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Abstract. To tackle the problem that it is difficult to detect small moving targets
accurately against complex ground background, a target detection algorithm that
combines target motion information and trajectory association is proposed. To
tackle the problem of small target size, firstly, background motion compensation
is performed to obtain the background motion parameters. Then, forward and
backwardmotion historymaps are calculated to fuse continuous difference images
for enhancedmotion information of small targets. Finally, morphology processing
is used to obtain the area of smallmoving targets. To tackle the problemof complex
background, the Kalman predictor is used to predict the target position, and the
Hungarian matching algorithm is used to correlate targets to obtain the target
trajectory. Then, based on the target trajectory, targets missed by detection are
supplemented to improve the target recall rate and false alarm targets arefilteredout
to improve the target precision rate. Experimental results show that the proposed
algorithm has good detection performance, with the recall rate higher than 93%,
the precision rate higher than 92%, and the F-measure higher than 93%.

Keywords: Small target detection · Complex background · Target motion
information · Trajectory association · Trajectory feature

1 Introduction

In this paper, we aim to investigate the detection of multiple small moving targets, such
as flying UAVs (Unmanned Aerial Vehicle), against complex ground background.When
the altitude of the photodetector platform is far above that of UAVs, the targets in the
image have few pixels, making them small targets that lack morphology information.
When UAVs and the photodetector platform fly above a terrain with complex features,
the obtained images may have a complex background. In this paper, we focus on the
above difficulties in order to accurately detect multiple small moving targets against
complex ground background.
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Small moving target detection against complex background has always been a
challenging issue, which have drawn extensive research attention.

In 2012, M. Hofmann et al. [1] proposed a method following a non-parametric
background modeling paradigm, which adjusted foreground judgment threshold and
model update rate according to background complexity. This method performs well
when the background is steady but performs badly when targets are small. SiamM et al.
[2] extracted FAST (Features from accelerated segment test) corners, and classified
targets’ optical flow through a clustering algorithm - DBSCAN (Density based spatial
clustering of applicationswith noise) to detect moving targets. Thismethod has difficulty
extracting corner points and easily misses targets when the targets are small.

In 2013, Kwang Moo Yi et al. [3] proposed a pixel-based method modeling the
background through dual-mode single Gaussian model (SGM) and compensating the
motion of the camera by mixing neighboring models. This method is able to detect small
targets, but the false alarm ratewas highwhen background is complex. ShenHao et al. [4]
proposed a novel hierarchical moving target detection method based on spatiotemporal
saliency. Temporal saliency based on Forward-Backward Motion History Image and
spatial saliency is combined to get refined detection results. When the background is
complex, the method is prone to miss detection, because the spatial saliency of the target
is not significant.

In 2014, Shakeri M et al. [5] applied a two-level registration to estimate the effect
of camera motion for motion compensation, extracted target pixels by Gaussian mix-
ture model, refined noisy results using component-based and pixel-based methods, and
improved the detection accuracy through the temporal coherence of foreground motion.
This method performs well in complex environments, but it easily misses small targets.
Sadeghitehran et al. [6] extracted BRISK [7] (Binary Robust Invariant Scalable Key
points) corner optical flow features and classified targets’ optical flow through ELM
(Evolving Local Means) algorithm to detect moving targets. The method can adapt
to complex backgrounds, but the detection effect is poor when lacking target texture
information.

