
Fine-Grained Obfuscation Scheme
Recognition on Binary Code

Zhenzhou Tian1,2(B), Hengchao Mao1,2, Yaqian Huang1,2, Jie Tian1,2,
and Jinrui Li1,2

1 School of Computer Science and Technology, Xi’an University of Posts
and Telecommunications, Xi’an 710121, China

tianzhenzhou@xupt.edu.cn
2 Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing,

Xi’an, China

Abstract. Code obfuscation is to change program characteristics
through code transformation, so as to avoid detection by virus scan-
ners or prevent security analysts from performing reverse analysis. This
paper proposes a new method of extracting from functions their reduced
shortest paths (RSP), through path search and abstraction, to identify
functions in a more fine-grained manner. The method of deep representa-
tion learning is utilized to identify whether the binary code is obfuscated
and the specific obfuscation algorithms used. In order to evaluate the
performance of the model, a data set of 60,000 obfuscation samples is
constructed. The extensive experimental evaluation results show that the
model can successfully identify the characteristics of code obfuscation.
The accuracy for the task of identifying whether the code is obfuscated
reaches 98.6%, while the accuracy for the task of identifying the specific
obfuscation algorithm performed reaches 97.6%.

Keywords: Code obfuscation recognition · Binary code · Neural
network

1 Introduction

Code obfuscation is a widely used software protection technique that can miti-
gates the risks caused by reverse engineering. It helps to protect software intel-
lectual property by hiding the logic and sensitive data implied in the code. The

This work was supported in part by the Science and Technology of Xi’an
(2019218114GXRC017CG018-GXYD17.16), the National Natural Science Founda-
tion of China (61702414), the Natural Science Basic Research Program of Shaanxi
(2018JQ6078, 2020GY-010, 2020JM-582), the International Science and Technology
Cooperation Program of Shaanxi (2018KW-049, 2019KW-008), the Key Research and
Development Program of Shaanxi (2019ZDLGY07-08), and the Special Funds for Con-
struction of Key Disciplines in Universities in Shaanxi.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022

Published by Springer Nature Switzerland AG 2022. All Rights Reserved

P. Gladyshev et al. (Eds.): ICDF2C 2021, LNICST 441, pp. 215–228, 2022.

https://doi.org/10.1007/978-3-031-06365-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06365-7_13&domain=pdf
https://doi.org/10.1007/978-3-031-06365-7_13


216 Z. Tian et al.

use of code obfuscation depends on the sensitivity of the application. Its appli-
cations are mainly on digital rights management, software licensing and white
box encryption. Malicious code also makes extensive use of code obfuscation to
hide its intentions, so as to evade detection and hinder analysis. Therefore, the
problem of de-obfuscation has attracted widespread attention in the academic
community, many researchers have attempted to recover the original code from
obfuscated programs, while identifying the specific obfuscation algorithm [22]
applied facilitates to a large extent the de-obfuscation process.

At present, most de-obfuscation techniques focus on the topic of automat-
ically processing the obfuscated code to restore the original code. Generally,
they only work on certain obfuscation algorithms. Some of existing approaches,
including layout de-obfuscation [2], opaque predicate de-obfuscation [13], con-
trol leveling obfuscation [17] and virtualization de-obfuscation [4,15,20], all work
under the premise of knowing the specific obfuscation algorithms used. In reality,
researchers often face completely unknown malware in the form of executable
code, which leads to two closely related problems. The first question, from the
perspective of de-obfuscation, is whether the target program is obfuscated? For
example, if the existing de-obfuscation techniques are used to analyze the target
program that does not contain obfuscated code, not only the internal logic of
the original program will be broken, it also causes the analysts to spend a lot of
time doing useless work. The second question is, from the perspective of reverse
engineering, what is the specific kind of obfuscation algorithm used to produce
to target obfuscated program? Especially, it is worth mentioning that in recent
years, new obfuscation algorithms have emerged one after another. Obviously,
it is very necessary for analysts to understand the characteristics of each code
obfuscation and quickly identify the obfuscation algorithms from the target pro-
gram, which once can be identified in an automated way, will greatly reduce the
difficulty of reverse analysis and time cost for security analysts.

