q

Check for
updates

CLES: A Universal Wrench
for Embedded Systems Communication
and Coordination

Jason Davis®) and Eli Tilevich

Software Innovations Lab, Virginia Tech, Blacksburg, USA
{jdvavis7,tilevich}@vt.edu

Abstract. Modern embedded systems—autonomous vehicle-to-vehicle
communication, smart cities, and military Joint All-Domain Operations—
feature increasingly heterogeneous distributed components. As a result,
existing communication methods, tightly coupled with specific network-
ing layers and individual applications, can no longer balance the flexibil-
ity of modern data distribution with the traditional constraints of embed-
ded systems. To address this problem, this paper presents a domain-
specific language, designed around the Representational State Transfer
(REST) architecture, most famously used on the web. Our language,
called the Communication Language for Embedded Systems (CLES),
supports both traditional point-to-point data communication and allo-
cation of decentralized distributed tasks. To meet the traditional con-
straints of embedded execution, CLES’s novel runtime allocates decen-
tralized distributed tasks across a heterogeneous network of embedded
devices, overcoming limitations of centralized management and limited
operating system integration. We evaluated CLES with performance
micro-benchmarks, implementation of distributed stochastic gradient
descent, and by applying it to design versatile stateless services for
vehicle-to-vehicle communication and military Joint All-Domain Com-
mand and Control, thus meeting the data distribution needs of realistic
cyber-physical embedded systems.

Keywords: Embedded networking - Low-latency networking - Vehicle
to vehicle communication - RESTful architecture

1 Introduction

Modern embedded systems are increasingly heterogeneous, collaborative, and
networked. Disparate systems, each with its own computing architecture, oper-
ating system, and purpose, coordinate with each other to achieve a common
goal. Their communication and coordination functionality is provided via a
custom, highly optimized specialized protocol for each pair of connected sys-
tems. For safety-critical cyber-physical systems, this approach is deemed as
required to meet the timeliness requirements. Unfortunately, the resulting low-
level, platform-specific code is hard to write, extend, and maintain.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022
Published by Springer Nature Switzerland AG 2022. All Rights Reserved

S. Deng et al. (Eds.): MobiCASE 2021, LNICST 434, pp. 54-68, 2022.
https://doi.org/10.1007/978-3-030-99203-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99203-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-99203-3_4

CLES: A Universal Wrench for Embedded Systems 55

Web development coordinates heterogeneous distributed components via the
RESTful architectural style [6] with its ubiquitous HTTP communication, while
high-powered computing manages distributed workloads with container orches-
tration platforms, such as Docker Swarm and Kubernetes. Unfortunately, devel-
opers cannot apply these proven solutions to distributed embedded systems,
with their proprietary architectures, operating system limitations, centralized
management requirements, and non-deterministic timing constraints.

To support the creation of heterogeneous networked solutions easily inte-
grated into embedded systems, this paper presents CLES!, a Domain Specific
Language (DSL) for implementing simple, stateless, communication protocols in
the RESTful architectural style [6]. With its simple syntax and platform APIs,
CLES keeps the complexity of networking architecture and protocols abstracted
from the application developer, thus providing a flexible and robust communi-
cation mechanism, designed to minimize the required learning curve and devel-
opment burden. Designed to meet the communication and coordination require-
ments of embedded systems, CLES is implemented in standard C+4. CLES inte-
grates point-to-point communication to maintain deterministic timeliness con-
straints, interfacing with the OSI Internet Protocol (IP) network stack instead of
low-level wireless protocols for flexibility. CLES also provides a powerful runtime
that meets advanced distributed computing requirements, such as decentralized
task allocation.

This paper makes the following contributions:

— An application of the RESTful architecture for the communication and coor-
dination needs of modern embedded systems. We demonstrate how the proven
benefits of REST, including first-class support for heterogeneity, uniformity,
and simplicity, can be extended to embedded systems, without sacrificing this
domain’s timeliness constraints.

— CLES—a platform independent DSL with supporting SDK and runtime for
implementing RESTful architecture’s communication and coordination in
embedded systems. The CLES runtime introduces novel asymmetric task reg-
istration and remote access, in order to meet the unique execution constraints
of its target domain.

— An empirical evaluation of CLES with representative performance micro-
benchmarks, a reference distributed stochastic gradient descent implementa-
tion, and realistic case studies.