In 2015, Wang Z et al. [8] computed the 2-dimensional histogram of entropy flow
field to estimate background motion, obtained the difference image through background
motion compensation, and detected targets by spatial-temporal association. This method
omits targets easily when targets are small. Wei Liu et al. [9] used an improved Oriented
FAST and Rotated BRIEF (Binary Robust Independent Elementary Features) algorithm
to achieve an accurate backgroundmovingmodel and then detected small moving targets
in aerial video by multiplying four continuous difference images with morphology pro-
cessing. The method has good real-time performance, but the detection results depend
on the accuracy of the ORB (Oriented FAST and Rotated BRIEF) feature matching
results. The target detection effect is poor when the background is complex. Artem
Rozantsev et al. [10] used boosted trees algorithm for motion compensation, obtained
spatio-temporal image cubes by stacking motion-stabilized image windows over sev-
eral consecutive frames and detected targets in spatio-temporal image cubes through
AdaBoost classifier. In 2017, they substituted CNN (Convolutional Neural Networks)
[11] for boosted trees to better adapt to complex background. This method has difficulty
obtaining accurate detection results when targets are small.
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In 2016, Junhua Yan et al. [12] proposed a detection algorithm for small moving tar-
gets based on adaptive threshold segmentation. In this method, the background motion
was compensated by pyramid Lucas-Kanade optical flow of feature points, so the differ-
ence images were binary segmented using an adaptive segmentation threshold to detect
moving targets. This method has poor detection performance in case of complicated
background because it is difficult to accurately compensate for background motion.
Meng Yi et al. [13] proposed a detection algorithm for small moving targets based
on multi-view aerial registration system. This method extracted global Harris feature
points, then compensated for background motion through Delaunay triangulation match
and accumulated motion energy to detect small targets. The disadvantage of this method
is that background noise is easilymis-detected asmoving targets in complex background.
Yang T et al. [14] obtained target motion information by background model, built the
motion heat map by target motion accumulation, and detected targets in the hot regions
based on saliency-based background model. Although this method is suitable for small
targets, it has high false alarm rate in complex background. Li Y et al. [15] proposed a
novel spatio-temporal saliency approach, which calculated the spatial saliency map and
the temporal saliency map on the spatial domain and the temporal domain, depicted the
motion consistency characteristic of the moving target by continuous multi-frame video
sequence, and obtained spatio-temporal saliency map by fusing them to detect moving
targets. However, it is difficult for this method to detect targets in complex background.

In 2017, Lou J et al. [16] raised an approach for small targets detection through region
stability and saliency. The stability map was generated by a set of locally stable regions
derived from sequential Boolean maps. The saliency map was obtained by comparing
the color vector of each pixel with its Gaussian blurred version. Both the stability and
saliency maps were integrated in a pixel-wise multiplication manner for small targets
detection. This method has high false alarm rate and bad detection performance when
the targets are inconspicuous in complex background. Yan J et al. [17] put forward a
moving target detection algorithm, which obtained background compensated images
based on a nonlinear transformation model. This method can cope with image distortion
caused by severe rotation of the detection platform and realize the detection of slowly
moving targets in complex rotating background. However, the miss detection rats of
this method is high when target size is small. Gao J et al. [18] proposed a method to
detect small targets, which combined the self-correlation features of backgrounds and the
commonality features of targets in the spatio-temporal domain. The method proposed a
dense target extraction model based on nonlinear weights, and a sparse target extraction
model based on entry-wise weighted robust principal component analysis to detect small
targets, and suppressed background clutters based on target trajectory to improve the
detection precision. This method has good detection result for infrared images, but the
detection effect is poor for visible light images, where it is difficult to distinguish small
targets from the background.
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In 2018, Zhang Z et al. [19] proposed a novel flying target detection algorithm based
on the spatial and temporal context. This method used multi-frame video sequences
to calculate forward and backward motion history maps to extract temporal context
information, used conditional random fields to extract spatial contexts, then fused spatial
context and temporal context to detect flying targets. This method has poor detection
results in complex background, where it is difficult to extract spatial contexts, resulting
in low recall rate. YanD et al. [20] used theORB operator to extract global feature points,
compensated the global motion model through affine transformation and calculated the
difference image, then accumulated the multi-frame difference images to obtain the
target motion energy map to accurately detect small moving targets in UVA videos. This
method accumulates motion energy and has good detection result for small targets, but
the false alarm rate is high in the case of complex background.

In 2019, Yi et al. [21] raised a method for fast small moving target detection guided
by visual saliency (TDGS), which extracted visual salient regions including small targets
according to the differences in global features between the targets and the background,
and detected small targets through their temporal relativity in multi-frames. This method
has difficulty detecting targets when the color texture of the small targets resembles that
of the complex background, resulting in low recall rate.