In recent years, tremendous successes have been witnessed of applying deep
learning models to diverse program analysis tasks, such as binary code clone
detection [21], compiler provenance analysis [16] and vulnerability detection [19].
They generally leverage the many layers of non-linearities to automatically boost
learning a latent vector representation with semantic richness. In this regard,
this paper proposes to take each individual function within a binary program
as the basic analysis subject. After processing a function into a set of reduced
shortest paths, our method operates directly on the corresponding normalized
assembly instructions to achieve fine grained obfuscation detection. Also, from
the perspective of sequence analysis and structural analysis, we design a super-
vised learning model based on deep neural networks to achieve code obfuscation
detection and obfuscation algorithm identification. Our main contributions are
summarized as following:

– We propose a new form of function representation as a set of reduced shortest
paths (RSP), through path search and abstraction on its control flow graph
(CFG), to get the function represented in a more fine-grained and semantics-
aware manner.



Fine-Grained Obfuscation Scheme Recognition on Binary Code 217

– We suggest to perform fine-grained binary code obfuscation recognition for
each individual function by designing a lightweight function abstraction strat-
egy and a deep representation learning model based on RNN and CNN. It
reduces the impact of task complexity and human bias by handing over the
important feature extraction and selection process of the function to less
human intervened neural networks.

– We have implemented a prototype tool called OBDB (OBfuscation scheme
Detector on Binary code), which integrates our proposed method. A dataset
consisting of more than 60,000 samples is constructed by processing 11,000
programs collected from Google Code Jam (GCJ), with two of the most well-
known code obfuscators including Tigress [1] and OLLVM [8]. The experi-
mental evaluation results conducted on the dataset show that, the proposed
method can effectively capture the significant features of specific code obfus-
cations. OBDB achieves rather good performance, with the accuracy of iden-
tifying whether the code is obfuscated reaches 98.6% and the accuracy of
identifying the specific obfuscation algorithm reaches 97.6%.

2 Background

Code obfuscation is a technique that enforce control and data transformations on
the program’s source code or even its binary code while retaining the function-
ality of the original program, with the aim of making it more difficult to analyze
and tamper with. Collberg et al. [3] makes a general taxonomy of obfuscating
transformations. According to underlying basic schemes, obfuscation transfor-
mations can generally be divided into four categories: layout obfuscation, data
obfuscation, control obfuscation and prevention obfuscation. So far, the research
of code obfuscation algorithms has been relatively mature, various algorithms
have emerged in recent years. Table 1 shows six typical code obfuscation algo-
rithms supported in two widely used obfuscation tools, on the basis of which
many other obfuscation algorithms have been derived.

Table 1. Six typical obfuscation algorithms

Tool Obfuscation algorithm Description

OLLVM Instructions substitution (sub) Replace binary operators including addition,
subtraction and boolean operators

Bogus Control Flow (bcf) Add opaque predicates to make a conditional jump
to the original basic block

Control Flow Flattening (fla) Break down the program’s control flow

Tigress Virtualize (vir) Replace code with virtualized instructions and
execute them by an interpreter

AddOpaque (opa) Add opaque predicates to split up the control flow of
the code

EncodeLiterals (lit) Replace literal integers and strings with less obvious
expressions



218 Z. Tian et al.

3 Overview of Our Approach

In this section, we will introduce the proposed method in detail. The overview
of OBDB is shown in Fig. 1, which consists of the training and the detection
phases. In the training phase, firstly a set of reduced shortest paths RSP are
extracted and normalized to get each function expressed. To be specific, IDA-
Pro [5] is used to analyze each function in the training set to obtain its control
flow graph (CFG), on the basis of which all the shortest paths are extracted
from the entry basic block to each other basic block in the CFG to obtain a
path set SP . By checking the inclusion relationship between the paths in SP ,
a set of reduced shortest paths RSP can be generated. That is, for each path
p ∈ SP , as long as it is not completely contained by all the other paths in SP , it
will be considered as a reduced shortest path and added to the set RSP . With
a light-weighted assembly instruction normalization scheme, each path in RSP
is further abstracted to get rid of inessential details.

The collection of abstracted paths form the basic representation of a function,
which are fed as the inputs to the neural network module to extract latent feature
vectors that are indicative of the obfuscation algorithms. The whole model is
finally trained by appending a dense and a softmax layer to process the latent
vectors together with their ground truth labels as supervision. The detection
phase is much simpler, which reads in an individual function, processes it with
the function abstraction and utilizes the trained model to produce predictions.

