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Abstract. Memory forensic analysis enables a forensic examiner to
retrieve evidence of a security incident, such as encryption keys, or ana-
lyze malware that resides solely in memory. During this process, the
current state of system memory is acquired and saved to a file denoted
as memory dump, which is then analyzed with dedicated software for
evidence. Although a memory dump contains large amounts of data for
analysis, its content can be inaccurate and incomplete due to how an
operating system’s memory management subsystem works: page swap-
ping, on-demand paging, or page smearing are some of the problems that
can affect the data that resides in memory. In this paper, we evaluate how
these issues affect user-mode modules by measuring the ratio of modules
that reside in memory on a Windows 10 system under different memory
workloads. On Windows, a module represents an image (that is, an exe-
cutable, shared dynamic library, or driver) that was loaded as part of the
kernel or a user-mode process. We show that this ratio is particularly low
in shared dynamic library modules, as opposed to executable modules.
We also discuss the issues of memory forensics that can affect scanning
for malicious evidences in particular. Additionally, we have developed
a Volatility plugin, dubbed residentmem, which helps forensic analysts
obtain paging information from a memory dump for each process run-
ning at the time of acquisition, providing them with information on the
amount of data that cannot be properly analyzed.

Keywords: Digital forensics · Memory forensics · Windows modules ·
Paging · Malware

1 Introduction

Incident response aims to find out what happened in a security incident and,
more importantly, preserve evidence related to the incident that can then be
used to take legal action, trying to respond to the known 6 W (what, who, why,
how, when and where) [12]. An important activity performed during the incident
response process is digital forensics, which in the event of a computer incident is
performed on the computers or network where the incident occurred [20]. While
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computer forensics attempts to find evidence on computers and digital stor-
age media, network forensics deals with the acquisition and analysis of network
traffic.

Computer forensics is divided into different branches, depending on the digi-
tal evidence that is analyzed. In particular, this paper focuses on memory foren-
sics, which deals with the retrieval of digital evidence from computer memory
rather than from computer storage media, as disk forensics does. Memory foren-
sics is useful in scenarios where encrypted or remote storage is used, improv-
ing on traditional forensic techniques more focused on non-volatile storage [28].
For instance, memory forensic analysis enables a forensic examiner to retrieve
encryption keys or analyze malicious software (malware) that resides solely in
RAM. In addition, triage in memory forensic is faster since the amount of data
to be analyzed is less than in disk forensics.

The memory of a computer system can be acquired by different means, which
are highly dependent on the underlying operating system and the hardware
architecture of the system. A recent and comprehensive study of the latest mem-
ory acquisition techniques is provided in [26]. The memory acquisition process
retrieves the current state of the system, reflected as it is in memory, and dumps
it into a snapshot file (known as memory dump). This file is then taken off-
site and analyzed with dedicated software for evidence (such as Volatility [57],
Rekall [44], or Helix3, to name a few).

A memory dump contains data relevant to the analysis of the incident. In
forensic terminology, these items are called memory artifacts and include items
such as running processes, open files, logged in users, or open network connec-
tions at the time of memory acquisition. Additionally, a memory dump can also
contain recently used items that have been freed but not yet zeroed, such as
residual IP packets, Ethernet frames, or other associated data structures [6].
Many of these artifacts are more likely to reside in memory than on disk, due to
their volatile nature.

Malware is currently one of the biggest security threats for both businesses
and home users. Malware analysis is the process of determining whether a soft-
ware program performs harmful activity on a system. The malware analysis
methodology comprises two steps [48]: (1) static analysis, where the binary code
of the suspicious software program is analyzed without executing it; and (2)
dynamic analysis, where the program is executed and its interaction with oper-
ating system resources (other processes, persistence mechanisms [54], file system
and network) is monitored.