Therefore, this paper focuses on solving the problem of small target size and complex
ground background. To tackle the problemof small target size, firstly, backgroundmotion
compensation is performed to obtain the background motion parameters. Then, forward
and backward motion history maps are calculated to fuse continuous difference images
for enhancedmotion information of small targets. Finally,morphologyprocessing is used
to obtain the area of small moving targets. To solve the problem of complex background,
the Kalman predictor is used to predict the target position, and the Hungarian matching
algorithm is used to correlate targets to obtain the target trajectory. Then, based on the
target trajectory, targets missed by detection are supplemented to improve the target
recall rate and false alarm targets are filtered out to improve the target precision rate.
The block diagram of the proposed algorithm is shown in Fig. 1:

Fig. 1. Block diagram of the algorithm for multiple small moving target detection in complex
ground background
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2 Detection of Multiple Small Moving Targets

Small targets have a few pixels and lack shape information. Therefore, the motion infor-
mation of small targets is used for detection, which are more suitable for small targets
in the scene.

2.1 Background Motion Compensation

In this paper, regional random points and the Lucas–Kanade (LK) optical flow method
[22] are used to obtain random optical flow tracking points. Regional random points can
well represent regional characteristics and do not require much gradient calculations.
Regional random points are uniformly extracted from the image I(t), and corresponding
random optical flow tracking points are obtained from the image using the LK optical
flow method, as shown in Fig. 2.

Fig. 2. Regional random optical flow tracking points

The RANSAC (Random Sample Consensus) algorithm is used to fit the 8-parameter
homography matrix Pt+1

t , which is the background motion estimation parameters from
frame I(t) to frame I(t + 1), as shown in Eq. (1):
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where (xti , y
t
i ) is the coordinate of the regional random point in frame I(t), and

(xt+1
i , yt+1

i ) is the coordinate of the corresponding optical flow tracking point. Back-
groundmotion compensation is done based on backgroundmotion parameter P, as shown
in Eq. (2):

I
′
(t ∓ 1) = Pt

t∓1I(t ∓ 1) (2)

where I′ is the motion compensated image, “−” means forward motion compensation
and “+” means backward motion compensation.
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2.2 Target Motion Information

In order to enhance the motion information of small targets, the Forward Backward
Motion History Image (FBMHI [23]) is used to fuse continuous difference images with
background motion compensation in order to obtain the complete motion information
of small targets.

ForwardMotionHistory Image (FMHI) is used to extract forwardmotion information
of targets, as shown in Eq. (3):

HF (t) =
{
max

(
0,Pt

t−1HF (t − 1) − d
)
if DF (t) < T

255 if DF (t) ≥ T
(3)

whereHF (t) is forward motion information map, Pt
t−1 is the background motion param-

eter from frame(t − 1) to frame(t), d is attenuation parameter ranged from 0 to 255. In
order to form the span of pixel intensity values within continuous L frames, d is set as
255/L. L represents the effective number of layers of forward moving images within the

FMHI, and L is set as 3 in this paper. DF (t)(DF (t) =
∣∣∣I(t) − I

′
(t − 1)

∣∣∣) is the forward
difference image, and I

′
(t − 1) is the forward motion compensated image. The adaptive

threshold T is determined using the OTSU theory [24].
Backward Motion History Image (BMHI) is used to extract backward motion

information of targets, as shown in Eq. (4):

HB(t) =
{
max

(
0,Pt

t+1HB(t + 1) − d
)
if DB(t) < T

255 if DB(t) ≥ T
(4)

where HB(t) is backward motion information map, Pt
t+1 is the background motion

parameter from frame(t + 1) to frame(t), and d and T are the same as in formula (3).

