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Abstract. The railway centerline is defined by a polygonal line with
some level of uncertainty in the train onboard database. The goal of this
paper is to estimate the train speed by GPS and to study the impact
of railway centerline uncertainty on the speed estimation. The equations
for first two moments of the estimated speed are obtained and compared
with the results of Monte-Carlo simulations.
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1 Introduction and Motivation

The estimation of train speed and distance to target plays an important role in the
management of modern railways. For safe and efficient railway operations, these
parameters should be estimated with a high level of accuracy [1,2] and integrity [3].

This paper is devoted to the GPS train positioning by using a low-cost re-
ceiver. Two limit cases of the train speed estimation can be considered. The first
approach is based on the exactly known three-dimensional train-track model
(this is so-called one-dimensional navigation). The second approach does not
use any information about the train track (hence, it is the classical two or three-
dimensional navigation). The first case provides the user with the best precision
but it is unrealistic because the exact three-dimensional train-track model needs
an enormous effort of geodesic measuring and the onboard train database prepa-
ration. The second case is rather pessimistic, some information about the train
track is always available, at least by using electronic maps for large public. A
crucially important question is the impact of such a map imprecision on the
estimation of train speed and distance to target.

This paper is organized as follows. Section 2 is devoted to the problem state-
ment. Section 3 provides the geometric model of railway track, the train dynam-
ical model and the method of train speed estimation. The impact of train-track
model imprecision on the speed estimation is discussed in section 4. Simulation
results are shown in section 5. Finally, some conclusions are drawn in section 6.
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2 Problem Statement and Contribution

Let us consider that the train runs along the track with a constant (unknown)
speed. The goal of this paper is twofold : first, to calculate the train speed by
using GPS and an imprecise geometric model of the railway centerline; second,
to estimate a negative impact of the railway centerline uncertainty on the mean
error and on the second order moment of the estimated speed. The equations
for first two moments of the estimated speed are obtained and compared with
the results of Monte-Carlo simulations.

3 Description of Models

3.1 Train Track Model

Let us assume that the railway centerline is approximated by a polygonal line
(piecewise linear curve), which represents a connected series of line segments in
the Earth-centered, Earth-fixed coordinates. More formally, the railway center-
line is defined by a sequence of vertices Z0, Z1, Z2, . . . , Zn, Zi ∈ R

3, so that the
curve consists of the line segments connecting the consecutive vertices. It is as-
sumed that the errors related with such an approximation of the vector function
� �→ X(�), � ∈ R, X ∈ R

3, defining the railway centerline is negligible for our
study. Here and in the rest of the paper, � denotes the curvilinear abscissa, or
the covered distance, and m = ‖Zj+1 − Zj‖2 = const is the distance between
two adjacent vertices, respectively. Unfortunately, the on-board database uses an

True centerline

Centerline from database

Zi true vertex position

˜Zi position from database

Fig. 1. Train track model

imprecise information about the positions of vertices, namely : ˜Z0, ˜Z1, ˜Z2, . . . , ˜Zn.
The quantity ξi = Zi− ˜Zi defines the knowledge uncertainty concerning the train
track. This situation is illustrated by Fig. 1. To simplify the presentation, a two-
dimensional train trajectory is considered.

3.2 Train Dynamical Model

Traditionally, the train dynamical model is described by an equation formulated
in term of the covered distance, speed and acceleration. To simplify the estima-
tion problem, it is assumed for this study that the acceleration is negligible for
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some short periods. Let us suppose that the train runs along the above railway
track with an unknown constant speed v. Hence, the true train position is de-
fined as follows: Xk = Xk−1+Aj(k) ·v ·Δt, k = 1, 2, . . ., where Xk = (xk, yk, zk)

T

is the train position at the k-th GPS measurement (GPS epoch), tk denotes the
instant of the k-th measurement, Δt = tk − tk−1 represents the GPS sampling

interval, Aj = (ajx, a
j
y, a

j
z)

T =
1

m
(Zj+1−Zj) is the directional vector correspond-

ing to the segment number j, ‖Aj‖2 = 1. The current segment number j = j(k)
is calculated as a function of k by using the following equation

j(k) = min {j ∈ N|j ≥ �(v ·Δt · k)/m�} , (1)

where N is the set of natural numbers. The train position Xk can be rewritten
as

Xk = X0 + vΔt

k
∑

t=1

Aj(t) (2)

where X0 = (x0, y0, z0)
T is the starting point.

3.3 Exact and Imprecise Pseudo-range Measurement Model

Suppose that there are n satellites located at the known positions Xs
i =

(xi, yi, zi)
T , i = 1, . . . , n. The pseudo-range ri from the satellite i to the train

can be written as:

rki = dki + cbkr + εki =

∥

∥

∥

∥

∥

X0 + vΔt

k
∑

t=1

Aj(t) −Xs
i

∥

∥

∥

∥

∥

2

+ cbkr + εki , εki ∼ N (0, σ2),

where bkr is a user clock bias, c 
 2.9979 · 108m/s is the speed of light and εki
is a pseudo-range noise. By linearizing the pseudo-range equation around the
working point V0 = (v0, cb0)

T , we get

rki − rki,0 
 hk
i,0(v − v0) + c(bkr − b0) + εki , i = 1, . . . , n, (3)

where rki0 = dki0 + cb0, d
k
i0 =

∥

∥

∥

∥

X0 +

(

k
∑

t=1
Aĵ(t)

)

· v0Δt−Xs
i

∥

∥

∥

∥

2

and

hk
i0 =

1

dki0

[

X0 +

(

k
∑

t=1

Aĵ(t)

)

· v0Δt−Xs
i

]T (

k
∑

t=1

Aĵ(t)

)

Δt.

Because the true train speed v is unknown, the current segment number ĵ = ĵ(t)
is calculated as a function of the previously calculated speed v̂t by using (1)
with v = v̂t. The above mentioned linearized measurement equation (3) can be
rewritten in the following matrix form

Rk −Rk
0 
 Hk

0 · (Vk − V0) + Ξk, (4)
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where Vk = (v, cbkr)
T and the working point at step k is equal to the previously

calculated estimation : V0 = ̂Vk−1.
Let us discuss now an unprecise measurement model. Since the true vertex

position Zj is unknown and only its imprecise estimation ˜Zj is available, the
linearized measurement equation (4) cannot be used to compute the train speed.
To estimate the impact of this uncertainty, let us define the directional vector
˜Aj = Aj + δj , where the random vector δj = (δjx, δ

j
y, δ

j
z)

T is assumed to be
uniformly distributed in the cube [−b, b]3 with b > 0. Finally, the pseudo-range

measurement model (4) is defined for the imprecise directional vectors ˜Aj in the
following manner

Rk − ˜Rk
0 
 ˜Hk

0 · (Vk − V0) + Ξk (5)

where ˜Rk
0 and ˜Hk

0 are calculated exactly as in equation (3) but with the vector
˜Aj instead of Aj .

4 The Impact of Track Uncertainty on the LS Estimator

The goal of this section is to study the impact of the train track uncertainty
δj on the first and second moments of the least square (LS) estimator v̂k. To
seek simplicity, let us assume that the track entirely belongs to the local tangent
plane. We follow here the analysis of the regression model uncertainties and their
impact on the LS estimators developed in [4]. First, the measurement equation
(5) can be rewritten as follows:

Y k +ΔY k 
 (Hk
0 +ΔHk) · βk + Ξk (6)

where Y k = Rk −Rk
0 , ΔY k = Rk

0 − ˜Rk
0 , ΔHk = ˜Hk

0 −Hk
0 and βk = Vk − V0. It

is assumed that the second column of ΔHk is equal to zero because the impact
on the clock bias estimation is of no interest for this study. The LS estimator is
given by

̂βk=
[

(

Hk
0 +ΔHk

)T (

Hk
0 +ΔHk

)

]−1
(

Hk
0 +ΔHk

)T (

Y k +ΔY k
)

. (7)

After expanding
[

(

Hk
0 +ΔHk

)T (

Hk
0 +ΔHk

)

]−1

around Hk
0 (see appendix of

[4]) and computing the expectation of equation (7), the mean error is

E(̂Vk − V ) = B−1
0

[

(Hk
0 )

TΣHC − F +G
]

β (8)

where ΣH denotes the covariance matrix of ΔHk, F =
(

tr(ΣH) 0
0 0

)

, G =
(

tr[Hk
0 B

−1
0 (Hk

0 )
TΣH] 0

0 0

)

, B0 =
(

Hk
0

)T
Hk

0 , the first column of a (n × 2) matrix

C is equal to the first column of Hk
0B

−T
0 and its second column is equal to zero.

Since the random vector ΔY k acts in the same way as the pseudo-range noise
Ξk, the two errors can be considered together. After expanding and ignoring
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the terms of order
(

ΔHk
)2

and under the assumption that the errors ΔHk are

reasonably small, the second order moment of ̂Vk − V is given by

E(̂Vk−V )(̂Vk−V )T=B−1
0 (Hk

0 )
T
[

σ2In+ΣY −β1(ΣHY +ΣYH)+β2
1ΣH

]

Hk
0B

−1
0 , (9)

where β1 = v − v0, ΣY denotes the covariance matrix of ΔY k, ΣHY =
E
[

ΔHk(ΔY k)T
]

and ΣY H = ΣT
HY . When the expectation (8) of ̂Vk − V is

almost zero, this second order moment corresponds to the variance of ̂Vk.

5 Numerical Simulations

The comparison of the theoretical mean error and second order moment given
by (8) and (9), respectively, with the results of a 104-repetition Monte-Carlo
simulation, is shown in Fig. 2-7. The standard GPS constellation has been used
with n = 6 visible satellites and σ = 2 (m). The distance between two adjacent
vertices has been chosen m = 50 (m). Different values of railway centerline
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Fig. 2. The estimated speed mean er-
ror for δj = 0
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Fig. 3. The estimated speed second or-
der moment for δj = 0
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Fig. 4.The estimated speed mean error for
δj ∈ [−0.01, 0.01]2
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Fig. 5. The estimated speed second order
moment for δj ∈ [−0.01, 0.01]2
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Fig. 6.The estimated speed mean error for
δj ∈ [−0.05, 0.05]2
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Fig. 7. The estimated speed second order
moment for δj ∈ [−0.05, 0.05]2

uncertainty have been tested : b = 0 (no uncertainty); b = 0.01 (uncertainty

 ±0.5 (m)); b = 0.05 (uncertainty 
 ±2.5 (m)).

6 Conclusions

The comparison of the train speed estimation by GPS with an imprecise geomet-
ric model of the railway centerline and by using odometric measurements [1,2]
shows that the second order moments of the estimated speed are comparable
but the speed mean error obtained by GPS is better. It is practically unbiased,
even with an imprecise geometric model of the railway centerline. A hybrid esti-
mation connecting the odometer, accelerometer and GPS measurements seems
to be very promising for the train speed estimation.
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