2 Problem Domain: Embedded Distributed Computing

Both the automotive and defense industries are paving the way for large-
scale, decentralized distributed computing systems. The defining characteristics
of their distributed networks are dynamic connectivity graphs, heterogeneous
systems, real-time operating systems, low-power devices, decentralized require-
ments, high reliability, and limited bandwidth. Kubernetes is currently being

! CLES stands for Communication Language for Embedded Systems.

56 J. Davis and E. Tilevich

explored as a solution for both the U.S. Air Force [7] and the automotive indus-
try. Kubernetes and other Container Orchestration solutions are not ideal for
this problem space, as they are typically centralized, limited to non-real-time OS,
inapplicable to hardware-integrated platforms (e.g., FPGA data processing), and
lacking non-container interfaces into the distributed processing network.

2.1 Use Case: Vehicle Platooning

A fundamental challenge of autonomous vehicles and vehicle to everything (V2X)
communication is vehicle platooning. An automated vehicle platoon is a series of
vehicles, most notably trucks, that maintain a group (platoon) on the highway,
with a software control module controlling each vehicle’s steering and speed.
With its constituent vehicles communicating and coordinating with each other,
a platoon increases the safety and energy efficiency of highway travel [9].

A traditional Vehicle to Vehicle (V2V) communication problem, platooning
is constrained by networking challenges and algorithmic design. Notably, 802.11p
and 5G are the two proven network solutions that satisfy the minimum require-
ments for latency, reliability, and security for vehicle platooning [1]. Additionally,
Swaroop [10], Arefizadeh [9], and Liangyi [11] introduced algorithms that defined
the minimum data transmission required to achieve stable platoons. One ques-
tion that remains unexplored is what kind of software architecture and abstrac-
tions are needed to realize practical platooning solutions (Fig. 1).

Follow i+1 ™ Followi-l | — Leader
B <« > > <« pe BT P
e ETCSE > E sd e 7>

e ' : ‘ > Ly

Fig. 1. Platooning networking structure [10]

As baseline networking protocols, our implementation references 802.11p and
5G, which both support OSI IP [8] and uses the defined minimum dataset
required for stable platooning: lead vehicle localization data (UTC Time, lat-
itude, longitude, Velocity, and Acceleration), and immediately ahead vehicle
localization [10].

Traditional Challenges. The traditional methods for point-to-point commu-
nication involve either defining a transmission via an inflexible, interface control
document (ICD) serialized packet, or defining the data structure within the
data-link layer itself, such as in military communications Link-16 and MADL.
In this use case, the traditional approach that integrates the communication
functionality directly into the data link layer increases development time, reduces

CLES: A Universal Wrench for Embedded Systems 57

flexibility for enhancements, hinders upgradability, and complicates integration
with other wireless solutions. Using an ICD defined serialized packet for trans-
mission suffers from similar limitations. The time to market for this solution
can be very quick, and the integration time is minimal, but the ICD’s restricted
structure of the packet definition heavily constrains flexibility and upgradabil-
ity. More modern solutions for this data distribution problem include ActiveMQ
and DDS. However, ActiveMQ requires a centralized data broker. While DDS
is decentralized, DDS requires a significant development effort to properly sup-
port vehicle to vehicle communication, as data middleware without high-level
language bindings. Lastly, common real-time OS’ VxWorks and QNX provides
no support for Kubernetes, removing it from consideration.

2.2 Use Case: Joint All-Domain Command and Control (JDAC)

One of the core design requirements for the U.S. Military Joint All-Domain
Command and Control (JDAC) is integration of heterogeneous assets to form
a distributed sensor network that both informs decision makers and improves
strike capabilities [4]. JDAC includes heterogeneous, distributed sensor networks,
in which devices have a wide range of computing power and specialized hard-
ware. These networks must efficiently distribute processing tasks across multiple
devices for real-time situational awareness.

For the purpose of demonstrating the core challenges required to meet this
goal, we construct an example concept of operations (CONOPS). This CONOPS
includes two different aircraft, one satellite, and a mission operations center. The
first aircraft is a reconnaissance unmanned aircraft, equipped with an Electro-
Optical/Infra-Red (EO/IR) camera capable of sending encoded Full Motion
Video (FMV). The second aircraft is an fighter jet capable of launching a ground
strike. The satellite hosts a powerful processor, machine learning algorithms, and
other sources of data for fusion.

For the network architecture the satellite only has a data link to the recon-
naissance aircraft. Both aircraft can communicate through data links with the
mission center, but not with each other. This sparsely connected graph of connec-
tivity reasonably represents a realistic scenario with modern proprietary, incom-
patible data links in the U.S. Air Force.