DB(t)(DB(t) =
∣∣∣I(t) − I

′
(t + 1)

∣∣∣) is the backward difference image, I
′
(t + 1) is the

backward motion compensated image.
Through FMHI and BMHI, target moving information map is obtained as shown in

Eq. (5):

HFB(t) = min(blur(HF (t)), blur(HB(t))) (5)

where blur(•) is a smoothing filter which effectively reduces the impact of background
noise. min(•) operation can effectively suppress the trail of the motion history map to
guarantee that the detected pixels are those within the boundary of moving targets. The
target motion information map HFB(t) is shown in Fig. 3.
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Fig. 3. Target motion information extraction

2.3 Extraction of Moving Target Area

Double thresholds are calculated on the target motion information map HFB(t) with the
Otsu method, and the lower threshold δ is used to retain the recall rate of targets. HFB(t)
is binarized to get the binary map MFB(t), as shown in Eq. (6).

MFB(t) =
{
255 HFB(t) > δ

0 HFB(t) ≤ δ
(6)

One erosion and two dilation operations are performed on the binary mapMFB(t) to
get the moving target area map MRGE(t), as shown in Fig. 4.

MREG(t) = ((MFB(t) � berode) ⊕ bdilate) ⊕ bdilate (7)

where � and ⊕ respectively represents erosion and dilation operation, and berode and
bdilate respectively represents rhombus structure element whose R = 1 and R = 3, with
R being the radius.
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Fig. 4. Moving target area map extraction
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3 Detection of Multiple Small Moving Targets Against Complex
Ground Background

There are some missed detections and false alarms in the moving target area map
MRGE(t). When the background is complex, the false alarm rate increases, and the con-
trast between small targets and the background is inconspicuous, making it difficult to
detect small targets. TheKalman predictor is used to predict each target’s position. Based
on the Euclidean distance between the detected target position and the predicted target
position, the Hungarianmatching algorithm is used to correlate targets to obtain multiple
target trajectories. If no detected target has the position that matches the predicted target
position, which indicates missed detection, then the missed target is supplemented at the
predicted target position to improve the recall rate. If the false alarm trajectory features
are different from the target trajectory features, then the trajectory features are used to
filter out false alarm target trajectories to improve precision rate.

3.1 Target Trajectories Association

Within the moving target area map MRGE(t), the target’s location in the next frame
MRGE(t+1) can be predicted. Based on the Euclidean distance between the detected
target position and the predicted target position, corresponding targets are associated to
form multiple target trajectories.

1) Predict targets. Eight-connected domain algorithm is used to detect targets and their
locations, then the Kalman predictor is used to predict each target’s position in the
next frame MRGE(t+1).

2) Detect targets. Eight-connected Domain algorithm is used to detect targets and their
locations inMRGE(t+1).

3) Associate targets. InMRGE(t+1), the detected position and the predicted position of
each target is matched. If the detected position of the target matches the predicted
position, they are associated as the same target. If the predicted position of the target
matches none of the detected positions, which indicates missed detection, then the
missed target is supplemented at the predicted position inMRGE(t+1). If the detected
position of the target matches none of the predicted positions, then this indicates that
a new target appears.

4) Determine target trajectory. All the associated targets are determined as target trajec-
tories, if the target in one trajectory is supplemented at the predicted position for five
consecutive frames, the target is considered to have disappeared, and the trajectory
will be deleted. Then the target trajectories are determined, as shown in Fig. 5.

In Fig. 5, the targets which are associated in the 1st, 2nd and 3rd frames are determined
as three target trajectories. Their labels are ID1, ID2 and ID3. A new target appears in
the 4th frame and is labeled as ID4. In the consecutive 5th, 6th, 7th, 8th and 9th frames, the
target trajectory ID3P is supplemented at the predicted position, which suggests that the
target has disappeared, so the target ID3 is deleted from the 5th frame. In the 11th frame,
the target ID1 is supplemented at the predicted position, which is marked as ID1P. In
the 12th frame, the missed target ID1P is associated as ID1 again.
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Fig. 5. Result of target trajectory correlation