Fig. 1. The basic framework of the OBDB model

3.1 Function Abstraction

Reduced Shortest Path Extraction. A function must be expressed in a cer-
tain form such that it can be further analyzed. Typical methods include the use
of raw byte sequences, assembly instruction sequences, or control flow graph to
describe the function. As shown in many binary analysis tasks, adopting the
original raw bytes has been proven to be an unwise choice [16]; while using the
assembly code as a whole to describe the function, generally results in the loss
of expressive structural information, which may be of significant importance to



Fine-Grained Obfuscation Scheme Recognition on Binary Code 219

identify the features manifested in the obfuscated code by the obfuscation algo-
rithms. To this end, we choose to use the CFG that implicitly encodes the possi-
ble execution paths as the basic representation form for each function. In partic-
ular, we retrieve and construct from each function’s CFG all the reduced shortest
paths, and use the assembly instructions that appear along these paths to get it
represented. It ensures that, at the time of capturing instruction level obfusca-
tion indicative features, the structural features can also be covered. Algorithm1
gives the pseudo-code that converts the function into the assembly instruction
sequences.

Algorithm 1. Reduced shortest path based function representation
Input:

G: control flow graph of a function
IB : instruction set within each basic block
T : the number of basic blocks

Output:
RSP : the reduced shortest path representation of the input function

1: SP ← 〈 〉
2: path ← 〈〉
3: Gacyclic = clear garph(Gd) � clear the loops in G to be a directed acyclic graph
4: E = getentry(G) � get the entry node of the CFG
5: for each node B in Gacyclic do
6: if E is exactly B then
7: continue
8: path =Dijkstra(Gacyclic, E, BB) � using Dijkstra to find the shortest path
9: SP = SP ⊕ path � Add a new shortest path to the set

10: end if
11: end for
12: for each p in SP do
13: if containedBy(p, SP ) then
14: RSP = RSP ⊕ p � Add p to the reduced shortest path set
15: end if
16: end for

Instruction Normalization. After obtaining the instruction sequence of the
function, the instruction consists of an opcode (i.e. the mnemonic) and a list of
operands. It is usually unwise to process the original instructions directly. In our
case, we want to capture the characteristics of the obfuscated algorithm, rather
than the functionality of the function. In other words, we don’t care whether
the value 6 is assigned to the register eax or the value 10 is assigned to the
register eax, but we are more concerned with the form and type of instructions
chosen by the obfuscation algorithm. In this regard, by considering that these two
instructions “mov eax, 6” and “mov eax, 10” are the same may be better choice
to our problem. In addition, the memory addresses (such as the target address
of the jmp instruction) are meaningless, they tend to be noises that distract



220 Z. Tian et al.

the attention of successive neural network based training process. In addition,
in order to avoid introducing too many human prejudices, we choose to use
a lightweight abstraction strategy to process the original assembly instruction
sequences in RSP. To be specific, we have formulated the following instruction
abstraction rules:

– All the opcode of instructions remain unchanged.
– All registers in the operand remain unchanged.
– All base memory addresses in the operand are replaced with the symbol MEM.
– All immediate values in the operand are replaced with the symbol MEM.

For example, using the above normalization rules, the instruction “add eax,
6” will become “add eax, IMM”, the instruction “mov ebx, add eax, 6” will
become “mov ebx, MEM”, and the instruction “mov ebx, [ebp−20]” will become
“mov ebx,[ebp−IMM]”.

3.2 Instruction Embedding

Before using the neural network based learning model to detect obfuscation algo-
rithms, we must transform the normalized assembly instruction sequences into
numerical vectors, such that they can be used as input to subsequent classifiers.
As our designs choose to use advanced deep neural network to master the subtle
features and patterns indicative of the applied obfuscation algorithms, we firstly
utilize the widely adopted word embedding to assign a vector to each unique
normalized instruction, based on which the whole instruction sequence can also
be represented as a vector sequence.

