
Performance Evaluation of SPDY
over High Latency Satellite Channels

Andrea Cardaci2, Luca Caviglione1, Alberto Gotta2, and Nicola Tonellotto2

1 Institute of Intelligent Systems for Automation (ISSIA)
National Research Council of Italy, Via de Marini 6, 16149, Genova

luca.caviglione@ge.issia.cnr.it
2 Information Science and Technologies Institute (ISTI)

National Research Council of Italy, Via G. Moruzzi 1, 56124, Pisa
cyrus.and@gmail.com, {alberto.gotta,nicola.tonellotto}@isti.cnr.it

Abstract. Originally developed by Google, SPDY is an open protocol
for reducing download times of content rich pages, as well as for manag-
ing channels characterized by large Round Trip Times (RTTs) and high
packet losses. With such features, it could be an efficient solution to cope
with performance degradations of Web 2.0 services used over satellite net-
works. In this perspective, this paper evaluates the SPDY protocol over
a wireless access also exploiting a satellite link. To this aim, we imple-
mented an experimental set-up, composed of an SPDY proxy, a wireless
link emulator, and an instrumented Web browser. Results confirm that
SPDY can enhance the performances in terms of throughput, and reduce
the traffic fragmentation. Moreover, owing to its connection multiplexing
architecture, it can also mitigate the transport layer complexity, which
is critical when in presence of middleboxes deployed to isolate satellite
trunks.

Keywords: networking protocol, satellite network, lossy channels,
SPDY, HTTP, performance evaluation.

1 Introduction

Nowadays, services for sharing personal contents with a high degree of interactiv-
ity are considered new real killer applications of the Internet. This new paradigm
has been mainly applied to the World Wide Web (WWW), which now approx-
imates the Social Web initially envisaged by the World Wide Web Consortium
(W3C). However, instead of a unified design, its implementation is based on
heterogeneous sets of specific platforms, often with overlapped functionalities.
We mention, among the others: blogs, wikis, Online Social Networks (OSNs),
multimedia sharing platforms, and real-time collaboration frameworks.

In parallel, legacy websites have been enriched with such functionalities too.
In fact, about the totality of modern webpages has some features to support in-
teractivity or to provide dynamic contents. To this aim, one of the most popular
approaches relies on the mash-up technique enabling to retrieve and merge data

R. Dhaou et al. (Eds.): PSATS 2013, LNICST 123, pp. 123–134, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

124 A. Cardaci et al.

from different remote providers (see, e.g., reference [1] for a paradigmatic exam-
ple on the composition of mashable information). Moreover, the social vocation
of the Web has been also ported to plain websites, e.g., via third party plug-ins
directly embedded in the HTML. In order to be effective, interactivity needs a
constant data exchange between the involved endpoints. A popular approach is
to use the Asynchronous JavaScript and XML (AJAX) paradigm, which con-
stantly transmits data between the server and the client over an indefinitely
held HTTP connection. This also requires pages to embed proper scripts (e.g.,
the XMLHTTPRequest Javascript object), or additional software components to
interact with remote services (often defined as plug-ins).

Such aspects lead to the so-called Web 2.0 also accounting for mutations in
the structure of pages, and characteristics of the related Internet traffic. In more
details, a Web page is composed of many objects, which have to be retrieved to
compose the whole content, i.e., the main object containing the HTML code,
and (multiple) in-line objects(s) linked within the hypertext. The Web 2.0 heav-
ily alters the characteristics of in-line objects, which can now embed additional
services, such as for audio/video streaming, or to interact with an OSN [2]. Nev-
ertheless, this enriched vision has not been limited only to contents, since it is
now possible to deliver full-featured applications via a Web page. As an exam-
ple, many Software-as-a-Service (SaaS) platforms [3] are based on interactive
Graphical User Interfaces (GUIs) directly operated from the browser. Yet, to
issue commands and provide feedbacks to users, they require a non-negligible
amount of bandwidth and real-time constraints for assuring prompt data syn-
chronization with a remote back-office. To summarize, the highly interactive
nature of Web 2.0 reduces the accuracy of the page-by-page model.