3.2 Extraction of Target Trajectory Features

The trajectory features of the real targets are different from that of the false alarm targets,
hence the trajectory features can be used to filter out the false alarm target trajectories.
The target trajectory features include target area feature A, target position feature V and
target movement direction feature D. The mean square error of the target area in the
target trajectory is calculated to obtain the target area feature A. The target’s area in the
real trajectory changes little, so the value of A is small, while the target’s area in the false
alarm target trajectory changes greatly, giving a large A value. The mean square error
of the moving pixels of the targets between adjacent frames in the target trajectories is
calculated to obtain the target position feature V. The target’s position in the real target
trajectory changes little, so the value of V is small, while the target’s position in the false
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alarm target trajectory changes greatly, giving a large V value. The mean square error of
the angle between the target movement direction and the vertical direction in the target
trajectory is calculated to obtain the target movement direction feature D. The target’s
movement direction is ordered in the real target trajectory, so the value of D is small, the
target moving direction is disordered in the false alarm target trajectory, giving a large
D value.

Due to themovement of the target, the target trajectory features change greatly during
the existence of trajectories. Therefore, the target trajectories need to be segmented.
Target trajectory features in each segment change little, which can improve the accuracy
of false alarm target trajectories filtration. In this paper, 10 consecutive frames are used
as a segment to extract the target trajectory features. As shown in Eq. (8–10), ‘area’
represents the size of the target area, ‘speed’ represents the moving pixels between
adjacent frames, and ‘direction’ represents the angle between the direction of the target’s
movement direction and the vertical direction.

A = Var(areat, areat+1, ..., areat+9) (8)

V = Var(speedt, speedt+1, ..., speedt+9) (9)

D = Var(directiont, directiont+1, ..., directiont+9) (10)

Combining the target area feature A, target position feature V, and target movement
direction feature D, the target trajectory feature vector S = [A,V,D] is obtained.

3.3 Filtration of False Alarm Target Trajectories Based on the Trajectory
Feature Vector

In the trajectory feature vector S, when A, V, and D are less than the corresponding
threshold, the trajectory is determined to be a real target trajectory; otherwise, it is
determined to be the false alarm target trajectory, as shown in Eq. (11).

flag =
{
1 if A < m_area,V < m_speed ,D < m_direction

0 otherwise
(11)

where m_area, m_speed, and m_direction are thresholds corresponding to A, V, and
D, which are related to the target motion in the video. The mean square errors of A, V,
and D values are normalized to get the minimum values of A, V, and D. The thresholds
corresponding to A, V, and D are determined by experiments to be double the minimum
values. If flag is 1, the trajectory is determined to be the real target trajectory, otherwise,
the trajectory is determined to be the false alarm target trajectory, as shown in Fig. 6.In
Fig. 6, there are four target trajectories from the 1st frame to the 10th frame, which
are respectively labeled as ID1, ID2, ID3, and ID4. The changes in area, position, and
movement direction of the target ID1 are small from the 1st frame to the 10th frame. A,
V, and D are all smaller than the corresponding thresholds, so ID1 is determined to be a
real target trajectory. The change in the area of the target ID2 is large from the 1st frame
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Fig. 6. Target trajectories

to the 10th frame. Theminimum area is about 9 pixels in the 2nd frame and themaximum
area is about 200 pixels in the 5th frame. A is greater than the corresponding threshold,
so ID2 is determined to be a false alarm target trajectory. The change in position of the
target ID3 is large from the 1st frame to the 10th frame. The target moves about 2 pixels
from the 3rd frame to the 4th frame, and it moves about 30 pixels from the 9th frame to
the 10th frame. V is greater than the corresponding threshold, so ID3 is determined to
be a false alarm target trajectory. The change in movement direction of the target ID4
is large from the 1st frame to the 10th frame. The target movement direction is to the
right in the 2nd frame, downward in the 4th frame and to the left in the 6th frame. D is
greater than the corresponding threshold, so ID3 is determined to be a false alarm target
trajectory. Therefore, ID2, ID3, and ID4 are filtered out.
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4 Flowchart of the Proposed Algorithm