As the rootkit paradox states [25], whenever code wants to run on a sys-
tem, it must be visible to the system in some way. Therefore, running malware
will leave traces of its nefarious activity, which are then useful for finding out
what happened during a security incident. These traces, as digital artifacts, can
reside in memory or on disk. For instance, fileless malware exists exclusively as a
memory-based artifact, unlike file-based malware. According to recent industry
security reports, this type of malware is increasing every year, especially taking
advantage of PowerShell to launch attacks [5]. Fileless attacks grew 265% in
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2019 [4], and Symantec detected a total of 115, 000 malicious PowerShell scripts
(on average) each month during that year [40]. In this regard, there is more likely
evidence of malicious activity from sophisticated malware or fileless malware in
memory than on disk. In this paper, we focus on the Windows operating system
(Windows for short), as at the time of this writing is still the most predominant
target of malware attacks [2].

On Windows, an executable, shared dynamic library, or driver file that was
loaded as part of the kernel or a user-mode process is named image, while the
file is named image file. Finally, an image as well as a process are internally
represented by a module [33]. In what follows, we adhere to this terminology.

In the event of a malware-related security incident, it is likely that malicious
modules exist in a memory dump, as the malicious image file and its dependent
images were loaded into memory for execution. However, to what extent can we
trust the contents of a memory dump? This content may be inaccurate due to
the way the memory management subsystem works. This inaccuracy problem,
called page smearing, is particularly visible when we acquire memory on a live
system: while the operating system is running, the references to memory in the
running processes are constantly updated and, therefore, memory inconsistencies
can occur since the acquisition process is usually carried out non-atomically [41].

Additionally, some optimization methods performed by the memory man-
agement subsystem can also affect the data in a memory dump. For example,
page swapping, which refers to copying pages from the process’s virtual address
space to the swap device (which is typically non-volatile secondary memory stor-
age), or vice versa. In the same way, on-demand paging (also known as deferred
paging) delays loading a page from disk until it is absolutely necessary. Both
methods affect the contents of a memory dump since parts of memory are likely
to be swapped or not loaded at the time of acquisition. Therefore, false negative
results are likely to occur when looking for evidence of malware exclusively in
memory.

The contribution of this work is twofold. First, a detailed analysis of how these
paging issues affect the user-mode modules that reside in memory on a Windows
system with different memory workloads. In particular, we studied them on a
Windows 10 64-bit system (build 19041) as at the time of this writing this is the
predominant version on the market worldwide, with the 78% share [19]. Second,
a thorough discussion on the issues to detect malware artifacts in memory foren-
sics. As a side product of our research, we have developed a Volatility plugin,
dubbed residentmem, which allows us to extract the number of resident pages
(that is, in memory) of each image and each process within a memory dump.
This tool therefore provides forensic analysts with information on the amount
of binary data that cannot be analyzed correctly.

The outline of this paper is as follows. To provide a better understanding of
this paper, we first give some background on the Windows memory subsystem
in Sect. 2. Then we review the related work in Sect. 3. Section 4 presents the
experiments performed to quantify the effect of paging on the Windows system
under study. Next, we discuss how these issues can affect the analysis of malware
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artifacts in Sect. 5. Finally, Sect. 6 concludes the paper and highlights future
directions.

2 Background

A Windows process has a private memory address space that cannot be accessed
by other processes and cannot be exceeded. The virtual address space of a process
(also known as the page table) defines the set of virtual addresses available to that
particular process. Page tables are only accessible in kernel-mode, and therefore
a user-space process cannot modify its own address space layout.

By default, the size of the virtual address space of a 32-bit Windows process
is 2 GiB (before Windows 8). This size can be expanded to 3 GiB (or 4 GiB
on 64-bit versions of Windows) in certain configurations [60]. The size of the
virtual address space of a process in Windows 8.1 64-bit (and later) is 128 TiB,
although the maximum amount of physical memory supported by Windows at
the time of this writing is less than 24 TiB.

The memory unit by which Windows manages memory is called memory
page [23]. A memory page defines a contiguous block of virtual memory of fixed
length. Page sizes can be small or large. The small page size is 4 KiB, while the
large page size ranges from 2 MiB (on x86 and x64 architectures) to 4 MiB (on
ARM) [60]. The relationship between virtual memory and physical memory is
made through the page table entries (PTE), which map a page of process virtual
memory to a page of physical memory.