Another important feature to comprehensively evaluate the modern Internet
is its increased support of mobility. Thus, many network appliances also assure
connectivity via wireless links, e.g., IEEE 802.11, the Universal Mobile Telecom-
munication System (UMTS), Long Term Evolution (LTE), and satellite chan-
nels. Yet, mobile nodes impose constraints clashing with the resource consuming
nature of the Web 2.0. This is even truer in the case of satellite communications,
potentially leading to additional hazards in terms of performances, for instance
due to delays (see, e.g., reference [4] for a performance evaluation of an OSN
accessed through a geostationary satellite facility). We point out that a satellite
link is not only deployed to support mobile nodes, but it is also the main choice
to grant access to the Internet in rural areas, or developing Countries.

Hence, the more aggressive behaviors of Web 2.0 applications also need proper
adjustments in the protocol stack, especially for the case of the HTTP. In this
perspective, a cutting-edge solution is SPDY [5], i.e., an enhanced HTTP sup-
porting data compression and connections multiplexing. It can also mitigate the
impact of channels with large Round Trip Times (RTTs) and high packet losses.
According to reference [5], when used on wired links, SPDY can reduce download
times in the range of 27-60%. With such premises, it could be a very suitable solu-
tion for improving performances when accessing the Web from a satellite network.
Nevertheless, since SPDY uses a single transport connection, its deployment in

Performance Evaluation of SPDY over High Latency Satellite Channels 125

satellite networks can lead to further benefits. For instance, typical transport-layer
enhancements like Performance Enhancing Proxies (PEPs) can experience a re-
duced workload, i.e., in terms of TCP connections to be handled to serve multiple
Web sessions.

From the author’s best knowledge, there are not any prior attempts to charac-
terize SPDY over satellite channels. Thus, this paper evaluates the effectiveness
of using SPDY in place of standard HTTP to increase performances of Web ac-
cess over satellite networks. The contributions of this work are: i) to understand
the most relevant behaviors of the SPDY protocol when used over heterogeneous
wireless networks, especially those using large delay channels such as satellite
one; ii) to showcase the creation of an ad-hoc testbed, which can be reused for
similar investigations; iii) to provide an earlier comparison between HTTP and
SPDY when used to access some popular websites.

The remainder of the paper is structured as follows: Section 2 compares HTTP
and SPDY, while Section 3 showcases the testbed and some basic patterns of
the protocol. Section 4 deals with the performance evaluation when in a worst
case scenario, and Section 5 concludes the paper.

2 Evolving from HTTP to SPDY

As hinted, the growing complexity of Web 2.0 should be also properly addressed by
the protocol architecture. Some issues have been partially resolved by amending
the HTTP protocol specification, namely: i) to avoid performance degradations,
the increased number of objects composing a page requires proper parallelization
of the retrieval process; ii) the rising volume of data needs to increase the pro-
tocol efficiency, also by reducing overheads; iii) the “distributed” nature of many
contents (i.e., data can be stored in different providers), jointly with the need of
long-held connections for interactivity purposes, require more flexible policies. To
partially fulfill requirements i) – iii), the HTTP/1.1 [6] relies on multiple connec-
tions for concurrency. Even so, this can introduce additional hazards, including:
supplementary round trips for completing the connection setup/teardown phases,
delays in the slow-start phase of the TCP, as well as connection rationing by the
client, e.g., when it tries to avoid opening too many connections over a single
server. HTTP/1.1 also uses pipelining to send multiple requests over a single TCP
connection without waiting for a response. This technique limits the offered load
in terms of TCP Protocol Data Units (PDUs), and can also reduce the loading
times of pages. Potential benefits are greater over high latency connections, such
as satellite Internet connections [7]. Figure 1 shows how pipelining reduces the
connection time with the respect to sequential HTTP requests.

