Further, it is shown in
literature that the decoding complexity of RLNC is O (A3), which is applicable
with nowadays technology.

6 Conclusions

In this work, a new approach to synchronize multiple databases was proposed
based on network coding and an already state-of-the-art database synchroniza-
tion mechanism, namely, CPISync. The newly recommended algorithm assumes
that the master node, to coordinate the process of synchronizing all the databases
involved, pulls from every slave node at a time its respective differences by using
CPISync in a broadcast manner. Finally, when the big picture is clear, the mas-
ter combines the packets that haven’t been correctly received by all the users.
As it has been clearly seen, using this approach, due to network coding lower
capacity utilization was achieved. Further, because of the master-slave organiza-
tion lesser CPISync processes were initiated, which could be accelerated by our
broadcast method.

Multiple Databases Synchronization 89

References

10.

11.

12.

13.

Tridgell, A.: Efficient Algorithms for Sorting and Synchronization, Ph.D. disserta-
tion, The Australian National University (2000)

Agarwal, S., Starobinski, D., Trachtenberg, A.: On the Scalability of Data Syn-
chronization Protocols for PDAs and Mobile Devices. IEEE Network 16(4), 22-28
(2002)

Fragouli, C., Le Boudec, J.-Y., Widmer, J.: Network Coding: An Instant Primer.
SIGCOMM Comput. Commun. Rev. 36(1), 63-68 (2006)

Ho, T., Medard, M., Koetter, R., Karger, D., Effros, M., Shi, J., Leong, B.: A
Random Linear Network Coding Approach to Multicast. IEEE Transactions on
Information Theory 52(10), 4413-4430 (2006)

Ahlswede, R., Cai, N., Li, S.-Y., Yeung, R.: Network Information Flow. IEEE
Transactions on Information Theory 46(4), 1204-1216 (2000)

Trachtenberg, A., Starobinski, D., Agarwal, S.: Fast PDA Synchronization Using
Characteristic Polynomial Interpolation. In: Proceedings IEEE INFOCOM, New
York City, NY, USA, vol. 3, pp. 1510-1519 (June 2002)

Tang, C., Donner, A., Chaves, J., Muhammad, M.: Performance of Database Syn-
chronization Algorithms via Satellite. In: 2010 5th Advanced Satellite Multimedia
Systems Conference (ASMS) and the 11th Signal Processing for Space Communi-
cations Workshop (SPSC), pp. 455461 (September 2010)

Minsky, Y., Trachtenberg, A.: Practical Set Reconciliation, Boston University,
Tech. Rep. (February 2002)

Liva, G., Paolini, E., Chiani, M.: Performance versus Overhead for Fountain codes
over Fq. IEEE Communications Letters 14(2), 178-180 (2010)

Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M., Ramchandran, K.: Net-
work Coding for Distributed Storage Systems. IEEE Transactions on Information
Theory 56(9) (September 2010)

Leong, D., Dimakis, A.G., Ho, T.: Distributed Storage Allocations for High Reli-
ability. In: Proc. of the IEEE International Conference on Communications, ICC
(2010)

Leong, D., Dimakis, A.G., Ho, T.: Distributed Storage Allocation Problems. In:
Workshop on Network Coding Theory and Applications, NetCod (2009)

Dimakis, A.G., Ramchandran, K., Wu, Y., Suh, C.: A Survey on Network Codes
for Distributed Storage. Proceedings of the IEEE 99(3) (March 2011)

	Efficient Synchronization of Multiple Databases
over Broadcast Networks
	1 Introduction
	2 Background
	2.1 CPISync

	3 Phase I: Discovering the Differences
	3.1 Solutions for Difference Discovery
	3.2 Comparison

	4 Phase II: Update of the Differences
	5 Performance Evaluation
	5.1 Average Number of Packets Exchange
	5.2 Results

	6 Conclusions
	References