Since the virtual address space of the process can be larger than the phys-
ical memory on the machine, the Windows memory subsystem must maintain
these page table entries to ensure that when a thread in the context of a process
reads/write to addresses in its virtual memory space, they refer to the correct
physical addresses [34]. Likewise, when the memory required by running pro-
cesses exceeds the available physical memory, it also sends some pages to disk
that are later retrieved by returning them to physical memory when necessary.

A page of a virtual address space of a process can be in different states [35]:
free, when the page has never been used or is no longer used (initial state of
all pages of a process). A free page is not accessible for the process but can be
reserved, committed or simultaneously reserved and committed; reserved, when
the process has reserved some memory pages within its virtual address space for
future use. These pages are not yet accessible to the process, but their address
range cannot be used by other memory allocation functions; committed, when
the page has been allocated from RAM and paging files on disk, ready to be
used by the process. Committed pages are also known as private pages, as they
cannot be shared with other processes, unlike shareable pages, which are shared
but can only be in use by a single process at a time. When a process accesses
committed or shareable pages, the memory page is said to have been “touched”.
This is when the Windows memory manager finally allocates a page of physical
memory via a page table entry.
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3 Related Work

Forensic analysis of user-space memory has been approached in different ways.
The work in [59] introduces an approach based on Virtual Address Descriptors
(VAD) [14] that identifies all user allocations and then determines their purpose
using kernel and user-space metadata sources. Based on an extensive analysis
of the Windows XP SP3 32-bit and Windows 7 SP1 32-bit operating systems,
the authors created two Volatility plugins to describe the content of allocations
within user-space memory and to verify whether a virtual address of a process
not described by a VAD is assigned to a page of physical memory. Paging is
an important issue for this approach, as some metadata sources can be paged
to disk, thus preventing extraction of their related metadata. Our work com-
plements this approach by providing insight into the internals of the Windows
memory manager with regard to paging.

A utility dubbed PageDumper that captures traces of attacks based on run-
time memory protection tampering in the Linux operating system is proposed
in [42]. Implemented as a kernel module, it helps analyze kernel and user-process
address spaces, parsing page table entries in both kernel and user contexts.
Rather, we focus on Windows and a post-mortem analysis of a complete memory
dump. In any case, PageDumper can be a good complement to our plugin when
analyzing a Linux operating system memory dump. More research is needed to
extend our plugin to Linux and integrate it with the output of PageDumper.

With regard to malware detection in memory forensics, most works use Vir-
tual Machine Introspection (VMI) techniques to avoid inaccuracy due to mem-
ory acquisition on live systems. The fundamental papers in this area are [22,38].
In [16], the authors demonstrated that the memory forensic community can
develop tools using VMI and proceed much more quickly with memory analy-
sis. In this regard, in [53] the authors introduce a VMI-based system on top of
Xen that can detect malware in virtual machines using Volatility by comparing
memory dumps acquired before and after executing a suspicious image file.

Other work focuses on using memory forensics as the basis for malware anal-
ysis. The differences between applying YARA signatures to disk or in-memory
files and how these can be improved to effectively search for malware in memory
are discussed in [13]. YARA is a very popular open-source and multi-platform
tool to identify and classify malware samples. In [1], the effectiveness of dif-
ferent machine-learning classifiers is evaluated using information from VADs,
registry hives, and other internal process structures such as EPROCESS. How-
ever, the software used to recover these memory artifacts is unclear. The work
in [18] uses the prevalence of certain dynamic link libraries in processes contained
in a memory dump as a characteristic of malicious behavior. The work in [37]
presents a machine learning model that uses some features (such as registry keys,
imported shared libraries, and called operating system functions) extracted from
the reports provided by Cuckoo Sandbox to obtain information about a mem-
ory dump. Similarly, the work in [43] presents an analysis system composed of
Cuckoo Sandbox and Volatility in which, as a final analysis step, the results
obtained are compared with the results of VirusTotal. The work in [10] intro-
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duces hooktracer messagehooks, a Volatility plugin that helps analyze hooks
in a Windows memory dump to determine if they are associated with a mali-
cious keylogger or with benign software. Finally, the authors introduce a system
in [8] that first uses the Procdump tool, a Microsoft command line tool, to dump
processes from memory in Windows 10 version 1903 systems and then converts
them into RGB images for classification using machine learning algorithms.

