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Abstract. Object detection based on large-scale, high-resolution visible light
Remote sensing images are widely used in military such as reconnaissance and
civilian such as marine resource management. It is also an important task for
the application of computer vision in remote sensing images. With the develop-
ment of deep learning, more and more object detectors use deep network as the
backbone, and accurate detection results and indicators can be obtained on con-
ventional images. However, compared with conventional images, remote sensing
images have more object numbers and object sizes, and the object distribution is
also denser, which makes detection more difficult. At present, there are two types
of object detectors: single-stage and two-stage. The single-stage detector directly
obtains the detection result based on the feature map and pays more attention to
the detection speed, while the two-stage detector generates the region of interest
(RoI) by using feature map. More attention is paid to the accuracy of the test
results when the test results are obtained through RoIs. This paper proposes a
bilateral filtering refining method based on a single-stage detector, which refines
the results obtained by a single-stage detector and approaches the performance of
a two-stage detector without losing too much detection speed. Experiments con-
ducted on the public large-scale visible light remote sensing dataset DOTA have
proved the effectiveness of this method.
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1 Introduction

Now remote sensing technology is in a relatively mature state. Remote sensing images
are widely used in military such as reconnaissance and civilian such as marine resource
management. At present, the object detection applied to remote sensing images is mainly
realized by deep neural network, which is composed of backbone and head. Backbone
is usually a convolutional neural network, which uses a convolution operator to extract
features from the input image step by step to generate a feature map for object detection;
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the head of detector will perform object category and location detection on the feature
[1].

Ross Girshick proposed a design idea of a classifier regression for object detection
tasks in RCNN [2], and implemented end-to-endmulti-task learning in Faster RCNN [3].
Common object detectors still maintain this design idea. Under the multi-task training
of classification and regression, feature maps suitable for two tasks can be obtained
together. It can be found by using the heat map to visualize the feature map that the
features suitable for the classification task do not completely overlap with the features
suitable for the regression task, and there is a deviation in the center point of the feature
distribution. The reason is that the classification task has the invariance of translation
and scale and paysmore attention to the extraction of the difference information between
the classes; the regression task is more sensitive to the location and scale information of
the object and pays more attention to the extraction of the boundary information of the
object. This causes the classification and regression feature centers to shift. This feature
shift makes the anchor center with a higher classification score not necessarily close to
the object geometric center. The offset of the classification regression feature center and
the offset of the anchor center and the object geometric center increase the difficulty of
regression from the anchor to the prediction bounding box and have a certain impact on
the detection results [4, 5].

Compared with conventional images, remote sensing images have more objects,
more object sizes, and denser distribution. This makes conventional object detectors
unable to obtain accurate detection results on remote sensing images. Compared with the
horizontal bounding box, the rotating bounding box is more suitable for object detection
tasks with dense object distribution. In this work we present a feature-aligned rotating
SSD detector, which can effectively adapt to remote sensing images. Specifically, the
FPN structure is used to generatemulti-size featuremaps for detection. The larger feature
map is more suitable for setting small anchors to detect small targets. On the contrary,
a large anchor should be set for a smaller feature map to adapt to a large target, because
it has a larger receptive field. In the first stage, the object is roughly detected to obtain
a prediction bounding box. Compared with the anchor center, prediction bounding box
center should be closer to the actual geometric center of the object. Therefore, the bilateral
filter is used to calculate the central feature estimation of the prediction bounding box,
integrate it into the original feature point position, generate a new feature pyramid, and
complete the feature alignment. Using the aligned feature pyramid to perform the second
classification regression can get a better detection effect. Through experiments on the
DOTA dataset and calculation of indicators, the effectiveness of this model is verified.