Figure 7 shows the flowchart of the algorithm for the detection of multiple small moving
targets against complex ground background (DMSMT-CGB). Firstly, random points in
the area and their corresponding optical flow tracking points are uniformly extracted,
and the homographymatrix is calculated using RANSCA to compensate for background
motion. Secondly, multiple difference images are used to extract the forward motion
information map HF (t) and the backward motion information map HB(t). HF (t) and
HB(t) are fused to obtain the target motion information map HFB(t), and the target area
map MREG(t) is obtained through adaptive thresholding and morphology processing.
Then, the Kalman predictor is used to predict the target position in MREG(t+1), and
targets are detected. The Hungarian matching algorithm is used to correlate targets. If
the detected position of the target matches the predicted position, they are associated
as the same target; If the predicted position of the target matches none of the detected
positions, a missed target is supplemented at the predicted position. If the detected
position of the target matches none of the predicted positions, it is determined that a new
target appears. All the associated targets are determined as multiple target trajectories.
If a target in one trajectory is supplemented at the predicted position for 5 consecutive
frames, the target is considered to have disappeared, and the trajectory will be deleted.
Finally, the trajectory features are extracted in segments, andwhether they are false alarm
target trajectories is determined based on their changes. False alarm target trajectories
are filtered out and true target trajectories are retained to obtain the detection result of
multiple small moving targets in complex background.

5 Experimental Results and Analysis

In order to verify the detection effect of the proposed algorithm for detecting multiple
small moving targets in complex ground background. The algorithm DMSMT-CGB in
this paper is compared with four other state-of-the-art algorithms for multiple moving
target detection, which are a detection algorithm based on spatio-temporal saliency (ST
saliency), a detection algorithm based on dual-mode Gaussian background modeling
(DGM), a detection algorithm based on clustering algorithm density based spatial clus-
tering of applications with noise (DBSCAN) and a detection algorithm based on the
clustering algorithm evolutionary local mean (ELM).

All experimental results were obtained with the same data and initialization con-
ditions. The experiment environment: VS2010, Matlab2016. The experiment platform:
3.60 Ghz-Intel i7 processor, 64-bit win7 system and 8 GB memory.

5.1 Evaluation Index

The recall rate (R), precision rate (P) andF-measure (F) are used to quantitatively evaluate
the multiple target detection algorithms. R represents the proportion of targets that are
correctly detected among all the targets. P represents the proportion of targets that are
correctly detected among all the detection results. F is the harmonic weighted average
of the two, which is calculated is as follows:

R = TP
/
(TP + FN ) (12)
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P = TP
/
(TP + FP) (13)

F =
(
1 + β2

) × P × R

β2 × P + R
(14)

where TP represents the number of targets that are correctly detected as targets, FN
represents the number of targets that are incorrectly detected as background, and FP
represents the number of backgrounds that are incorrectly detected as targets. β deter-
mines the relative significance of the recall and precision rate. β = 1 means that the
significance is equal. β > 1 means that the recall rate is more significant, β < 1 means
that the precision rate is more (significant). After overall consideration of recall and
precision rate, in this paper β is set to 1.

5.2 Experimental Data

For the purpose of the current experiment, the experimental video has to satisfy a number
of conditions, such as backgroundmotion, small target scale, weak contrast, and complex
background. It is difficult to obtain an experimental video that meets all the conditions
above. In this paper, we obtained three experimental videos by field shooting.

The first experimental video (Translational grass background) contains 2000 frames
of images with the image size of 1920 × 1080 pixels. The background of the images is
grass, and the targets include a small white quad-rotor UAV (Unmanned Aerial Vehicle)
and a black one flying in a straight line close to the ground from near to far. The
camera platform is set on another UAV during shooting, which follows the two targets in
translation motion. From the whole video, 500 consecutive images containing the target
are selected to obtain the experimental video VD1.

The second experimental video (Rotational road background) contains 2400 frames
of images with the image size of 1920 × 1080 pixels. The background of the images
is city roads. The targets include a small white quad-rotor UAV and a black one slowly
flying in a curve close to the ground. The camera platform is set on another UAV during
shooting, which follows the two targets in rotation motion. From the whole video, 500
consecutive images containing the targets are selected to obtain the experimental video
VD2.