There are several word embedding choices that can be leveraged for our appli-
cation, of which the one-hot encoding has been widely deployed. It represents
each unique word by a n-dimensional vector, with the ith dimension being set
to 1 and all other dimensions being set to 0, where i is the index of the word
in the vocabulary of size n. This technique is computationally intractable as the
generated vectors are too sparse (the same dimension as the size of the whole
vocabulary) and generally needs to do joint-learning with subsequent neural
networks, making the learnt word semantics significantly task-specific. In this
respect, OBDB leverages the popular skip-gram model [12] to learn more com-
pact vector representations that carry instruction co-occurrence relationships
and lexical semantics in an independent and unsupervised manner, so as to make
the learnt vectors reusable in other binary analysis tasks. Specifically, we treat
each basic block as a sentence and each abstracted instruction within the basic
block as a word, and feed all the basic blocks from our binary collection to the
skip-gram model to learn for each unique normalized instruction a d-dimensional
vector, by minimizing the loss of observing an instruction’s neighborhood (within
a window w) conditioned on its current embedding. The objective function of
skip-gram can be defined as [14]:

arg min
Φ

∑

−w≤j≤w,i �=j

−log p (ei+j |Φ(ei)) (1)



Fine-Grained Obfuscation Scheme Recognition on Binary Code 221

3.3 The BiGRU-CNN Model

Based on the instruction embedding learned with skip-gram, different schemes
such as maximum pooling, average pooling or cascading can be exploited to
aggregate the embeddings of each abstracted instruction sequence, and then
feed it to any classification model for obfuscation algorithm identification. How-
ever, it still faces the following two limitations: (1) skip-gram assigns a static
embedding vector to each instruction, and it does not know the context of the
different sequences it interacts with; it may not be able to learn obfuscation-
related features; (2) as instruction sequences are abstracted from functions, they
may not only enjoy local instructions. In this regard, it needs sequence learning
model to better capture representative obfuscation algorithm specific patterns
and features from instruction sequences, so as to recognize the specific obfusca-
tion algorithms applied. As advanced neural network structures, either RNN or
CNN based models have ever been applied for representation learning sequences
in NLP tasks. Therefore, in this work, OBDB attempts to combine RNN and
CNN structures to learn the syntactic and structural information implied in
the instruction sequences, so as to use both their advances to identify obfusca-
tion algorithms. Figure 2 depicts the basic structure of our BiGRU-CNN based
model.

Specifically, it firstly use a RNN-based layer to iteratively process each nor-
malized reduced shortest path pi in RSP into a numerical vector. RNN is chosen
in our design for its ability of capturing long range dependencies between the
normalized opcodes in a sequence, so as to capture the obfuscation indicative
features. Yet, the naive RNN structure exposes the vanishing/exploding gradient
issue in handling long sequences, while two improved structures LSTM and GRU
have been proposed to alleviate the problem. Also, considering that GRU has a
simpler structure and is generally believed to be more efficient than LSTM, we
choose to use GRU in the current design.

The GRU unit reads in the input instruction sequence pi through the hid-
den layer function H to generate a hidden vector state hi at each timestep i.
To improve the learning ability, OBDB further devises the bidirectional GRU
(BiRGU) structure to jointly capture both the forward and backward sequential
dependency and increase the amount of information available to the network.
The hidden state vector hi at timestep i can then concatenated as:

hi =
[−→
hi ;

←−
hi

]
. (2)

After bidirectionally reading the entire input sequence, the hidden states ht

corresponding to the last timestep will act as the latent vector representation of
the input sequence. After processing all the pi ∈ RSP , all the encoded numerical
vectors will be formed as a numerical matrix A, which is to be fed into a CNN
based layer to further learn a latent vector representation.

The convolution layer can extract local contextual features with varying con-
volution kernels. In OBDB, k different filters with shape n×d are adopted for con-
volution operations on matrix A to obtain a new feature matrix C ∈ R

(l−n+1)×k,



222 Z. Tian et al.

where n denotes the kernel size. To capture different aspects of features, we con-
volute A by varying kernels of size 2, 3 and 4 respectively. To reduce the dimen-
sionality of learnt vectors and get OBDB focus on significant features, a pooling
layer is applied that performs pooling operations on the produced convolutional
features. There are usually two types, max-pooling and average-pooling, that
are widely used. Maximum pooling is to select the maximum value in the vector
after convolution operation as the local feature, while average pooling is to use
the average value. In this paper, we choose maximum pooling. To prevent the
neural networks from overfitting during the training phase, a dropout layer is
also appended right after the CNN layer.

Finally, the output of the dropout layer is fed as inputs to subsequent dense
and classification layers for predication. The classification layer is basically sig-
mod or softmax layer. Sigmoid is mainly used for binary classifications, and
softmax can be used for multi-classifications. Specifically, we use the softmax
function to achieve multi-classification. Simply put, the softmax function maps
some output neurons to real numbers between 0 and 1, such that the sum of the
probabilities of multi-classifications is exactly 1. The softmax function is defined
as follows:

Pi =
eVi

∑C
i−1 eVi

(3)

where Vi is the output of the previous unit of the classifier, i denotes the class
index, and the total number of classes is C.