2 Related Work

2.1 One-Stage and Two-Stage Object Detector

The object detection network based on deep learning can be divided into two categories
according to the detection process. One is a single-stage detector that uses feature maps
to detect directly. The other is a two-stage detector that relies on the region of interest.
Faster RCNN [3], as a classic two-stage end-to-end object detector, can fully reflect the
characteristics of the two-stage object detector. The detection process of this type of
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detector is carried out in two steps. The first stage is to obtain anchors according to the
feature map of the picture in the Region Proposal Network (RPN) and get the region of
interest (RoI). The second step is to pool theRoIs to the same size and perform the second
detection. The two-stage object detector only classifies foreground and background in
the first stage, and the focus is on calculating RoIs. The RoIs has undergone a regression,
and its center point is closer to the object geometric center than the anchors, which helps
to improve the accuracy of the second classification regression. In the second stage, the
RoIs is fine-grained classification and further regression, and more accurate detection
results are obtained. The two-stage detector requires RPN for anchor screening and RoIs
generation, which requires more detection time.Most of the remote sensing images have
a large size, so it is necessary to use a sliding windowmethod for stepwise detection and
then merge the results, so using a two-stage detector for remote sensing image detection
will consume more time.

The single-stage detector directly performs classification and regression on the char-
acteristics of the picture. The entire detection process only needs one step, and it focuses
more on the speed of detection, and is more suitable for the distribution detectionmethod
based on sliding windows. SSD [6], as a representative of single-stage object detector,
generates anchors of several sizes for each feature point in the feature map calculated by
backbone. And directly perform fine-grained classification and bounding box regression
on each anchor at one time. Finally, post-processing is performed by non-maximum
suppression NMS to suppress redundant bounding boxes. Because there is no RPN sub-
network, the detection speed is greatly improved, and it can better adapt to the sliding
window method in high resolution image object detection.

2.2 Multi-scale Features Object Detector

Large object sizes and more small objects are the main challenges for object detection in
visible light remote sensing images. The object detector used for remote sensing images
should have the ability to detect objects of different sizes at the same time. Multi-scale
featuremaps are used in SSD for detection [6]. Large-size featuremaps aremore suitable
for detecting small objects due to their smaller receptive fields. Therefore, several small-
size anchors with aspect ratios are generated in the large feature maps. The small feature
map is at the high level of the network and has a larger receptive field, which is suitable
for detecting large objects. Therefore, several large-size anchors with aspect ratios are
generated in the small feature map. SSD performs NMS on the object bounding boxes
generated by these anchors in the post-processing stage to remove redundant bounding
boxes. Single-stage and multi-scale features make SSD has fast detection speed and
accurate detection results.

However, in order to prevent the low-level features from affecting the performance
of the detector, the SSD adds a convolutional layer to the high-level of the backbone
to generate a multi-size feature map, and only uses the high-level information. The
information in the underlying feature map is particularly important in small objects
detection.

In order to make rational use of multiple size feature maps, RetinaNet [7] adds the
feature pyramid network FPN [8] on the SSD model. FPN will up-sample the high-level
features, expand the size and add it to the bottom-level feature map, which makes each
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layer of the generated feature pyramid have relatively complete feature information. The
detection of large and small objects can be considered at the same time, which improves
the recall rate of the detector.

3 The Proposed Method

3.1 Multi-scale and Rotation

In order to make the single-stage object detector SSD more suitable for remote sens-
ing images, we choose ResNet as the backbone of the detector. Because ResNet uses
the residual block as the basic structure of the network, the shortcut connection in the
residual block can play the role of identity mapping, thereby effectively preventing the
degradation caused by the deepening of the network layer. Further improve the feature
extraction ability of the input image. And add FPN structure between backbone and
head, FPN and ResNet are connected horizontally to calculate feature pyramid. In the
feature extraction stage, two paths are formed. ResNet calculates various scale feature
maps from low to high, and FPN up samples high-level features from high to low, and
adds them to low-level feature maps step by step to perform high-level feature infor-
mation. Supplement. The feature pyramid calculated in this part maintains the feature
information of various sizes from low to high, and the bottom-level information is also
supplemented by the high-level information. Small-sized high-level feature maps are
suitable for setting large-sized anchors, because they have greater feelings, and are more
suitable for detecting large-sized objects. On the contrary, the receptive field of the
underlying feature map is smaller and suitable for detecting small objects, and a smaller
size anchor should be set.

In the case of dense object distribution, the horizontal bounding box will introduce
other object information, which makes the bounding boxes affect each other, which is
not conducive to the performance of the detector. In the remote sensing image of airport,
harbor and parking lot scenes, there are a large number of objects, and the objects are
very dense and the directions are changeable. At the same time, there are also long
objects like bridges in remote sensing images. These reasons make it difficult for object
detectors that use horizontal bounding boxes to achieve actual detection results.