The first operational requirement for the reconnaissance aircraft is to collect
FMV and route the data stream to the satellite for machine learning driven
processing. The satellite returns a “Track” for all targets synthesized from the
data. The reconnaissance aircraft sends Track information to the mission control
station. The mission control station enables officers to make informed decisions.
Finally, the operation lead sends a strike command to the strike aircraft, with
the associated Track from the satellite/reconnaissance aircraft fusion. The final
result is a more accurate strike achieved by fusing the supplied Track with data
on-board the strike vehicle. More importantly, the decision to strike can be made
quickly and confidently by reducing the data-to-decision time provided by the
sensor network integrated ground station.

58 J. Davis and E. Tilevich

Traditional Challenges. The traditional approach to developing this sort of
joint operation would involve each primary contractor for the different platforms
to develop custom interfaces between each asset. These interfaces would require
long development and test cycles, and commonly be too specific to allow for
re-usability as this network is expanded to support additional aircraft.

Existing Approach. The CONOPS proposed above is similar to the design
drivers cited for the U-2 Kubernetes integration [7]. Although Kubernetes is a
powerful tool for distributing tasks via container orchestration, it is limited to
certain OS. Only some of the highly heterogeneous participating assets in a Joint
All-Domain Operation can host Kubernetes.

3 RESTful Architecture for Distributed Embedded
Systems

Our Communication Language for Embedded systems (CLES) and Software
Development Kit (SDK) support a broad problem space with a wide vari-
ety of inter-process and inter-device scenarios, while overcoming some of the
most salient constraints of embedded systems development. Incidentally clé/s/ is
“wrench” in French, and our objective has been to create a universal wrench for
communication and coordination in embedded systems.

For low latency point-to-point communications, we argue that a RESTful
request and response communication model, similar to the ubiquitous Java
net.http package, can offer a more flexible point-to-point alternative that meets
the same execution requirements. For distributed workloads, our approach sup-
ports decentralized, asymmetric, task allocation through simple portable C++
plugins loaded by a standalone runtime.

3.1 Requirements

Distributing an application across devices removes the applicability of all inter-
process communication within an OS, such as shared memory, memory mapped
I/0, pipes, OS messaging, semaphores, etc. The next descriptor of system
requirements is heterogeneity: systems running on any hardware or OS should
be able to interface with the communication functionality.

The example problem of a sensor network implies that the network consists of
at least some nodes that are highly specialized, possibly low-powered devices with
an array of sensors. These devices need to maintain their network coordination
with minimal overhead and software.

The final key requirement to consider is decentralized. In our problem domain,
one cannot assume that the node serving as the leader/director will always be
present. Decentralized distributed processing is important for distributed sensor
networks, as well as V2X and military applications, because often times there is
no clear “leader” and the computing cluster must be able to function with any
node missing.

CLES: A Universal Wrench for Embedded Systems 59

3.2 CLES Core Language Design

Despite their vastly dissimilar objectives and limiting factors, the use cases of
vehicle platooning and military JDAC represent some of the most prevalent
problems in the development of modern day embedded systems.

To satisfy the additional design drivers of programmability, flexibility, and
interoperability, our CLES domain specific language features a limited but pow-
erful set of verbs and a plain-text, JSON-formatted, response structure. The
primary benefits to the RESTful architectural style is the ability to expose a
limitless set of capabilities as nouns while constraining their interface semantics
to a simple set of 5 verbs (Table1).

CLES addresses the minimal latency and overhead requirements with a
lightweight CLES service for point-to-point communication. With this solution,
the computationally weaker nodes do not need to support a full CLES run-
time, only a direct point-to-point interface, designed to integrate directly into a
host application. CLES leverages this point-to-point service to solve the timeli-
ness requirements as discussed in Sect. 3.4. This service has been designed and
explored to solve the challenges present in the Platooning use case.

The design requirement of decentralized task management was tackled by
designing and implementing a separate standalone runtime for CLES that allows
for registration of tasks that can then be invoked remotely. Rather than inte-
grating into an application like the point-to-point service, the CLES runtime
is designed to be run as a standalone service, with a single runtime for each
embedded device that supports remote task submissions. The runtime has been
designed and discussed in future sections to solve the JDAC distributed process-
ing problems while maintaining flexibility and interoperability with the point-
to-point service.