With regard to malware focused on hiding its presence, in [7] an approach is
presented to discover executable pages despite the use of stealthy techniques so
that they are not reported by current detection tools. The authors implement it
in a plugin for the Rekall memory forensic framework and evaluate it against
own implementations of different stealthy techniques, as well as against real-
world malware samples. Instead of VAD, this approach relies on PTE that are
listed through paging structures to avoid certain (advanced) stealthy techniques.
However, as before this approach does not work if the page tables are paged and
the paging file is not provided. A similar work is [3], which introduces different
techniques that malware can adopt to hide its presence using GPU memory. This
work is very interesting, since the malware that resides in that memory cannot
leave a trace in the physical memory. The analysis of another type of memory
instead of the physical memory, though, is beyond the scope of this article.

To the best of our knowledge, we are the first to study in detail and quantify
the effect of paging in Windows user-space modules. Our work is complemen-
tary to all those presented, as it provides information on how paging works in
Windows, which is a problem for detecting malware by memory forensic analysis
when paging files are not used. Unfortunately, this lack of paging files is common
as Volatility does not support analyzing a dump alongside its paging file, despite
being the most widely used and powerful memory forensic framework currently
available.

4 Quantification and Characterization of the Windows
Paging Mechanism

In this section, we first describe the experiments carried out to quantify and
characterize the effect of paging on the Windows system under study and then
discuss the results.

4.1 Description of Experiments

As an experimental scenario, we use a virtual machine with a base installation
of Windows 10 64-bit version 19041 running on the VirtualBox 6.1.18 hyper-
visor with default paravirtualization and large paging disabled. Note that in
the default paravirtualization, VirtualBox only supports paravirtualized clocks,
APIC frequency reporting, guest debugging, guest crash reporting, and relaxed
timer checks. Therefore, the behavior of the guest memory management unit
is not affected by paravirtualization. Furthermore, we use a virtual machine to
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avoid the problem of page smearing, since we are interested in quantifying pag-
ing, which is affected by page swapping and on-demand paging. We consider two
configurations of physical memory, 4 GiB and 8 GiB, with an Intel Core i7-6700
3.40 GHz dual-core processor. The Internet has been disconnected after updating
the machines.

As memory workloads, we consider 25%, 50%, 75%, 100%, 125%, and 150%
of the total physical memory. We have developed a simple C tool to allocate
the amount of memory needed to reach the specified percentage of memory
used (that is, the tool allocates between 1 GiB and 6 GiB and between 2 GiB
and 12 GiB, for the memory configurations of 4 GiB and 8 GiB, respectively).
In particular, the tool allocates memory and writes a random byte every 4KiB
to ensure that pages are constantly used and avoid their paging as much as
possible. Note that this tool will consume a large chunk of memory and will
leave less space for the pages of other user-space processes, regardless of the
use of these pages (recall that both anonymous mappings and file mappings are
backed by the system paging file [11]).

Under these conditions, the system memory has been acquired at various
runtimes for each memory workload. First, we initialize the virtual machine and
wait 5 min for the machine to reach a stable state. Immediately after, we pause
the virtual machine and acquire the initial dump. Then we launch the memory
allocator tool explained above and dump the memory every 15 s for one minute,
pausing and resuming the execution of the virtual machine before and after
memory acquisition. After the first minute, we continue to capture the memory
every minute for 4 more minutes, also pausing and resuming the execution of
the virtual machine between memory acquisitions. These memory dumps make
up the first observation moment. We then stop the memory allocator process,
pause the execution of the virtual machine, and dump the memory using the
same pattern: every 15 s for the first minute and every 1 min for the next 4 min.
These memory dumps are part of the second observation moment. Finally, we
shut down and reboot the virtual machine to restart the dump process with
another memory workload.