Further, we add a rotation vector to the traditional 4-dimensional regression vector
(center point [x, y] bounding box width w and height h). It also stipulates that the edge
with an acute angle to the x–axis is defined as the height of the bounding box, the other
side is the width of the bounding box.

3.2 Feature Alignment and Bilateral Filter

The object detector based on deep learning uses a multi-task method to train the net-
work. In the training phase, the classification sub-network for object classification and
the regression sub-network for object bounding box prediction are trained at the same
time. The multi-task training method enables the trained feature extraction network to
extract features suitable for two tasks synergistically. However, after using the heat map
to visualize the feature map, it can be found that the features suitable for the classifi-
cation task do not completely overlap with the features suitable for the regression task,
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and there is a deviation in the center point of the feature distribution. The reason is that
the classification task has the invariance of translation and scale, and the category judg-
ment will not change due to different sizes and positions. The feature maps trained by
the classification task pay more attention to the extraction of the difference information
between the classes. However, the feature map trained on the regression task should
have the location feature of the object. The difference of focus makes the classification
regression feature center biased. In other words, the classification feature is offset from
the geometric center of the object. In actual applications, in order to prevent the dis-
appearance of the gradient of the deep neural network, the idea of migration learning
is often used when training the classifier, and the ImageNet classification task is used
to pre-train the backbone to enhance its feature extraction ability. This also makes the
featuremapmore biased towards the classification task, whichmakes it difficult to return
to the bounding box.

The single-stage object detector represented by SSDwill generate anchors of several
sizes at each point in the feature map and use the anchors directly to calculate classi-
fication confidence and bounding box prediction. Since the center of the classification
feature may not be at the geometric center of the object, the anchor center with high
confidence may not be closer to the geometric center of the object. The resulting feature
shift phenomenon.

The two-stage detector first adjusts the anchor to the proposal through the RPN, and
then determines the region of feature map corresponding to the proposal, which is called
the region of interest RoI, and then uses the pooled RoI for fine-grained classification
and more accurate bounding box prediction. The movement from the center of the
anchor to the center of the RoIs alleviates the feature shift to a certain extent. Inspired
by this approach, we propose a method for feature alignment of a single-stage object
detector. First, use bilinear interpolation to linearly estimate the feature value of center
point. In addition, a nonlinear bilateral filter is used for nonlinear reconstruction, and
the reconstructed features are spliced with the original features for secondary detection.
The structure of FastDet is shown in Fig. 1. The bilateral filter is composed of a distance
filter and a difference filter. The distance filter formula is shown in (1), and the difference
filter is shown in (2).
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where, lt, rt, lb, rb are neighbor pixels of the center point. d• indicates the distance from
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where, lt, rt, lb, rb are neighbor pixels of the center point. �v• represents the difference
between the point interpolation feature value and lt, rt, lb, rb feature value.

Fig. 1. The structure of FastDet

4 Experiments

4.1 Dataset

The experimental dataset uses Large-scale Aerial Images dataset DOTA [9]. The DOTA
dataset contains 2806 aerial images, 15 categories, and a total of 188282 objects. Among
them, 1/2 is divided into training set, 1/6 is divided into validation set, and 1/3 is divided
into test set (unpublished label). The bounding box labeling method is different from
the traditional parallel bounding box labeling method on opposite sides. DOTA uses
a quadrilateral of any shape and direction determined by 4 points to label the object.
The 15 categories included in DOTA cover common objects of different sizes, as well
as objects with different aspect ratios (such as bridges and airplanes). And used the
HRSC2016 [10] dataset. This dataset contains ship class and background class. The
size ranges from 300 to 1500. The training set contains 436 images, the validation set
contains 181 images, and the test set contains 444 images.

4.2 Process and Results

In this paper, we use six baseline methods and our proposed FastDet to conduct experi-
ments on the DOTA dataset. The Baseline method uses R-FCN [11], Faster RCNN with
rotating bounding box [3], PIoU [12], ICN [13], RADet [14], O2-DNet [15]. Use the
DOTA dataset to test and calculate indicators. The following Table 1 gives a summary
of the baseline model and this work presented model experimental results.