However, the gains of pipelining are limited by the HTTP/1.1 protocol spec-
ification, since the server must generate responses ordered as the requests were
received. Thus, the entire flow of information belonging to a connection is ruled
according to a first-in-first-out policy. In turns, this can lead to performance

126 A. Cardaci et al.

Fig. 1. Example of pipelined HTTP requests

degradation due to Head of Line (HOL) blocking1 phenomena. Unfortunately,
HTTP pipelining requires to be implemented both within the client and the
server. As today, it is not widely available into existing browsers.

To prevent similar issues, SPDY introduces a specific framing layer (also
named session layer) [5] for multiplexing concurrent streams atop a single per-
sistent2 TCP connection, as well as any other reliable transport service. Fur-
thermore, it is optimized for HTTP-like request-response conversations, and also
guarantees full backward compatibility with the plain HTTP.

In more details, SPDY offers four major additional improvements to the net-
work behavior of HTTP:

1. multiplexed requests: to increase possible gains, the SPDY protocol specifi-
cation does not impose any limits to the number of concurrent requests that
can be sent over a single connection;

2. prioritized requests: to avoid congestion phenomena due to scarce resources
at the network level, clients can indicate resources to be delivered first. This
can enhance the Quality of Experience (QoE) of a service, even in presence
of incomplete pages;

3. compressed headers: modern Web applications force the browser to send a
significant amount of redundant data in the form of HTTP headers. Since
each Web page may require up to 100 sub-requests, the benefit in term of
data reduction could be relevant;

1 HOL blocking is a performance-limiting event occurring when a trail of PDUs is
held-up by the first packet. This can happen when in presence of network switches
with buffered inputs, protocols supporting out-of-order delivery, or multiple requests
as in the case of HTTP pipelining.

2 An HTTP persistent connection, or HTTP keep-alive, uses a single TCP stream to
move multiple HTTP requests/responses, instead of opening a new connection for
each single request/response pair.

Performance Evaluation of SPDY over High Latency Satellite Channels 127

4. server pushed streams: this feature enables content to be pushed from servers
to clients without additional requests.

Though, mechanisms 1) – 4) are somewhat analogous to HTTP pipelining,
thus leading to potential transport level HOLs. This is even truer when in pres-
ence of packet losses, which could invalidate compression and prioritization as a
consequence of TCP error recovery strategies. For such reasons, SPDY needs a
proper comprehension when in jointly used with error prone links.

For what concerns all the protocol resources (e.g., documentation and soft-
ware), they are provided by the SPDY Google Developer Group. In addition,
performance evaluations in real-world use cases have been by the Chromium
Projects3, which spawned the “Let’s make the Web faster ” initiative4. The pre-
liminary results were focused on comparing SPDY against HTTP. The reference
testbed has been developed by simulating a user population browsing, from a
Small Office Home Office (SOHO) Internet access, a selected set of reference
Web sites called the “top 100 ”. Additionally, different packet losses have been
considered, i.e., in the range of 0−1%. The main outcome is that SPDY reduces
the average page load times, for 25 websites of 27 − 60% when using the TCP
without the Secure Socket Layer (SSL), and 39 − 55% when SSL is in place. A
similar set of trials, also devoted to quantify the impact of SPDY over mobile
terminals, has been proposed in reference [8], where the authors ran experiments
on Chrome for Android5, in order to have a draft 2 version of the protocol. Also
in this case, SPDY outperformed HTTP by assuring an average reduction of the
23% in terms of loading times of pages.

Yet, literature still lacks of a thorough performance analysis of SPDY, both
in terms of precisely quantifying the benefits for each feature introduced, and
over a wide variety of network scenarios. Despite that, we decide to focus on the
multiplexing ability of SPDY when used over a satellite channel. On one hand,
this effort emphasizes benefits of exchanging data within a single SPDY stream
tunneled within a TCP connection. On the other hand, the trials underline
the impact of header compression when juxtaposed over a network having high
access delays and packets losses. Additional benefits, compared with the current
state-of-the-art literature, are the increased understanding of the HOL/error
relationship, as well as the consequences of large propagation delays over the
congestion control of the TCP.