The third experimental video (Pitching road background) contains 1000 frames of
images with the image size of 1920 × 1080 pixels. The background of the images is
city roads, and the targets include a small white quad-rotor UAV and a black one flying
in a straight line close to the ground from far to near. The camera platform is set on
another UAV during shooting, which is in pitching movement. From the whole video,
200 consecutive images containing the targets are selected to obtain the experimental
video VD3.

In the above three experimental videos, the black UAV is the key target because it is
similar in color to the background, and has a small size, which makes it easily obscured
by the background. The characteristics and main detection difficulties of each video are
shown in Table 1.
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Table 1. Experiment videos

Video Frame Resolution (pixels) Minimum target size
(pixels)

Major detection difficulties

VD1 500 1920 × 1080 6 × 5 Translational background,
scene motion, small target
scale, weak contrast, black
UAV obscured by
background

VD2 500 1920 × 1080 20 × 15 Rotational background,
complex background, black
UAV obscured by
background, the white and
the black UAVs’ slow
relative motion to
background

VD3 200 1920 × 1080 20 × 15 Pitching Background,
complex background, black
UAV obscured by
background

5.3 Result Analysis

The proposed algorithm and other comparison algorithms are tested on the three experi-
mental videos to compare the detection performance. Experimental results are compared
and analyzed using the aforementioned evaluation indicators.

Detection ofMultipleMovingTargetsAgainst theTranslationalGrassBackground.
The performance of the proposed algorithm for detectingmultiplemoving targets against
the translational grass background is verified on VD1. Experimental results of the
proposed algorithm and other comparison algorithms are shown in Table 2.

Table 2 shows that the proposed algorithm has the highest TP, the lowest FP, the most
correctly detected targets and the lowest false alarm rate, indicating superiority over the
other four algorithms. The DBSCAN algorithm and the ELM algorithm are based on
target feature points. In VD1, the small target size makes it difficult to extract feature
points, hence the two algorithms fail to detect targets.

Detection ofMultipleMovingTargetsAgainst theRotatingRoadBackground. The
performance of the proposed algorithm for detecting multiple moving targets against
the rotating road background is verified on VD2. Experimental results of the proposed
algorithm and other comparison algorithms are shown in Table 3.

Table 3 shows that the proposed algorithm has the highest TP, and the most correctly
detected targets. Although the DBSCAN algorithm and the ELM algorithm have lower
FP, the TP of these two algorithms are both very low, which means a large number
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Table 2. Results of multiple moving target detection in the translational grass background

Algorithm
135th frame (2 moving tar-

gets)
385th frame (2 moving tar-

gets)
Whole 
video

ST sali-
ency

TP=488

FP=122

1 1

DGM
TP=388

FP=5581

1 1

DBSCAN TP=0

Undetected targets Undetected targets

ELM TP=0

Undetected targets Undetected targets

DMSMT-

CGB

OURS

TP=933

FP=701 1

2 2
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Table 3. Results of multiple moving target detection in the rotating road background

Algorithm
15th frame (3 moving tar-

gets)
220th frame (2 moving tar-

gets)
Whole 
video

ST saliency
TP=518

FP=745

1 1

DGM
TP=509

FP=385

1 1

DBSCAN
TP=309

FP=12
1

1

2

ELM
TP=324

FP=10
1

1

2

DMSMT-
CGB  

OURS

TP=1098

FP=89
1 1

2

2

3
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of missed detections. The proposed algorithm has lower FP while ensuring the highest
TP, which which means that the most number of targets are correctly detecting while
ensuring few false alarms. Therefore, the performance of the proposed algorithm is better
than the other four algorithms.

Detection ofMultipleMovingTargets Against the PitchingRoadBackground. The
performance of the proposed algorithm for detecting multiple moving targets against the
pitching road background is verified on VD3. Experimental results of the proposed
algorithm and other comparison algorithms are shown in Table 4.