Fig. 2. BiGRU-CNN model structure diagram



Fine-Grained Obfuscation Scheme Recognition on Binary Code 223

4 Experiments and Evaluation

4.1 Dataset Construction

In the field of code analysis, publicly available labeled datasets for binary code
are scarce, let alone datasets with obfuscation labels. In order to evaluate the
performance of OBDB, we collected a large number of open source programs
written in C programming language from the GCJ as a basis to build a data set.
Specifically, we deal with these collected programs with the following steps:

(1) Firstly, we utilize the six typical obfuscation algorithms implemented in two
widely use obfuscation tools to enforce obfuscation on the source code of
each program. The specific obfuscation algorithms applied include the -bcf,
-fla and -sub options in OLLVM, as well as the -AddOpaque, -Virtualize
and -EncodeLiterals options in Tigress. For programs that are successfully
obfuscated, the gcc compiler is then used to compile their obfuscated source
code into binaries.

(2) Secondly, IDA Pro is used to identify and extract functions from each binary
file. In addition, we removed some insignificant functions (functions that
contain only several instructions, such as the stub functions), which are
meaningless to analysis. In the current setting, we consider functions that
contain less than 10 instructions to be trivial, which will not be considered
by the dataset.

(3) Further, to prevent the neural network model from seeing in the training
phase functions that are very similar to those in the testing phase, only
distinct function are retained in the final dataset. Specifically, if a function
has exactly the same normalized assembly instructions as any other function
in the raw dataset, it will be considered as redundant. With these settings,
we finally constructed a dataset consisting of 60,000 distinct and non-trivial
obfuscated functions.

4.2 Implementation and Experimental Setup

We have implemented OBDB as a prototype tool. It uses ida pro to parse binary
files to obtain functions and their original assembly instructions. The function
abstraction module is implemented in Java programming language, while the
neural network based representation learning and classification module is imple-
mented with Python and the Tensorflow framework.

In the experimental settings, we randomly divide the entire dataset into train-
ing set, validation set and test set at a ratio of 80%, 10%, and 10%. The neural
network model is trained using a Tesla V100 GPU with the Adam optimizer.
The batch size is set to 128, and the initial learning rate is set to 0.001 (when
the loss on the validation set stops improving for at least 5 epochs, the learn-
ing rate will be further divided by 10). In each epoch, the training samples are
shuffled, the accuracy on the validation set is calculated. Besides, to avoid prob-
lems such as over-fitting and non-convergence, the early stopping mechanism is



224 Z. Tian et al.

enforced to stop the training right after the epoch that the validation accuracy
no longer improves. Finally, the model with the highest accuracy is considered
as the finally trained obfuscation classifier, with which frequently used perfor-
mance metrics including accuracy, precision, recall, and f1-score are evaluated
and reported on the test set.

4.3 Experimental Results

In the following, we evaluate the performance of OBDB in identifying the exis-
tence of obfuscation and the specific obfuscation algorithms respectively. In addi-
tion, several other widely used deep neural network models have also been imple-
mented and get compared with OBDB. Note that the precision, recall and f1-
score in Table 2 all refer to the weighted average precision, recall and f1-score,
respectively.

(1) Performance evaluation on identifying the existence of obfuscation
In this experiment, we take the obfuscated/non-obfuscated label of each
function as the ground-truth. That is, all the functions obfuscated with either
of the six obfuscation algorithms are marked with the obfuscated label. Then,
OBDB is trained and evaluated according to the experimental settings in
Sect, 4.2. As shown in Table 2 the evaluation results, OBDB outperforms
all the other comparison models with respect to the performance metrics,
exhibiting a rather good accuracy of 98.6% and a high f1-score of 0.986.