For each memory dump, we get the number of recoverable modules and how
many resident pages are in each module. The process of memory acquisition
and computation of recoverable data has been replicated 10 times in order to
increase the reliability of the evaluation. We finally took into account the average
of the 10 independent repeats for each recoverable module. To help us obtain the
recoverable data of modules, we have implemented a tool, dubbed residentmem,
as a Volatility plugin released under GNU/GPL version 3 license and publicly
available at https://github.com/reverseame/residentmem. The plugin iterates
through the processes contained in the memory dump and, for each process, it
checks the memory pages assigned to each module associated with that process
through internal Volatility structures. As input, the plugin needs a memory
dump. As output, it returns a list of the recoverable modules with the resident
pages and the total pages of each module, the process to which the module
belongs, the path where is stored in the file system, and other information of

https://github.com/reverseame/residentmem
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interest related to the module (such as its version, base address, and its process
identifier, among other information). In addition, it allows obtaining the specific
list of physical pages for each resident page of a recoverable module.

The plugin analysis workflow is as follows. We first obtain the list of processes
that were running at the time of memory acquisition through Volatility’s internal
structures. We then iterate through this list, accessing its memory address space
and validating with a 4096-byte step (the size of a small page) if each memory
address is resident. This gives us the number of resident and total memory pages
for each process and its related modules.

4.2 Discussion of Results

We only discuss the 75%, 100%, and 125% memory workloads because we have
empirically observed that experiments below 75% and above 125% behave equal
to 75% and 125%, respectively. Likewise, we do not plot all the instants of time
because otherwise the graphs are overloaded and difficult to understand. For this
reason, we only show the Initial (before execution) (before any interaction with
the system), 0 min (just after interacting with the system, that is, starting or
stopping the memory allocator tool); and 0.5, 1, 3, and 5 min, a subset of the
observed instants of time that faithfully represent the complete behavior.

In addition, for the graphs relative to the second observation moment one
more moment, Initial (just before ending), has been incorporated to show how
the system is just before interacting with it. This instant of time is actually the
same as the 5 min instant of the first observation moment. The graphs of both
observation moments show Initial (before execution) to have a common reference
that allows comparing the results.

Modules of Executable Image Files. Figure 1 shows the resident pages of
the recoverable modules of executable files under different memory workloads
for 4 GiB and 8 GiB of physical memory (Figs. 1a and 1b, respectively), for both
observation moments. Every plot shows the distributions of two variables (the
size of a module file in log-base 10, on the x-axis, and the percentage of resident
pages, on the y-axis) through color intensity. The darker the region, the more
data is in that region. The subplots on the top and right of the main plots show a
smoothed version of the frequencies of the size and resident pages data, revealing
the distribution of resident pages and module file sizes.

Looking at the first observation moment, the initial conditions show that
almost 80% of the executable module pages are resident in memory. With a
memory workload of 75%, there are no significant changes to the resident pages
because there is still enough free memory, regardless of the size of the physi-
cal memory. A slight reduction in recoverable modules is observed throughout
the acquisition time points, which may be motivated by the paging of unused
modules, while the resident pages remain constant. Note that the colored areas
are mostly identical. With regard to 100% memory workload, in 0.5 min most
modules are expelled and the number of resident pages for recoverable modules
is drastically reduced. With the 125% memory workload, there is again a large
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Fig. 1. Resident pages of recoverable executable modules at the first (first and third
row) and at the second observation moments (second and fourth), with memory work-
loads of 75%, 100%, and 125% (first, second, and third column, respectively).
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reduction in recoverable modules. In this case, the graph shows two well-defined
areas, an area that contains the first two moments of time and another area that
contains the remaining rime moments on a diagonal below 60% resident pages.
The 8 GiB results show greater variability in this workload, as indicated by the
larger color areas below the 60% diagonal.