Table 1. CLES verbs

Verb Usage
Pull Get Data Once

Push Send Parameter and Data

Delegate | Send Parameter, Get Result
Bind Register to Get Persistent Updates
Update |Send Update to Bound Users

3.3 CLES SDK Interface Definition

The CLES library interface for integrating with applications is simple but
powerful. The interface constructs a CLES_Service, which requires a device
name to expose externally and a network interface with the port to bind
to. After constructing a service, each CLES verb has its own registration
interface, whose Register< Verb>Function definitions bridge the application

60 J. Davis and E. Tilevich

(CLES Command) = (verb) (noun) (1)
(verb) = pull | push | delegate | bind | update (2)

(noun) = (remote target) : (task name)/(task parameters) (3)

(remote target) = (generic string) (4)
(task name) |= (generic string) (5)

(task parameters) |= (parameter) | (task parameters)(parameter) (6)
(parameter) = (generic string) (7)
(generic string) = [a — zA — Z0 — 9]+ (8)

Fig. 2. CLES Backus-Naur Form (BNF) grammar

to the CLES external interface. For example, to expose the capability for
other devices to retrieve this application’s timestamp, the developer would
first craft a function such as CLES_Response getSystemTime() which inter-
nally fills and returns a CLES_Response object with a key-value pair for sys-
tem time. Next, the developer would associate this function with the verb
PULL by calling RegisterPullFunction “systemTime”, getSystemTime). After
registering all verbs and associated functions, the CLES_Service can be started
with run() to accept external connections. Finally, a second device with
its own CLES service could request the system time from the first device
by calling makeCLESRequest(“PULL devicel:systemTime”). To pass param-
eters, such as timezone into getSystemTime(vector<string>args), the CLES
Request can be extended as per the DSL grammar (Fig.2), with the example:
“PULL devicel:systemTime/UTC”.

To enable the systemTime capability at a device level, create a DELEGATE
capability in the CLES runtime with a similar process substituding PULL for
DELEGATE. The SDK compiles all application interfaces into a plugin that can
be loaded by the CLES runtime rather than compiled into an application.

Listing 1.1. CLES Interface

CLES _Service (deviceName , interface , port);
bool register<Verb>Function (name, function);
void run ();

void stop ();

CLES_Response makeCLESRequest (CLES_Request);

3.4 CLES Point-to-Point Service

The CLES Point-to-Point service reduces the number of additional data trans-
missions and translations (hops) from source to destination. This design facet
also makes it unnecessary for all CLES users to support the full runtime. Hence-
forth, we refer to “Point-to-Point” as “P2P,” which is not to be confused with
“Peer-to-Peer.”. The P2P CLES service closely mirrors the semantics of the

CLES: A Universal Wrench for Embedded Systems 61

Java “net.http” interface. Our goal is to flatten the learning curve for developers
already familiar with the ubiquitous HTTP, so they can quickly transfer their
knowledge to the domain of embedded systems. Like the “net.http” interface,
the P2P service achieves minimal hops and overhead by integrating an in-line
function call to the networking layer from the parent application.

3.5 CLES Runtime and Task Distribution

The CLES runtime introduces novel asymmetric task registration and remote
access to meet the unique execution constraints of its target domain. The CLES
runtime is designed around the concept of “a distributed collection of thread-
pools.” In this design, each device that processes externally-provided tasks must
have a standalone CLES runtime service, similar to the service of the worker
nodes in container orchestration architectures. One key difference between CLES
and Container Orchestration solutions is that every machine with a CLES run-
time serves both as a leader and worker node. In this way, each node can process
tasks passed to it from an external source with the DELEGATE verb, as well
as pass commands to other nodes. Internally, each runtime comprises a thread-
pool that processes all received commands. This can be extended to support
task sharing and stealing, much like a modern threadpool. The established dis-
tributed synchronization properties of a threadpool ensure mutual exclusion,
thus preventing all deadlocks, livelocks, and task duplication.

Another difference between CLES and Container Orchestration is how capa-
bilities are added to a node. Instead of dynamically deploying containers, incur-
ring high bandwidth costs, each CLES runtime locally registers plugins at
startup. The asymmetric nature of device-specific plugins and leaderless coor-
dination support the flexibility and timeliness requirements in highly heteroge-
neous embedded environments.

While the CLES runtime supports all of the previously mentioned verbs, it
uniquely supports processing of the DELEGATE verb. DELEGATE represents
the CLES equivalent of adding a task to a threadpool, while the remaining verbs
represent common actions of point-to-point communication. A notable usage of
the runtime outside of DELEGATE paradigm is creating runtime plugins that
expose PULL interfaces to data shared across all applications on a device, such
as UTC time, processor load, or RAM usage.

3.6 CLES Implementation

Given OS and language limitations stemming from the heterogeneous require-
ment, we developed CLES in accordance with the C++17 standard, without
third-party libraries. C++ remains an industry standard and the primary devel-
opment language for both the defense and automotive industries.