Table 2. Detection results for the existence of obfuscation

Model Accuracy Precision Recall F1

CNN 95.78% 0.9576 0.9678 0.9598

BiLSTM 93.65% 0.9395 0.9368 0.9365

BiGRU 94.98% 0.9458 0.9378 0.9488

OBDB 98.62% 0.9794 0.9889 0.9861

(2) Performance evaluation on identifying the specific obfuscation algorithms
In this experiment, the specific obfuscation algorithms applied on the func-
tions are taken as the ground-truth labels to get OBDB trained and evalu-
ated. That is, OBDB attempts to assign to each obfuscated function a certain
label that indicates one of six obfuscation algorithms. According to the detec-
tion results, the total accuracy of OBDB reaches 97.6%, which is a bit lower
than its accuracy reported on the task of identifying the existence of obfus-
cation. Besides, we compare it with Zhao’s [23] method, which also designs a
deep neural network based model to train classifiers for obfuscation scheme
recognition. As reported in their work, the detection accuracy on recognizing
the specific obfuscation algorithms reaches 89.4%, which is much lower than
ours’. The about 9% performance gains achieved with OBDB than Zhao’s



Fine-Grained Obfuscation Scheme Recognition on Binary Code 225

method may lie in that, OBDB adopts a more carefully designed function
representation (a set of reduced shortest paths) that captures both syntactic
and structural changes enforced by the obfuscation algorithms, while their
method simply represent the function as a set of basic blocks. It indicates
the superiority of our proposed novel function representation method in this
task.

Figure 3 summarizes the true positive rates (TPRs) with respect to each
obfuscation algorithm. As it shows, the TPRs vary across different obfuscation
algorithms, indicating the different impacts enforced on the produced obfuscated
code by different obfuscation algorithms. To be specific, the FPR for the -fla
obfuscation in OLLVM reaches the highest, which is about 99.89%; while the
FPRs for -lit and -sub obfuscations are the lowest, which are 94.63% and 94.65%
respectively. As introduced in Table 1, the -fat option performs the control flow
flattening obfuscation, which makes great changes to the control flow of the
program. Our normalized reduced shortest path representation of functions that
well captured the structural features just boosts the FPR on this obfuscation
algorithm. Similarly, the reasons for the relatively lower FPRs of -lit and -sub
lie in that, the changes introduced by these two kind obfuscation schemes which
replace literals or strings are not that obvious as other obfuscation algorithms.
In spite of that, the fairish FPRs indicate that OBDB still captures the subtle
features indicative of these obfuscations. The TPRs for the other neural networks
models are also evaluated and depicted in Fig. 4. As the data shows, OBDB still
performs the best among all the models.

Fig. 3. TPRs in terms of differnt obfus-
cation algorithms

Fig. 4. TPRs in terms of different neu-
ral network models

5 Related Work

In recent years, the application of deep learning technology in the field of binary
program analysis has achieved remarkable success [11,16]. Of the few works that
implement obfuscation recognition, Zhao et al. [23] also adopts neural network
based models. Different from their method that uses the set of basic blocks



226 Z. Tian et al.

within a function to form the basic representation to be fed into subsequent
neural networks, we propose to represent each function as a set of normalized
reduced shortest paths extracted from its control flow graph, such that structural
information can also be captured besides the syntactic information manifested by
the assembly instructions appearing along the paths. It enables the subsequent
neural network layers preferably capture subtle features that are indicative of
the structural changes enforced by the obfuscation algorithms, so as to improve
the whole detection performance.

In the literature, there are many code obfuscation detection approaches that
focus on the scripting languages, such as JavaScript [10] and PowerShell [9], as
well as on Android Apps [18], which also adopt machine learning and data min-
ing based ways. JSObfusDetector detector [7] uses the SVM algorithm to get
malicious JavaScript obfuscation scripts detected, after characterizing the num-
ber of string variables and the dynamic functions in JavaScript scripts. Wang
et al. [18] extracts feature vectors from the Dalvik bytecode and uses it to iden-
tify the obfuscator provenance information within an App. On one hand, these
methods works generally on the whole program level, and can not be easily
adapted to the detection of obfuscation provenance on binary code, due to the
missing of certain features that present in the source code but get lost during the
compilation phase. Besides, rather than extracting and selecting features with
manually defined templates, OBDB resorts to the powerful learning ability of
neural network models and the largest number of training data to improve the
accuracy and efficiency of the detection methods.