The category abbreviations in the table are as follows: BD stands for baseball dia-
mond, GTF stands for ground track field, SV stands for small vehicle, LV stands for
large vehicle, TC stands for tennis court, BC stands for basketball court, ST stands for
storage tank, SBF stands for soccer ball field, RA It stands for roundabout, SP stands
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Table 1. The AP of the baseline model and the model proposed in this work on DOTA

R-FCN FR-R PIoU ICN RADet O2-DNet FastDet

Plane 39.57 79.42 80.9 81.4 79.45 89.31 89.56

BD 46.13 77.13 69.7 74.3 76.99 82.14 82.89

Bridge 3.03 17.7 24.1 47.7 48.05 47.33 52.79

GTF 38.46 64.05 60.2 70.3 65.83 61.21 63.96

SV 9.1 35.3 38.3 64.9 65.46 71.32 77.55

LV 3.66 38.02 64.4 67.8 74.40 74.03 80.76

Ship 7.45 37.16 64.8 70.0 68.86 78.62 86.53

TC 41.97 89.41 90.9 90.8 89.70 90.76 89.56

BC 50.43 69.64 77.2 79.1 78.14 82.23 85.43

ST 66.98 59.28 70.4 78.2 74.97 81.36 83.83

SBF 40.34 50.3 46.5 53.6 49.92 60.93 58.29

RA 51.28 52.91 37.1 62.9 64.63 60.17 58.36

Harbor 11.14 47.89 57.1 67.0 66.14 58.21 66.56

SP 35.59 47.4 61.9 64.2 71.58 66.98 66.61

HC 17.45 46.3 64.0 50.2 62.16 61.03 61.87

Avg 30.84 54.13 60.5 68.2 69.09 71.04 73.64

for swimming pool, HC stands for helicopter, and Avg stands for the average indicator
(AP) of all categories.

In order to get more comprehensive experimental results, we have carried out addi-
tional experiments on the HRSC2016 dataset. We choose three baseline models and
our proposed FastDet for experiments, R2CNN [16], RRPN [17] and RoI-Transformer
[18]. The following Table 2 gives a summary of the baseline model and this work pre-
sented model experimental results. The table shows backbone, speed and mAP (using
VOC2007 and VOC2012 two calculation methods).

Table 2. AP and speed of the baseline model and FastDet on HRSC2016

Method Backbone mAP (VOC2007) mAP (VOC2012) Speed

R2CNN ResNet101 73.07 79.73 5 fps

RRPN ResNet101 79.08 85.64 1.5 fps

RoI-Transformer ResNet101 86.20 – 6 fps

FastDet ResNet50 87.60 89.29 19 fps

FastDet ResNet101 87.52 89.40 16 fps
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4.3 Result Analysis

Weused six baselinemodels and themodel proposed in this paper to conduct experiments
on DOTA. According to the experimental results, we can find that the performance of
FastDet is significantly better than other baseline networks. The mAP is 138.7% higher
than R-FCN. Most types of AP in the DOTA dataset are higher than other models.
Especially on densely distributed objects, such as LV and Ship, the AP of FastDet can
reach 80.76 and 86.53 respectively.

We also used three baseline models and the model proposed in this paper for sup-
plementary experiments. For the model FastDet proposed in this paper, we used two
backbones for experiments.When using the VOC2007 performance calculation method,
FastDet with ResNet50 achieved the best results, which mAP is 87.60. When using the
VOC2012 performance calculation method, FastDet with ResNet101 achieved the best
results, which mAP was 89.40. Therefore, the model proposed in this paper has good
performance in a variety of datasets.We also conducted related experiments on the speed
of the detector. When using ResNet50 as the backbone, it can detect 19 images per sec-
ond, which is much higher than the other three models. When using ResNet101 as the
backbone, it can detect 16 images per second, which is the fastest model in using this
backbone.

5 Conclusion

This paper present a feature-aligned rotating SSD detector FastDet, which uses the FPN
structure to generate multi-size feature maps for detecting objects of different sizes. And
the refining module is used to refine the detection results of the first stage. The refining
module uses a non-linear bilateral filter to estimate the feature value of the center of the
prediction bounding box and splice it to the original feature value position to make the
feature more complete. Use the refined feature pyramid for the second detection to make
the detection more accurate. Through experiments on the FastDet and baseline models
on the DOTA and HRSC2016 dataset, it can be proved that our proposed network has
higher detection performance.
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