Table 4 shows that the proposed algorithm has the highest TP and the most correctly
detected targets. Although the FP of the ST saliency algorithm, the DBSCAN algorithm
and the ELM algorithm are lower than that of the current algorithm, the TP of these
three algorithms are very low, which means a large number of missed detections. The
proposed algorithm has lower FP while ensuring the highest TP, which means that the
most number of targets are correctly detected while ensuring the least number of missed
detections and few false alarms. Therefore, the performance of the proposed algorithm
is better than the other four algorithms.

Performance Comparison Among Multiple Moving Target Detection Algorithms.
The performance of the proposed DMSMT-CGB algorithm is compared with the other
four multiple target detection algorithms, and their performance is evaluated by recall
rate (R), precision rate (P), and Fmeasure (F) indicators. Experimental results are shown
in Table 5.

Table 5 shows that the proposed algorithm has the highest recall rate R and F, indi-
cating that our algorithm performs better than the other four algorithms. It is observed
that in the experimental video VD2 and VD3, the precision rate P of the ELM algorithm
is higher than that of the proposed algorithm by 4.5% and 3.4% respectively, and that
the precision rate P of the DBSCAN algorithm is higher than that of the proposed algo-
rithm by 3.8% and 2.6% respectively. However, the recall rate R of the ELM algorithm
is 27.8% in VD2 and 46.5% in VD3, which is much lower than that of the proposed
algorithm. Likewise, the recall rate R of the DBSCAN algorithm is 26.2% in VD2 and
50.5% in VD3, which is much lower than that of the proposed algorithm. In VD1, the
DBSCAN algorithm and the ELM algorithm cannot detect the targets, so that the recall
rate (R), precision rate (P), and F-measure (F) are all 0. Experimental results show that
the proposed algorithm has the best detection performance for detecting multiple small
moving targets against complex ground background.
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Table 4. Results of multiple moving target detection in the pitching road background

Algorithm
10th frame (2 moving tar-

gets)
136th frame (2 moving tar-

gets)
Whole 
video

ST saliency
TP=236

FP=14

1 1

DGM
TP=350

FP=186

1 1

DBSCAN
TP=202

FP=4

1 1

ELM
TP=186

FP=2

1 1

DMSMT-

CGB

OURS

TP=389

FP=18

1 1

2 2
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Table 5. Performance evaluation ofmultiple smallmoving target detection algorithms in complex
ground background)

Algorithm R P F

VD1 ST saliency 48.8 80.0 60.6

DGM 38.8 6.5 11.1

DBSCAN 0 0 0

ELM 0 0 0

DMSMT-CGB (OURS) 93.3 93.0 93.2

VD2 ST saliency 44.5 41.0 42.7

DGM 43.7 56.9 49.4

DBSCAN 26.2 96.3 41.2

ELM 27.8 97.0 43.2

DMSMT-CGB (OURS) 94.2 92.5 93.4

VD3 ST saliency 59.0 94.3 72.8

DGM 87.5 65.3 74.8

DBSCAN 50.5 98.1 66.7

ELM 46.5 98.9 63.3

DMSMT-CGB (OURS) 96.7 95.5 96.1

6 Conclusion

This paper proposes a multiple small moving target detection algorithm against complex
ground background, which solves the problem of small targets, which have few pixels
and lack topographical information, making them difficult to be accurately detected
against complex background. In the proposed algorithm, multiple forward-backward
target motion information is fused based on the FBMHI algorithm to improve the recall
rate. Target trajectories are correlated to supplement missed targets at the predicted
position and reduce missed targets. Target trajectory features are extracted in segment
to filter out false alarm target trajectories, further reducing the false alarm rate. Exper-
imental results show that the proposed algorithm has higher recall rate, precision rate
and F-measure. Future research will be focused on conducting in-depth research on the
detection of multiple small moving targets against severe rotational background, which
will help solve the problem of accurately detecting targets by the photodetector platform
under large-range UAV movement.
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