To address the variety of network architectures and achieve interoperability,
CLES supports native IP communication protocols UDP and TCP for its net-
working layer. IP is also universally accepted and nearly all modern networking

62 J. Davis and E. Tilevich

protocols, i.e. WiFi, data link, Bluetooth, etc. support IP as a method of rout-
ing communication between devices. The CLES service wrapper abstracts this
interface, which opens opportunity for future development to extend this inter-
face to include memory mapped I/O and common data distribution platforms
such as Google ProtoBuf, ActiveMQ, and DDS. Embedding the network inter-
face into the CLES SDK interface caters to the desires of the embedded systems
community because unlike solutions such as the RQL mobile device runtime
[12], and data brokers like ActiveMQ, P2P CLES avoids passing of information
between third-party runtimes or brokers. This helps reduce latency, but also
supports deterministic real-time scheduling as defined by the parent application
because this interface is called in-line directly by the parent with no additional
non-deterministic processing constraints or data transmissions.

The Software Development kit (SDK) for CLES counsists of a supporting
static C++ library for extending an application with point-to-point service, the
CLES runtime, and all necessary interfaces to create a plugin to extend the
runtime capabilities. Plugins for the runtime follow the traditional C++ DLL
interface, which is common across plugin architectures. A developer can create
a plugin by using the provided CLES development SDK library, and exposing
the required interfaces to the CLES runtime, which are as simple as defining an
interface to the desired capability.

Currently, the automotive industry relies on real-time operating systems to
host V2X applications, with the top competitors including QNX by blackberry,
VxWorks by Wind River Systems, and the newer Real-Time Linux (RT-Linux)
also by Wind River. This SDK has been compiled and run on both Windows and
Linux based systems, which guarantees compatibility with QNX and RT-Linux,
and is theoretically able to port to VxWorks and other Operating Systems with
minimal modification to system calls for IP for network interface configuration
and socket control.

4 Evaluation

We evaluated CLES via micro-benchmarks, a representative application of Dis-
tributed Stochastic Gradient Descent, and design case studies. The benchmarks
isolate the performance characteristics of relevant parameters; the application
implementation of Distributed Stochastic Gradient Descent validates CLES
usability and flexibility for distributed workloads; the case studies demonstrate
the applicability of CLES in meeting the tight timing requirements of vehicle
platooning and the flexibility requirements of task allocations with U.S. Mili-
tary Joint All Domain Command and Control. Our evaluation is driven by the
following questions: (1) Does CLES meet the timeliness requirements for vehicle
platooning? (2) Is the plain-text packet structure of CLES compatible with the
network protocols of distributed embedded systems? (3) How does the developer
workload of CLES compare to that of traditional programming models? Given
that CLES consists of both a Point-to-Point service and task allocation runtime,
each was evaluated against different criteria.

CLES: A Universal Wrench for Embedded Systems 63

4.1 P2P CLES Performance and Micro-Benchmarks

CLES has been designed to prioritize programmability while maintaining time-
liness constraints. To capture the performance of the CLES P2P service, we
evaluated the round trip time overhead, packet size, and implementation source
lines of code. This process was also completed for the traditional method of con-
structing a serialized packet with an ICD definition and implementing a minimal
TCP client-server connection.

Both methods were tested with the task of having a client request a local-
ization packet from a server analogous to basic V2V requirements. The CLES
verb PULL was used to capture both the overhead of a server parsing a CLES
message and constructing a JSON object with the response. PULL represents
the worst case overhead because it exercises both a send and receive using all
basic CLES functions that add overhead. Additionally, both the ICD and CLES
implementation use TCP as their network protocol. Benchmarking was con-
ducted both locally on a single machine, and across a WiFi network to iso-
late the CLES overhead in the total Round-Trip-Time (RTT). The localization
packet contained a timestamp, latitude, longitude, forward velocity, and forward
acceleration (Fig. 3).