With regard to the second observation moment, the results are the same as
in the first observation moment with a memory workload of 75%. With the 100%
and 125% memory workloads, it is observed that the modules progressively come
back to memory, but the ratio of resident pages for recoverable modules never
reaches a value greater than 25%. Significant increases in 0.5 min and in 3 min are
observed for both memory configurations, although the number of recoverable
modules is lower for 125% workload.

Modules of Shared Dynamic Library Image Files. Figure 2 shows the
distribution graphs of resident pages of recoverable modules of shared dynamic
libraries under different memory workloads for 4 GiB and 8 GiB of physical mem-
ory (Figs. 2a and 2b, respectively), for both observation moments. In this case,
most modules only have 20% of their pages resident and are in the range 105 to
106 bytes. The maximum percentage of resident pages is 75%.

Regarding the first observation moment, no significant changes are observed
with 75% of memory workload, similarly to the results of the previous type of
module studied. A slight decrease in recoverable modules is observed, but with
no effect on resident pages. With 100% of memory workload, the system starts
expelling modules for any size in 0.5 min. The number of recoverable modules is
reduced, but the distribution shape is similar in both memory configurations. A
more aggressive expelling of modules is observed in 8 GiB of physical memory.
In any case, most modules have only less than 5% of their pages resident. With
125%, the results are very similar. As before, there is a small colored area in the
bottom of the graph, which indicates that the percentage of the resident pages
is close to 5% again.

With regard to the second observation moment, the results with a memory
workload of 75% are very similar to the results of the first observation moment.
With 100% of memory workload, the number of recoverable modules is slowly
increasing, but the percentage of resident pages for most modules is still close to
5%. Similar behavior is observed with the memory workload of 125%, where few
modules return to memory but the percentage of resident pages remains close
to 5% for most of them.

5 Detection of Malware in Memory Forensic Analysis:
Current Problems and Solutions

This section details the problems that affect the detection of malware in memory
forensic analysis, as well as some solutions to overcome them.
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Fig. 2. Resident pages of recoverable shared dynamic library modules at the first (first
and third row) and at the second observation moments (second and fourth), with mem-
ory workloads of 75%, 100%, and 125% (first, second, and third column, respectively).
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Issue 1. Content Discrepancy Between an Image File and Its
Module Image

At process creation, the Windows PE loader maps an image file to memory. As
the default size of a memory page is 4 KiB, the image file will be fit into a set
of multiple 4 KiB memory segments (see Sect. 2). Therefore, the representation
of the image file in memory may contain zero-padding bytes due to memory
alignment.

Additionally, the image may be dynamically relocated due to Address Space
Layout Randomization (ASLR), which randomizes memory segment locations to
thwart control-flow hijacking attacks [52]. If necessary, some bytes of the image
will be appropriately relocated according to the new address layout. Also, PE
sections such as the relocated section or the Authenticode signature [31] are not
copied from image files to their corresponding images and hence these parts are
not found in the memory representation of image files [55].

In short, the (byte) data of an image will differ from its image file. Therefore,
we cannot rely on calculating cryptographic hashes such as MD5 or SHA-1 of an
image to detect malicious signatures due to their avalanche effect property [58],
which guarantees that the hashes of two similar, but not identical, inputs (e.g.,
inputs in which only one bit is flipped) produce radically different outputs.

Instead of cryptographic hashes, we can use approximate matching algo-
rithms [9,21] to calculate similarity between Windows modules [29]. These algo-
rithms provide similarity measures between two digital artifacts in the range
[0, 1]. Although the use of these algorithms is feasible in the context of memory
forensics, they present some security flaws that can be exploited by a sophisti-
cated adversary to affect the hash calculation and provide perfect similarity or
incomparable hashes [27,30]. Allow-list hash databases, such as those provided
by NIST [39], can also be adapted to this diversity of hashing algorithms to
assist incident response teams during incident analysis.