6 Conclusion

In this article, we propose OBDB to perform fine-grained binary code obfuscation
recognition on isolated function, based on a novel reduced shortest path based
function representation scheme and a deep neural network model that combines
the typical CNN and RNN structures. Due to the lack of publicly accessible
dataset, we constructed a relatively large dataset comprised of more than 60,000
obfuscated functions, by processing 11,000 C programs with 6 different obfusca-
tion algorithms supported in OLLVM and Tigress. The experimental evaluation
results conducted on the dataset indicate that, OBDB can effectively capture
the significant features indicative of the code obfuscation algorithms. It can effi-
ciently identify the existence of obfuscation with an accuracy of 98.6%, the accu-
racy of identifying the specific obfuscation algorithm also reaches a high score of
97.6%. Future work includes enriching the dataset with more samples and more
kind obfuscation algorithms, as well as designing other neural representation
learning models, such as the graph neural network (GNN), to comprehensively
consider the CFG Node attributes and structural characteristics.



Fine-Grained Obfuscation Scheme Recognition on Binary Code 227

References

1. The tigress diversifying c virtualizer (2021). https://tigress.wtf/
2. Bichsel, B., Raychev, V., Tsankov, P., Vechev, M.T.: Statistical deobfuscation of

android applications. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016)

3. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations
(1997)

4. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: CCS 2011 (2011)

5. Ferguson, J.: Reverse Engineering Code with IDA Pro. O’Reilly Media, San Fran-
cisco (2008)

6. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.T.: On the naturalness of
software. In: ICSE 2012 (2012)

7. Jodavi, M., Abadi, M., Parhizkar, E.: JSObfusdetector: a binary PSO-based one-
class classifier ensemble to detect obfuscated javascript code. In: 2015 The Inter-
national Symposium on Artificial Intelligence and Signal Processing (AISP), pp.
322–327 (2015)

8. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM - software
protection for the masses. In: 2015 IEEE/ACM 1st International Workshop on
Software Protection, pp. 3–9 (2015)

9. Li, Z., Chen, Q., Xiong, C., Chen, Y., Zhu, T., Yang, H.: Effective and light-weight
deobfuscation and semantic-aware attack detection for PowerShell scripts. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (2019)

10. Likarish, P., Jung, E., Jo, I.: Obfuscated malicious javascript detection using
classification techniques. In: 2009 4th International Conference on Malicious and
Unwanted Software (MALWARE), pp. 47–54 (2009)

11. Massarelli, L., Luna, G.A.D., Petroni, F., Querzoni, L., Baldoni, R.: Investigating
Graph Embedding Neural Networks with Unsupervised Features Extraction for
Binary Analysis. Internet Society (2019)

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: ICLR (2013)

13. Ming, J., Xu, D., Wang, L., Wu, D.: Loop: Logic-oriented opaque predicate detec-
tion in obfuscated binary code. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security (2015)

14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014)

15. Salwan, J., Bardin, S., Potet, M.: Symbolic deobfuscation: from virtualized code
back to the original. In: DIMVA (2018)

16. Tian, Z., Huang, Y., Xie, B., Chen, Y., Chen, L., Wu, D.: Fine-grained compiler
identification with sequence-oriented neural modeling. IEEE Access 9, 49160–49175
(2021). https://doi.org/10.1109/ACCESS.2021.3069227

17. Udupa, S.K., Debray, S., Madou, M.: Deobfuscation: reverse engineering obfuscated
code. In: 12th Working Conference on Reverse Engineering (WCRE’2005), pp. 10–
54 (2005)

18. Wang, Y., Rountev, A.: Who changed you? Obfuscator identification for android.
In: The 4th International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pp. 154–164 (2017)

https://tigress.wtf/
https://doi.org/10.1109/ACCESS.2021.3069227


228 Z. Tian et al.

19. Wang, Y., Wu, Z., Wei, Q., Wang, Q.: NeuFuzz: efficient fuzzing with deep neural
network. IEEE Access 7, 36340–36352 (2019)

20. Xu, D., Ming, J., Fu, Y., Wu, D.: VMHunt: a verifiable approach to partially-
virtualized binary code simplification. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (2018)

21. Xue, H., Venkataramani, G., Lan, T.: Clone-slicer: detecting domain specific binary
code clones through program slicing. In: Proceedings of the 2018 Workshop on
Forming an Ecosystem Around Software Transformation (2018)

22. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: 2015 IEEE Symposium on Security
and Privacy, pp. 674–691 (2015)

23. Zhao, Y., Tang, Z., Ye, G., Peng, D., Fang, D., Chen, X., Wang, Z.: Semantics-
aware obfuscation scheme prediction for binary. Comput. Secur. 99, 102072 (2020)