Round Trip Latency Overhead

Local Transmission Remote Transmission

~N

& n

=N

Round Trip Time (milliseconds)
o w

M ICD Client/Server m CLES

Fig. 3. CLES Latency Micro-benchmark

Each category of analysis has an important takeaway. First, the total
latency overhead for a CLES PULL versus a traditional ICD packet is around
1.5 ms. When considering the CLES verb paring BIND and UPDATE, contin-
uous updates remove half of the round trip time, and as such, this additional
overhead is within 10% of the total allowable 100 ms latency for vehicle platoon-
ing [2]. Another factor to consider with total latency overhead is scaling. The
recursive descent parser used within the language definition for CLES, while
theoretically achieving a maximum performance scaling of O(n), is reduced to
a constant time O(1) performance because the scaling factor is based on the

64 J. Davis and E. Tilevich

size of the CLES request itself, which is limited to a single verb and noun pair
with additional adverbs being passed directly to a registered function. On the
receiving end of the function, parsing a JSON object is bound by a complex-
ity of O(n) relative to the size of the message, which in most cases, like with
localization, remains constant to constrain the parse to a realistic operational
complexity of O(1). Given that the request and response are handled directly
in-line with the parent application, and both ends reduce to a given constant
time complexity O(1), this experimental result of 1.5 ms additional overhead is
directly transferable across all CLES interfaces with only minimal differences in
the target behavior from processor frequency and JSON response size.

Second, the packet size overhead, while being larger by a factor of three (132
bytes for CLES), is still a small fraction of the 65,535 byte maximum allowable
transmission size for TCP or UDP. The CLES JSON Response is also well within
the single transmission frame size of 1500 bytes for 5G [3] which indicates that no
additional overhead will be required to transmit the larger JSON packet. Finally,
the implementation of CLES requires 30 lines of code, which represents 1/10th as
many lines of code as the traditional ICD method with a TCP client and server.
Equally as important as lines of code are the complexity and programmability.
Implementing the CLES solution required no knowledge of the TCP/IP stack and
sockets, thus significantly reducing the learning curve for extending networked
capabilities within an application.

4.2 CLES Runtime Evaluation

The CLES Runtime is designed to provide flexibility and programmability for
distributing processing tasks across multiple devices. To evaluate these crite-
ria, the CLES Runtime was used to implement Distributed Stochastic Gradi-
ent Descent (D-SGD) to demonstrate that it can be effectively distributed with
CLES, achieving satisfactory performance. Because Stochastic Gradient Descent
is a fundamental mathematical principle of machine learning, this use case con-
firms that CLES can be successfully applied to implement distributed processing
solutions in this and similar domains (Fig. 4).

The Parallel Gradient Descent algorithm [13] was distributed using the Sand-
blaster Limited-Memory Broyden-Fletchger-Goldfarb-Shanno (L-BFGS) model
[5]. This model divides the data set into batches called data shards that are
processed in parallel using a central management node to coordinate their dis-
tribution and subsequent consolidation.

Two machines, a workstation PC and a laptop, each hosted a CLES runtime
with a plugin for single-threaded stochastic gradient descent on a supplied data
shard. The data set was loaded on each machine to remove the additional over-
head of data transfer, thus isolating the performance impact of CLES. The man-
agement node divided up the data set into data shards, represented as parame-
ters for data set access, and used CLES to DELEGATE the processing of those
shards to the CLES runtimes.

The data set used to demonstrate the D-SGD was a 2-Dimensional, 2 class
linear classification problem with 100,000 normally distributed data points per

CLES: A Universal Wrench for Embedded Systems 65

Algorithm 1 SGD({c!,...,c™}, T,n,wo)
fort =1to T do
Draw j € {1...m} uniformly at random.
Wi 4= w1 — N0’ (Wi_1).
end for
return wry.

Algorithm 2 ParallelSGD({c!,...c™}, T, n, wo, k)
foralli € {1,...k} parallel do
v; = SGD({ct,...c™}, T, n,wp) on client
end for
Aggregate from all computers v = % Zf: 1 v; and return v

Fig. 4. Parallel Stochastic Gradient Descent [13]

200,000 Point 2D 2-Class Dataset

* Class1
* Class2
Classifier

-20

-40

60

Fig. 5. Data set with classifier Fig. 6. Zoomed data set with classifier

class (Fig.5). To evaluate the additional overhead of CLES, the dataset was
classified both individually on the laptop and the PC using a single thread, and
four threads. These results were then compared to equivalent tests using the
CLES tuntime and management node to control the distribution of tasks using
CLES DELEGATE (Fig. 6).

The D-SGD results in Table2 validate a design pattern common to Sand-
blaster L-BFGS and other data processing distribution methods of minimizing
communication necessary to coordinate nodes. In the D-SGD workload, rela-
tively few messages with a low total overhead are used to coordinate large pro-
cessing workloads. The minimal cost of CLES is demonstrated as 10 ms locally in
the comparison of running four threads on the PC, and DELEGATING 4 data
shards to the PC CLES runtime from a manager on the same machine using
CLES. The overhead, less than 0.5% of the total processing time, is a minimal
cost for allowing distribution beyond a single machine. The difference between
managing CLES D-SGD locally from the PC (2190 ms) and remotely (2290 ms)
represents the additional network overhead of 100 ms. This highlights the CLES
performance impact as minimal compared to overall network performance.