Issue 2. Lack of Data in a Memory Dump
As explained in Sect. 2, the Windows memory subsystem performs two opti-
mization actions that have a clear impact on memory forensics: page swapping
and on-demand paging. Remember that due to page swapping, unused pages
are copied from memory to page files. In addition to occurring inadvertently,
a sophisticated malware can trigger the paging process for as many pages as
possible by calling the SetProcessWorkingSetSize API [36] as a way to hide
its malicious code. Similarly, since an on-demand paging algorithm is used to
know when to load pages into memory [60], parts of an image file will not load
until strictly accessed.

In short, the data on a malicious image may be incomplete because page
swapping and on-demand paging. If the swapped pages correspond to parts of
the module header, the module will not be recoverable. Similarly, if the malicious
code has not yet been loaded, it will remain undiscovered in the memory dump.
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Also, as part of its life cycle, malware often uses a persistence strategy
to ensure that it will persist on the system upon restart [49]. A feature com-
monly used by malware to achieve persistence is based on the Windows Reg-
istry [54], which is a hierarchical database divided into tree-like structures (called
hives) that contain data critical to the operation of Windows and other applica-
tions [60].

As shown in Dolan-Gavitt’s seminal work on memory forensics and the Win-
dows Registry [15], some of these hives are volatile while others reside on disk
(mapped to memory during Windows startup). Therefore, as a consequence of
the paging issues highlighted above, unused portions of the Windows Registry
may be on disk.

In summary, the Windows Registry of a memory dump cannot be treated
as reliable evidence for detecting the persistence of malware, as the contents of
the registry hives are incomplete. Additionally, the malware can still use other
persistence methods that are not based on the Windows Registry and are also
not detected by memory forensics [54].

Page swapping is really hard to beat when working with only memory arti-
facts. One possibility is to use disk forensics to first recover the page files and
then use them together with the memory dump to complete the analysis. How-
ever, from Windows 8.1 onwards, the pages are swapped to disk in a compressed
form, using Microsoft’s Xpress algorithm [32], making content access a major
challenge for current forensic tools. A recent publication in BlackHat USA 2019
presents a method to recover Windows 10 compressed pages and rebuild memory
artifacts regardless of their storage location [47,51]. This method is a promising
approach that has yet to be integrated with memory analysis frameworks like
Volatility or Rekall.

A similar problem occurs with on-demand paging. In this regard, the best
solution that we envision is to also combine memory forensics with disk forensics.
Regarding the memory forensic analysis of persistence methods used by malware,
we can again combine memory and disk forensics to extract the files on disk
that represent the registry hives and get a complete and accurate overview of
the Windows Registry.

In any case, we argue that these problems evidence that memory forensics
cannot be seen as a single process but as a complementary process during an
incident response activity.

Issue 3. Inaccuracy of a Memory Dump
When the memory is acquired in a live system, inaccuracies are highly likely
to occur because memory is continually updated and acquired non-atomic. This
page smearing problem is particularly relevant as kernel-space structures can
be affected and lead to possible parsing errors, as some PTE can refer to wrong
addresses (pointer inconsistency). Similarly, if a data object spans multiple phys-
ical pages, this fragmentation also affects the memory acquisition process, as the
content may not be consistent over time (fragment inconsistency). These types
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of problems are commonly found in live memory acquisition on systems with
large RAM or under heavy load [41].

Additionally, a rootkit or other sophisticated malware can detect when the
memory acquisition is taking place to deliberately produce these inconsistencies
through Direct Kernel Object Manipulation (DKOM) attacks, thus avoiding
detection [45].

In summary, the data contained in a memory dump is likely to be inaccurate
or unreliable if the memory acquisition process was performed on a live system.
As possible solutions to avoid inaccuracies in the data, other acquisition tech-
niques can be used [26] (for example, based on DMA or system management
mode level). Invasive acquisition processes can also be used to acquire memory,
such as cooling RAM modules (using liquid nitrogen or cold sprays) or forcing
non-recoverable hardware errors to cause a Blue Screen of Death and generate
a crash dump (which contains not only the RAM but also other data about the
state of the system). These methods, however, can lead to the loss of important
and unrecoverable data during the process.