3 Testbed Creation and Measurement Methodology

As said, our goal is to comprehend and evaluate the basic behaviors of SPDY
when used in a satellite environment. In order to assure a fair approach, we
test the protocol against a subset of the “top 100 websites" list compiled by
Google. To this aim, we implemented a testbed composed by: an SPDY-enabled
3 http://www.chromium.org/chromium-projects
4 http://www.chromium.org/spdy/spdy-whitepaper
5 http://www.google.com/intl/en/chrome/android/

http://www.chromium.org/chromium-projects
http://www.chromium.org/spdy/spdy-whitepaper
http://www.google.com/intl/en/chrome/android/

128 A. Cardaci et al.

browser (i.e., Google Chrome), which has been properly scripted for automating
the content retrieval, as well as data collection; an emulated satellite link; a
proxy for accessing non-SPDY sites; additional tools, such as a traffic sniffer.

To emulate the satellite access, we used netem6, which is part of the native
Linux queuing discipline. It permits to easily superimpose wide area network
characteristics, e.g., the delay and the packet error rate, over standard routing
strategies. Since netem can only process inbound packets, as a quick workaround,
we created a new Intermediate Functional Block (IFB) pseudo device, in order
to handle the emulation discipline also to incoming packets. Another possible
solution would be using netem both in the satellite gateway and terminal. As
regards the proxy, it has been deployed to cope with the scarcity of SPDY enabled
websites on the Web. Hence, we used a node.js SPDY server7, which has been
configured to act as a Web proxy, as depicted in Figure 2.

Fig. 2. Reference architecture of the adopted tested

3.1 Testbed Validation and Basic Protocol Understanding

As a consequence of a lack of thorough past investigations on the SPDY protocol,
this initial round of tests has been performed to comprehend some of its core
behaviors, also to understand wether SPDY could really outperform HTTP when
used over a satellite link. Therefore, we focus on a GEO satellite system, that
has been emulated by imposing a round trip time (RTT) of 720 ms (according to
real measurements performed on the Skyplex Platform as discussed in reference
[9]), and by limiting the bandwidths to 1 Mbit/s and 256 kbit/s, in the forward
and return links, respectively. To have a controlled environment, in this first run
of tests we assumed the channel as error-free.

The first analysis compares HTTP against SPDY in terms of used transport
connections. This metric is a rough “complexity” indicator, which quantifies the
perspective reduction of overheads for enhancing/splitting TCP flows, for in-
stance by using a PEP machine. Table 1 summarizes the number of transport
6 http://swik.net/netem
7 https://github.com/igrigorik/node-spdyproxy

http://swik.net/netem
https://github.com/igrigorik/node-spdyproxy

Performance Evaluation of SPDY over High Latency Satellite Channels 129

Table 1. Number of TCP connections per site when using standard HTTP

Site name # of connections
Flickr 14

Huffington Post 173
Reddit 41

Microsoft 58
Slashdot 50

Wikipedia 17
BBC 88

connections required to download the contents of the selected sites when using
standard HTTP. As reported, the presence of an extremely high amount of TCP
conversations is mainly due to the content-richness nature of Web 2.0 applica-
tions, as well as the need of retrieving a composite set of objects, e.g., plug-ins
or multi providers mash-ups. Yet, Table 1 underlines that not all sites present
such extreme characteristics. This is the case of Wikipedia, which is mainly de-
livered through a text-based layout without any additional service embedded
(e.g., advertisements, Facebook plug-ins or location widgets à-la Google Maps).