The previously demonstrated minimal overhead of coordination relative
to absolute data processing time emphasizes the design priority of flexibility

66 J. Davis and E. Tilevich

Table 2. D-SGD performance results

Local Multi-Threaded D-SGD

Test Average Execution | Mean-Squared
Time (ms) Error
1 Thread PC 8150 0.0198995
1 Thread Laptop 9360 0.0198995
4 Threads PC 2180 0.0198977
4 Threads Laptop 2500 0.0198977
CLES DELEGATE D-SGD
4 PC Threads, PC Request 2190 0.0198977
4 PC Threads, Laptop Request 2290 0.0198977
8 Threads Both Machines, Laptop |2150 0.0198978
Request

and programmability for distributed workloads. The CLES implementation for
extending SGD into a plugin and creating a management node to make the
DELEGATE requests and combine responses requires less than 300 source lines
of C4++. This implementation could be similarly adapted to any distribution
domain with similar manager-worker semantics.

Platooning CLES Solution. CLES fits the design requirements: it is quick
to implement, compatible with real-time OSs, reliant on IP networking, reduc-
ing latency via a Point-to-Point service, while its RESTful DSL request and
response structure supports quick upgradability, backwards compatibility, and
inter-manufacturer operability. Optionally, a C++ vehicle control module allows
for directly including CLES to meet real-time deterministic timing constraints.

After establishing CLES as a viable middleware solution the integration with
CLES was designed. As discussed above, we selected the Point-to-Point service,
as dynamic task allocation is out of scope, while minimal hops with deterministic
behavior was desired. The minimal request and response structure is for each
vehicle to request persistent updates of localization data from the vehicle directly
in front of it, and the platoon leader [10]. The design requirement of persistent
updates naturally fits with the CLES verb pairing BIND and UPDATE. A CLES
BIND request for localization messages from all vehicles on the local network
created by 802.11p or 5G covers all required functionality. Finally, to fulfill this
BIND, each vehicle would post an UPDATE of their localization, which would
be sent to all bound vehicles in the local network.

JDAC CLES Solution. The OS flexibility, integration with the OSI IP stack,
and ease of development of CLES make it a suitable solution for implementing
Joint All-Domain Command and Control (JDAC).

CLES: A Universal Wrench for Embedded Systems 67

In this scenario, given the core design requirement of task allocation, such
as requesting a processing task from the satellite, and a strike task from the
strike assets, the CLES runtime was explored as a solution. First, the satellite
exposes its ability to process FMV into Tracks by integrating the CLES run-
time and creating a plugin for the DELEGATE capability FMV_Processing. This
capability accepts required metadata to begin receiving FMV and returns the
calculated Track. Second, the reconnaissance aircraft integrates the CLES run-
time with its Operational Flight Program (OFP). The OFP of the aircraft upon
collecting FMV uses the CLES runtime to DELEGATE remote processing to
any asset with the FMV_Processing capability. The aircraft OFP after receiv-
ing the CLES_Resonse with a Track, leverages the CLES P2P service and the
POST verb to send the track to all other bound parties. The mission center with
a CLES P2P service, BINDS to the Tracks from the reconnaissance aircraft. The
data is then presented to humans in the loop to make critical strike decisions.
After a strike decision, the command station then sends a DELEGATE strike
task to an available asset that registered a compatible strike capability such as
the fighter aircraft.

5 Conclusion

Modern embedded systems—autonomous vehicle-to-vehicle communication,
smart cities, and military Joint All-Domain Operations—feature increasingly
heterogeneous distributed components. Existing embedded system solutions for
communication and networking are inflexible, tightly coupled to wireless proto-
cols, and expensive to develop to satisfy the requirements. On the other extreme,
modern software solutions for distributing data, allocating dynamic tasks, and
deploying applications cannot satisfy embedded system requirements because of
centralized management, operating system constraints, and heavyweight mid-
dleware.

This paper has presented a Representational State Transfer (REST) archi-
tecture, designed and implemented to uniquely complement the constraints of
embedded systems development, such as language, operating system, latency,
and networking protocols. Our solution features a domain-specific language,
called the Communication Language for Embedded Systems (CLES), that sup-
ports both traditional point-to-point data communication and allocation of
decentralized distributed tasks. We demonstrated how CLES can increase pro-
grammability and flexibility of developing communication in embedded systems
with marginal performance impacts through representative micro-benchmarks,
a distributed stochastic gradient descent use case, and application case studies.