In this regard, a recent contribution in memory forensics is the introduc-
tion of temporal dimension [41], which refers to the temporal consistency of the
data stored in a memory dump. In [41], the authors present a Volatility plugin
that accurately records time information while the memory dump is acquired.
This time information is then used to construct a timeline that is displayed dur-
ing memory dump analysis, suggesting to a forensic analyst the probability of
inconsistencies and therefore taking appropriate action, such as additional data
validation.

Issue 4. Stealthy Malware
Common signature-based methods of detecting malware artifacts in each pro-
cess virtual address space in a memory dump can be problematic, as the page
containing the searched signature may be non-resident at the time of memory
acquisition. Additionally, sophisticated malware and advanced persistent threats
can incorporate features to remain stealthy and hidden after infecting a com-
puter [46].

For example, injected code can be hidden from forensic tools such as the
Volatility plugin malfind because they are typically based on information pro-
vided by VAD, which are unfortunately an unreliable source of information.
Remember that Windows uses VAD to store information about the memory
regions of a process [14]. However, important information such as page permis-
sions are not updated when changed. On this matter, a malware only needs to
allocate memory initially with a protection without the write or execute permis-
sion and then add any of these permissions to the pages containing the malicious
code [7,50]. In addition, as explained above, the malware can trigger the paging
process for as many pages as possible by calling the SetProcessWorkingSetSize
API to increase the likelihood of swapping pages that contain malicious code [36].

In short, stealthy malware can incorporate different features to remain
stealthy and hidden on the infected system. To detect them, we can rely on
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malware signatures. A recent enhancement to malfind is the Volatility plugin
malscan, which integrates malfind with Clam-AV antivirus signatures to reduce
the number of false positives [56]. Robust kernel signatures can also be used to
detect sophisticated attacks, such as DKOM attacks [17].

Another technique widely used by malware to stay hidden is process hol-
lowing, which occurs when a malware creates a process in a suspended state,
then unmaps its memory and replaces it with malicious code. In this regard,
the Volatility plugin impfuzzy allows malware to be detected in a memory
dump based on the hash values generated from the import functions of the
processes [24].

6 Conclusions and Future Directions

Memory forensics relies on memory dump analysis to look for evidence of secu-
rity incidents. However, the content of dumps can be inaccurate and incomplete
due to page smearing, page swapping, and on-demand paging. This lack of reli-
able data becomes particularly relevant when looking for evidence of malware
exclusively in memory, as false negative results are likely to occur. This issue
also shows that memory dumps are unreliable partial sources of evidence.

In this paper, we have studied the effect of paging in Windows modules of the
user-space processes. In particular, we have focused on Windows 10 build 19041.
At different observation moments and under memory workloads, the number
of recoverable modules and the number of resident pages have been quantified
considering two sizes of physical memory. Our experimental results show that
paging behave different depending on the type of module. At first, almost 80%
of the executable module pages and 20% of the shared dynamic library module
pages are resident. These values are drastically reduced when the operating
system needs memory, as most modules are expelled from memory and then
unrecoverable. Once the memory load is no longer high, the system recovers some
of the paged modules but very slowly, never returning to the initial conditions
(25% and 5% for executable and shared library image files, respectively).

Furthermore, we also describe the problems for malware detection in memory
forensics, discussing some solutions to overcome them as well. These issues cause
the data in an image to differ from its image file and to be incomplete, inaccurate,
and unreliable. Additionally, malware can incorporate features to remain stealthy
and hidden from memory forensics.

As future work, we plan to extend our study to other versions of Windows
(such as server editions) and to better characterize paging distributions under
different system workloads. In addition, we also intend to investigate new meth-
ods to detect stealthy malware in memory forensics and quantify the effects of
paging on the kernel space.
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