On the contrary, when pages are retrieved through the SPDY proxy, the
amount of required TCP connections always reduces to four. This is a con-
sequence of the multiplexing architecture of the protocol. Besides. we underline
that only one connection is strictly related to SPDY traffic, while others are ini-
tiated by the browser to perform navigation statistics, or to fetch data for remote
services (e.g., to provide users search suggestions/completions). Unfortunately
we were not able to inhibit such process. Yet, we were able to precisely quantify
the resulting overhead as to avoid “noise” in the collected results. Specifically,
despite the adopted protocol, only one connection generates traffic and produces
less than 100 kbyte of data. The other two connections simply perform a SYN/FIN
exchange, probably to enable some kind of viewing time profiling. Thus, we solely
focus on the transport connection devoted to transfer the Web page, which can
be always correctly identified. As a consequence, the adoption of SPDY leads to
a very minimal load in terms of connection to be managed, also accounting for a
reduced complexity. Since satellite networks often use some kind of middleboxes
(e.g., PEPs) for increasing the throughput of transport layer protocols, SPDY
has to be considered a very interesting option to shift overheads at the borders
of the network.

Another benefit is given by the compression of data via the gzip algorithm
accounting for relevant gains when in presence of textual information, e.g., large
headers. To better quantify this improvement, Figure 3 shows the Cumulative
Density Function (CDF) of the HTTP PDUs produced when using HTTP and
SPDY, when accessing two popular websites. Since both the client and the SPDY
proxy operate on the same virtual machine in loopback, the maximum allotted
PDU can benefit of a Maximum Transmission Unit (MTU) up to 64KB.

130 A. Cardaci et al.

0 5000 10000 15000 20000 25000 30000 35000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTTP PDU Size [bytes]

C
D

F

Huffington Post − HTTP
Huffington Post − SPDY

(a) CDFs of Huff-Post PDUs.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HTTP PDU Size [byte]

C
D

F

Wikipedia − HTTP
Wikipedia − SPDY

(b) CDFs of Wikipedia PDUs.

Fig. 3. CDF of the HTTP and SPDY PDUs for two reference Websites

As depicted, SPDY optimizes the PDU size, with the acceptation that small
packets are fewer than in the HTTP case. Consequently, the traffic is less frag-
mented, thus reducing the performance issues related to the TCP through-
put. Similar results are observable when accessing a text-based service likes
Wikipedia. For such a reason, the behavior of CDFs are different than when
in presence of content-rich sites, but inspecting the throughput will reveal en-
hancements also in this case.

0 20 40 60 80 100 120 140 160
0

100

200

300

400

Time [s]

T
hr

ou
gh

pu
t [

kb
yt

e/
s]

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

Time [s]

T
hr

ou
gh

pu
t [

kb
yt

e/
s]

Huffington Post − HTTP

Huffington Post − SPDY

(a) Throughputs for the Huff-Post.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Time [s]

T
hr

ou
gh

pu
t [

by
te

/s
]

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Time [s]

T
hr

ou
gh

pu
t [

kb
yt

e/
s]

Wikipedia − HTTP

Wikipedia − SPDY

(b) Throughputs for Wikipedia.

Fig. 4. Throughput when retrieving the Huffington Post and Wikipedia homepages
with and without SPDY

Figure 4 shows improvements in terms of throughput, leading to a significant
reduction of the downloading time. We point out that traffic spikes are periodi-
cally generated even when the page has been completely received for updating in
a real-time manner some portion of the page (i.e., it represents exchanges due to
AJAX-like techniques). Instead, for the case of Wikipedia the gain is less obvi-
ous, primarily due to effect of the aggressive compression performed by gzip over

Performance Evaluation of SPDY over High Latency Satellite Channels 131

the textual components composing the page. Yet, apart from a small amount of
data transmitted in the 20 − 25 s range, the largest part of the information is
received almost faster when in presence of HTTP.

4 Performance Evaluation over Satellite Accesses

In this section, we evaluate the robustness of SPDY into account a worst-case
scenario, i.e., we want to analyze some “macro” effects revealed by extreme con-
ditions like a high Bit Error Rate (BER). We point out that we do not assume
the presence of a TCP splitting architecture to isolate the satellite portion of the
network. In fact, we are interested into understand wether SPDY can be used as
a standalone workaround. According to Figure 1 the client connects to the satel-
lite gateway through an IEEE 802.11 wireless link. To this aim, we used netem
to emulate a bi-stable wireless channel, as depicted in Figure 5. The model is
implemented via a 2-state Markov process, which is characterized by the tran-
sition probabilities p and q. Specifically, p is the probability of passing from the
error-free state 0, to the error-prone state 1, while q quantifies the vice-versa.
According to a past measurement campaign (see reference [10] for further de-
tails), we set p = 0.54 and q = 0.78, as to characterize a wireless indoor channel
with an average packet loss (defined as ploss in the following) of 6.8%.

Fig. 5. Model of an on-off bi-stable channel

To conduct the evaluation, we used eight reference sites, which have been
repeatedly accessed more than 20 times, as to have steady results. The same
usage-pattern has been applied both for the cases of HTTP and SPDY.
Figure 6 shows the distributions of load page failures for each protocol. For
what concerns relative percentages, we experienced that SPDY fails 22 times,
i.e. the 12.5%, while the HTTP only fails once, i.e., the 0.57%. Hence, SPDY
appears to be more fragile when in presence of errors. To better elaborate on this
point, we discovered that page failures mainly happens when the browser can-
not correctly receive the index.html (with the acceptation of the main HTML
body). This is a consequence of SPDY transmitting the whole content via a single
TCP connection, rather than using multiple streams as the HTTP. Therefore, a
single connection failure (even in the set-up phase) could block the page request
transaction in its entirety.

Collected traffic traces reveal some duplicated SYN-ACKs received by the client
side, eventually causing the conversation fail. In this perspective, Figure 7 reports
a paradigmatic example. Another point to be remarked is that a SYN packet is

132 A. Cardaci et al.

(a) HTTP (b) SPDY

Fig. 6. Failures when retrieving a page with a ploss = 5%

Fig. 7. Example of a failed TCP conversation

sent twice after the expiration of the Retransmission Time Out (RTO) which
is set to 1s. This is an outcome of having the average RTT set to 720 ms,
as not the unique delay imposed by the network. In fact, it does not include
timings due to internal data processing/percolation for each element composing
the network, as well as TCP buffering traversal. Thus, the overall delay could be
greater than the RTO threshold. However, even though HTTP seems to be more
robust against errors than SPDY, such behavior is almost uninfluential. In fact,
failures cannot be able to capture implications on the perceived user experience,
thus they must be compared against loading times. In this vein, Table 2 and 3
showcase collected timing statistics, both for HTTP and SPDY. According to
data, on the average, SPDY seems to slightly outperform HTTP. Even if HTTP
fails in less occasions than SPDY, the times to retrieve a content are excessive.
As a consequence, a user would close the browser (i.e., abandon the session)
before the complete reception of the page. Therefore, paying a price in terms of
failed receptions would lead to a better QoE, rather than waiting for too long
periods for accessing a content.

Performance Evaluation of SPDY over High Latency Satellite Channels 133

Table 2. HTTP loading time

Site name min max avg
Flickr 26.15 372.48 160.94

Huffington Post 120.64 637.29 351.11
Reddit 49.84 584.11 261.59

Microsoft 143.63 552.00 298.38
Slashdot 107.52 544.95 286.66

Wikipedia 38.28 344.54 135.36
BBC.co.uk 137.07 769.17 382.40

Table 3. SPDY loading time

Site name min max avg
Flickr 52.89 258.08 141.89

Huffington Post 263.54 669.49 362.00
Reddit 41.69 332.26 124.83

Microsoft 144.43 593.04 296.25
Slashdot 148.43 364.40 211.00

Wikipedia 13.38 184.10 48.98
BBC.co.uk 175.93 468.78 270.60

To clarify the QoE perception, we would recall the worst-case nature of the
test. SPDY could lead to a barely satisfactory experience when accessing the
Web, even in presence of an unacceptable average ploss. SPDY is more robust
against high BERs and allows slightly reduced loading times, as it can be ob-
served by comparing Table 2 and 3. Nevertheless, quantifying only loading times
could be misleading, since with SPDY a page could be almost readable after ∼30
s, even if its completion could happen in many minutes.

5 Conclusions and Future Work

In this paper we investigated the use of SPDY to enhance performances when
retrieving Web contents over an heterogeneous wireless scenario composed by
an error-prone IEEE 802.11 access and a satellite link. Then, we showcased the
creation of an ad-hoc testbed, and we also provided a basic understanding of the
SPDY protocol compared to HTTP when jointly used with a satellite link. We
investigated the effect of the packet loss on the overall performance, especially
in terms of page loading time, and loading failures. As a result, SPDY is a
promising protocols, since it outperformed HTTP in our tests, while reducing
the complexity in terms of number of transport connections.

Future work aims at enriching the experimental results, also by testing SPDY
with a more complete variety of channel conditions. Besides, part of our ongoing
research deals with the creation of a more precise emulated environment. In

134 A. Cardaci et al.

particular, to test SPDY when the satellite links is implemented through a
DAMA systems as the one discussed in reference [9].

Acknowledgment. This work has been partially funded by the European Space
Agency (ESA) within the framework of the Satellite Network of Experts (SatNex-
III), CoO3, Task3, ESA Contract N. 23089/10/NL/CLP.

References

1. Zhang, J., Karim, M., Akula, K., Ariga, R.K.R.: Design and development of a
university-oriented personalizable web 2.0 mashup portal. In: Proceedings of the
2008 IEEE International Conference on Web Services, ICWS 2008, pp. 417–424.
IEEE Computer Society, Washington, DC (2008)

2. Caviglione, L.: Extending http models to web 2.0 applications: The case of social
networks. In: Proceedings of the 2011 Fourth IEEE International Conference on
Utility and Cloud Computing, UCC 2011, pp. 361–365. IEEE Computer Society,
Washington, DC (2011)

3. Knorr, E.: Software as a Service: The Next Big Thing (2009),
http://www.infoworld.com/article/06/03/20/7610312FEsaas1.html

4. Caviglione, L.: Can satellites face trends? The case of web 2.0. In: Int. Workshop
on Satellite and Space Communications, IWSSC 2009, pp. 446–450 (2009)

5. Belshe, M., Peon, R.: SPDY protocol - draft 3 (2012),
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: RFC 2616, Hypertext Transfer Protocol – HTTP/1.1 (1999),
http://www.rfc.net/rfc2616.html

7. Nielsen, H.F., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H.W., Lil-
ley, C.: Network performance effects of HTTP/1.1, CSS1, and PNG. SIGCOMM
Comput. Commun. Rev. 27, 155–166 (1997)

8. Welsh, M., Greenstein, B., Piatek, M.: SPDY performance on mobile networks
(2012), https://developers.google.com/speed/articles/spdy-for-mobile

9. Gotta, A., Potorti, F., Secchi, R.: An analysis of tcp startup over an experimental
dvb-rcs platform. In: 2006 International Workshop on Satellite and Space Commu-
nications, pp. 176–180 (2006)

10. Barsocchi, P., Bertossi, A.A., Pinotti, M.C., Potorti, F.: Allocating data for broad-
casting over wireless channels subject to transmission errors. Wireless Networks 16,
355–365 (2010)

http://www.infoworld.com/article/06/03/20/7610312FEsaas1.html
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3
http://www.rfc.net/rfc2616.html
https://developers.google.com/speed/articles/spdy-for-mobile

	Performance Evaluation of SPDY over High Latency Satellite Channels
	1 Introduction
	2 Evolving from HTTP to SPDY
	3 Testbed Creation and Measurement Methodology
	3.1 Testbed Validation and Basic Protocol Understanding

	4 Performance Evaluation over Satellite Accesses
	5 Conclusions and Future Work
	References