Acknowledgements. The authors thank the anonymous reviewers, whose insightful
comments helped improve this paper. NSF supported this research through the grant
#1717065.

68

J. Davis and E. Tilevich

References

10.

11.

12.

13.

. Boban, M., Kousaridas, A., Manolakis, K., Eichinger, J., Xu, W.: Connected roads

of the future: use cases, requirements, and design considerations for vehicle-to-
everything communications. IEEE Veh. Technol. Mag. 13(3), 110-123 (2018).
https://doi.org/10.1109/MVT.2017.2777259

Campolo, C., Molinaro, A., Araniti, G., Berthet, A.O.: Better platooning con-
trol toward autonomous driving: an LTE device-to-device communications strategy
that meets ultralow latency requirements. IEEE Veh. Technol. Mag. 12(1), 30-38
(2017). https://doi.org/10.1109/MVT.2016.2632418

Cominardi, L., Contreras, L.M., Bcrnardos, C.J., Berberana, I.: Understanding
QoS applicability in 5G transport networks. In: 2018 IEEE International Sympo-
sium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1-5. IEEE
(2018). https://doi.org/10.1109/BMSB.2018.8436847. https://ieeexplore.ieee.org/
document /8436847/

Congressional Research Service: Joint all-domain command and control (jadc2)
(2020). https://fas.org/sgp/crs/natsec/IF11493.pdf

. Dean, J., et al.: Large scale distributed deep networks. In: Pereira, F., Burges,

C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 25. Curran Associates, Inc. (2012). https://proceedings.
neurips.cc/paper/2012/file/6aca97005c68f1206823815{66102863-Paper.pdf
Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures, vol. 7. University of California, Irvine, Irvine (2000)

Force, U.A.: U-2 federal lab achieves flight with kubernetes. https://www.af.
mil/News/Article-Display /Article /2375297 /u-2-federal-lab-achieves-flight-with-
kubernetes/

. Martinez, [.S.H., Salcedo, I.P.O.J., Daza, I.B.S.R.: IoT application of WSN on 5G

infrastructure. In: 2017 International Symposium on Networks, Computers and
Communications (ISNCC), pp. 1-6 (2017). https://doi.org/10.1109/ISNCC.2017.
8071989

S. Arefizadeh, A.T., Zelenko, I.: Platooning in the presence of a speed drop: a
generalized control model (2017). http://arxiv.org/abs/1709.10083

Swaroop, D., Hedrick, J.K.: Constant spacing strategies for platooning in auto-
mated highway systems. J. Dyn. Syst. Measur. Control 121(3), 462 (1999)

Yang, L., Dihua, S., Fei, X., Jian, Z.: Study of autonomous platoon vehicle longi-
tudinal modeling. In: IET International Conference on Intelligent and Connected
Vehicles (ICV 2016) (2016)

Song, Z., Chadha, S., Byalik, A., Tilevich, E.: Programming support for sharing
resources across heterogeneous mobile devices. In: Proceedings of the 5th Inter-
national Conference on Mobile Software Engineering and Systems - MOBILESoft
’18, pp. 105-116 (2018)

Zinkevich, M., Weimer, M., Li, L., Smola, A.: Parallelized stochastic gra-
dient descent. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R.,
Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23.
Curran Associates, Inc. (2010). https://proceedings.neurips.cc/paper/2010/file/
abead7ba24142ed16b7d8fbf2¢740e0d- Paper.pdf

https://doi.org/10.1109/MVT.2017.2777259
https://doi.org/10.1109/MVT.2016.2632418
https://doi.org/10.1109/BMSB.2018.8436847
https://ieeexplore.ieee.org/document/8436847/
https://ieeexplore.ieee.org/document/8436847/
https://fas.org/sgp/crs/natsec/IF11493.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://www.af.mil/News/Article-Display/Article/2375297/u-2-federal-lab-achieves-flight-with-kubernetes/
https://www.af.mil/News/Article-Display/Article/2375297/u-2-federal-lab-achieves-flight-with-kubernetes/
https://www.af.mil/News/Article-Display/Article/2375297/u-2-federal-lab-achieves-flight-with-kubernetes/
https://doi.org/10.1109/ISNCC.2017.8071989
https://doi.org/10.1109/ISNCC.2017.8071989
http://arxiv.org/abs/1709.10083
https://proceedings.neurips.cc/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf

