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Abstract. In order to support the new service requirements-massive
ultra-reliable low-latency communications (mURLLC) in the six-
generation (6G) mobile communication system, finite blocklength (FBL)
information theory has been introduced. Furthermore, cell-free massive
multiple input multiple output (MIMO) has emerged as one of the 6G
essential promising technologies. A great quantity of distributed access
points (APs) jointly serve massive user equipment (UE) at the same time-
frequency resources, which can significantly improve various quality-of-
service (QoS) metrics for supporting mURLLC. However, as the num-
ber of UE grows, the orthogonal pilot resources in the coherent time are
insufficient. This leads to serious non-orthogonal pilot contamination and
pilot allocation imbalance. Therefore, we propose an analytical cell-free
massive MIMO system model and precisely characterize the error prob-
ability metric. In particular, we propose a FBL based system model,
formulate and resolve the error probability minimization problem, given
the latency requirement. Simulation results verify the effectiveness of the
proposed scheme and show that the error probability can be improved
by up to 15.9%, compared with the classic pilot allocation scheme.

Keywords: Cell-free massive multiple input multiple output
(MIMO) · Finite blocklength (FBL) · mURLLC · Pilot allocation

1 Introduction

With the rapid expansion of wireless communication systems, the amount of
mobile users has shown an explosive trend. The growth of mobile users has
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benefited from the popularization of smart terminals and the emergence of var-
ious new mobile services. However, due to multiple constraints such as energy,
spectral efficiency, and cost, the current fifth-generation (5G) mobile commu-
nication system cannot meet the requirements for ultra-large traffic, ultra-low
latency, ultra-large connections, and ultra-high reliability. Therefore, the sixth-
generation (6G) mobile communication system is regarded as the future research
focus.

Although it is far from reaching the unified stage of 6G definition, based on
the research progress [1–4] of various countries, it can be predicted that 6G will
adopt transformative technologies from the cell-free network architecture [5,6].

As we all know, the cellular network architecture is an epoch-making con-
cept proposed by Bell Labs in the 1970s. It adopts frequency reuse and cell
splitting technologies to improve the exploitation of spectrum resources and sup-
port the rapid development of mobile communications. In order to satisfy the
ever-increasing requirements for services, the entire evolution of mobile commu-
nication systems from the first-generation (1G) mobile communication system to
5G is based on cellular networks, that is, using macro cell splitting and vertical
micro cell network layering. However, as the cell area continues to shrink, prob-
lems such as inter-cell interference and frequent handovers have become more
and more serious, resulting in a bottleneck in system performance improvement.
In order to overcome these challenges, a cell-free massive multiple input multiple
output (MIMO) network architecture [7] which completely reforms the cellular
network architecture has become one of the feasible solutions.

The cell-free massive MIMO system distributes a great quantity of access
points (APs) with one or more antennas in a wide area, transmits data to the
central processing unit (CPU) through the backhaul links, and serves massive
user equipment (UE) at the same time-frequency resources. Cell-free massive
MIMO combines the advantages of distributed antenna systems and centralized
massive MIMO, that is, introducing the idea of “user-centric” [7,8]. It can reduce
the distances between APs and UE, obtain spatial macro diversity gain, greatly
cut down the path loss, and use the favorable propagation brought by a great
quantity of APs to reduce the interference among massive users, so that the entire
area is covered evenly and the user experience is significantly improved [8]. Due
to these advantages, cell-free massive MIMO is very suitable for major hospitals,
stadiums, high-speed rail stations, office buildings, shopping malls and other hot
spot scenes, and is considered to be one of the important research directions in
future mobile communication systems.

Since the amount of users rapidly increases, the orthogonal pilot resources
in the coherent time are insufficient, which leads to serious non-orthogonal pilot
contamination and pilot allocation imbalance. The authors of [9] designed ran-
dom and structured non-orthogonal pilot allocation schemes to maximize the
user pilot reuse distance. In [10], the authors used a dynamic pilot multiplex-
ing method to make two users share the same pilot resource to maximize the
uplink sum rate. Literature [11] divided users into groups based on available pilot
resources, and assigned a pilot sequence to each user group, but there was still
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pilot contamination among user groups. Moreover, the authors of [12] proposed
random and orthogonal pilot allocation schemes, but there was a large waste of
resources.

In addition, since the wireless fading channels has the stochastic nature,
it is difficult to satisfy the requirements for ultra-reliable low-latency com-
munications (URLLC). Moreover, as one promising technique for supporting
latency-sensitive services, massive ultra-reliable and low-latency communications
(mURLLC) combines URLLC with massive access. Meanwhile, massive short-
packet data transmissions are required in mURLLC to support latency-sensitive
applications [13]. This indicates that the classical Shannon theory with infinite
blocklength coding is not applicable to the new scenario any more. Therefore,
finite blocklength (FBL) information theory [14] has been developed to satisfy
both ultra-reliable and low-latency requirements by short-packet data transmis-
sions. Therefore, we analyze the error probability performance over 6G cell-free
massive MIMO systems and optimize the pilot length to minimize the error
probability.

The remainder of this paper is organized as follows. Section 2 describes the
cell-free massive MIMO system model. Section 3 formulates the downlink error
probability minimization and presents the golden section search algorithm for
the pilot optimization problem. Section 4 presents the simulation and numerical
results. Finally, Sect. 5 concludes this paper.

2 System Model

Take into consideration a cell-free massive MIMO system which consists of one
CPU, K APs and M UE, as shown in Fig. 1. M UE are served by K APs at the
same time-frequency resources. It is assumed that the APs and UE are located
randomly in a wide area. Assume that each AP has N antennas, while each UE
has a single antenna. Moreover, all APs are linked to a CPU through infinite per-
fect backhaul links. Furthermore, we assume that the system is operated under
time-division duplexing (TDD) mode, which can permit channel reciprocity to
require the downlink channel state information (CSI) by uplink pilot training. In
addition, we let np represent the number of channel uses for uplink pilot train-
ing, nd for downlink data transmission, and n for the whole transmission, i.e.,
n = np + nd. The channel coefficient between the kth AP (AP-k) and the mth
UE (UE-m), denoted by gk,m ∈ C

N×1, can be characterized as

gk,m = hk,m

√
βk,m (1)

where βk,m denotes the large-scale fading coefficient and hk,m denotes the small-
scale vector.

2.1 Uplink Pilot Training

The pilot training sequence for UE-m is defined as ϕ
np
m =

[
ϕ
(1)
m , . . . , ϕ

(np)
m

]
∈

C
1×np and

∥∥ϕnp
m

∥∥2 = 1 where ‖ · ‖ represents the Euclidean norm. Therefore,
the received signal at AP-k, denoted by Ynp

k ∈ C
N×np , is derived as
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Fig. 1. The cell-free massive MIMO system model.

Ynp
k =

√
npPp

M∑

m=1

gk,mϕnp
m + Nk (2)

where Pp denotes the pilot transmit power at the UE and Nk ∈ C
N×np denotes

the additive white Gaussian noise (AWGN) matrix with zero mean and covari-
ance IN , where IN denotes the identity matrix with size N .

The projection of Ynp
k onto ϕ

np
m , denoted by y

np
k,m ∈ C

N×1, can be derived
as

y
np
k,m = Ynp

k (ϕnp
m )H =

√
npPpgk,m +

M∑

m′=1
m′ �=m

√
npPpgk,m′ + nk, (3)

where (·)H denotes the conjugate transpose and nk � Nk

(
ϕ

np
m

)H ∈ C
N×1 is an

independent and identically distributed (i.i.d.) Gaussian vector with zero mean
and covariance IN .

Denote Gk �
[
gk,1, . . . , gk,M

]
as the channel coefficient matrix from

the AP-k to all UEs. Furthermore, we denote RGk
� E

[
Gk (Gk)H

]
=

diag (βk,1, . . . , βk,M ) as the covariance matrix of Gk, where E[·] represents the
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expectation operation and diag(·) denotes the diagonal matrix. Then, the min-
imum mean-squared error (MMSE) estimator which is represented by Ĝk, is
given by [15]

Ĝk =
√

npPpRGk
(npPpRGk

+ IN )−1
y

np
k,m. (4)

Furthermore, the channel estimator ĝk,m is derived as

ĝk,m =

√
npPpβk,m

npPp

∑M
m′=1 βk,m′

∣∣
∣ϕm (ϕm′)H

∣∣
∣
2

+ 1
y

np
k,m. (5)

It is noted that the channel estimator ĝk,m consists of N independent ele-
ments. The variance of each element of ĝk,m is given by

σk,m =
npPpβ

2
k,m

npPp

∑M
m′=1 βk,m′

∣∣∣ϕm (ϕm′)H
∣∣∣
2

+ 1
. (6)

The MMSE estimation error is g̃k,m = gk,m − ĝk,m, which is independent of
the true channel. Moreover, each element of the channel estimate error follows
CN (0, βk,m − γk,m).

2.2 Downlink FBL Data Transmission

We let Qm denote the multiplexing order of UE-m. Furthermore, we define a Qm-
dimensional beamformer Bm � IQm

⊗1N/Qm
for UE-m, where ⊗ represents the

Kronecker product, IQm
represents the identity matrix with size Qm, and 1N/Qm

represents the all one vector with size N/Qm. Denote Xnd
k �

[
x
(1)
k , . . . ,x

(nd)
k

]

as the transmitted signal matrix from AP-k and ynd
m �

[
y
(1)
m , . . . , y

(nd)
m

]
as the

received signal vector at UE-m. Based on the MMSE estimator matrix which
is represented by Ĝk =

[
ĝk,1, . . . , ĝk,M

]
, the transmitted signal which is repre-

sented by x(l)
k , for transmitting lth data block by using conjugate beamforming

[7], is derived as
x
(l)
k = Wk (Σk)

1
2 s(l)m , l = 1, . . . , nd (7)

where s
(l)
m is the lth data block to UE-m. Σk � diag (ηk,1, . . . , ηk,M ) represents

the power coefficient matrix where ηk,m(m = 1, . . . , M) represents the power
coefficient for transmitting lth data block from AP-k to UE-m. Wk represents
the downlink precoder, which is given by

Wk � Ĝk

[(
Ĝk

)H

Ĝk

]−1

Bm (Ξk)
1
2 (8)

where Ξk = diag (χ1, . . . , χM ) represents the normalization matrix. There-
fore, the columns of Wk have unit norm and the normalization variable
χk(k = 1, . . . ,M) which are following the central chi-square distribution with
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(2�) degrees of freedom, where � = K − M + 1. The probability density function
(PDF) of χk is given by [16]

f� (χk) =
1

Γ(�)
χ�−1

k e−χk (9)

where Γ(z) =
∫ +∞
0

tz−1e−tdt represents the Gamma function. Define Wk =
[wk,1, . . . ,wk,M ] where wk,m represents the downlink precoder. Furthermore,
the power constraint at each AP on power coefficients is given by

1
nd

nd∑

l=1

E

[∥∥∥x(l)
k

∥∥∥
2
]

≤ Pd (10)

where Pd denotes the average transmit power for each AP and x
(l)
k is derived by

(7). In addition, with the number of APs K growing, the system will experience
only small variations (with respect to the average) in the achievable data rate,
which is known as the channel hardening [17]. Then, although the instantaneous
CSI is not available at the UE, E

[(
gk,m

)T
wk,m

]
can be used to calculate the

channel coefficient, where (·)T represents the transpose of a vector.
The received signal, denoted by y

(l)
m , for transmitting the lth finite-

blocklength data block from AP-k to UE-m, is derived as

y(l)
m =

K∑

k=1

√
Pdηk,m

E

[(
gk,m

)T
wk,m

]
s(l)m

︸ ︷︷ ︸
DSm

+
√

Pd

{
K∑

k=1

√
ηk,m

(
gk,m

)T
wk,m − E

[
K∑

k=1

√
ηk,m

(
gk,m

)T
wk,m

]}

s(l)m

︸ ︷︷ ︸
BUm

+
M∑

m′=1
m′ �=m

K∑

k=1

√
Pdηk,m′

(
gk,m

)T
wk,m′s

(l)
m′

︸ ︷︷ ︸
UIm′

+n(l)
m (11)

where s
(l)
m and s

(l)
m′ represent the signals sent to UE-m and UE-m′, respectively;

ηk,m and ηk,m′ represent the power coefficients for UE-m and UE-m′, respec-
tively; gk,m ∈ C

1×N represents the channel coefficient vector from AP-k to

UE-m; n
(l)
m represents the AWGN; and DSm, BUm, and UIm′ are the strength

of the desired signal, the beamforming gain uncertainty, and the interference
caused by UE-m′, respectively.

Correspondingly, the signal to noise plus interference ratio (SINR) which is
represented by γm, from the APs to UE-m, is derived by

γm =
‖DSm‖2

E

[
‖BUm‖2

]
+
∑M

m′=1
m′ �=m

E

[
‖UIm′‖2

]
+ 1

(12)
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3 Minimize the Error Probability in the FBL Regime

In the FBL regime, the accurate approximation of the achievable data rate for
UE-m, denoted by Rm (bits per channel use), with error probability, denoted by
εm(0 ≤ εm < 1), and coding blocklength, denoted by nd, is given by [14]

Rm (nd, εm) ≈ C (γm) −
√

V (γm)
nd

Q−1 (εm) (13)

where Q(x) =
∫ +∞

x
1√
2π

e− 1
2 t2dt denotes the Q-function and Q−1(·) denotes the

inverse of Q-function. C(γm) and V (γm) represent the channel capacity and
channel dispersion, respectively, which are given by [14]

{
C (γm) = log2 (1 + γm)
V (γm) = 1 − 1

(1+γm)2
(14)

Since n = BtD = np + nd where B denotes the bandwidth and tD denotes
the latency, the achievable data rate Rm for UE-m, given the pilot length np, is
given by

Rm (tD, εm) ≈ C (γm) −
√

V (γm)
BtD − np

Q−1 (εm) . (15)

In the case where the achievable data rates for all UE are given, i.e., Rm =
D

BtD−np
(m = 1, . . . , M), where D is the size of downlink data packet (measured

in bits). The error probability for UE-m can be derived as

εm (tD, np) ≈ Q

(√
BtD − np

V (γm)

[
C (γm) − D

BtD − np

])

(16)

Given the latency which can satisfy mURLLC (tD ≤ 0.5 ms), the error prob-
ability is a function of the pilot length np. Therefore, the optimization problem
to minimize the error probability can be modeled as

n∗
p = arg min

M≤np≤BtD−1
εm (np) . (17)

In order to find the optimal pilot length n∗
p, the exhaustive method is often

used. However, the low-complexity golden section search algorithm can be used
as an effective solution to quickly converge to the optimal pilot length to reduce
computational complexity. The detailed steps of the golden section search algo-
rithm are listed in Algorithm1.

The complexity of the golden section search algorithm is O(log(BtD − K)),
which is much lower than the complexity of the exhaustive method O(BtD−K).
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Algorithm 1. Golden section search algorithm
1: Input: Number of UE M , bandwidth B, latency tD
2: Initialization: Search interval [nL, nR], nL = M , nR = BtD − 1, tolerance ttol =

0.5, golden ratio ρ = 0.618
3: do
4: n1 = nL + (1 + ρ)(nR − nL) and n2 = nL + ρ(nR − nL)
5: Calculate the error probability εk(n1) and εk(n2)
6: if εk(n1) < εk(n2) then
7: nR = n2, n2 = n1, and n1 = nD + (1 − ρ)(nR − nL)
8: else
9: nL = n1, n1 = n2, and n2 = nL + ρ(nR − nL)

10: end if
11: while |n2 − n1| > ttol
12: Output: Optimal pilot length n∗

p = arg min
np

εm (np) where np ∈
{[(nL + nR) /2] , [(nL + nR) /2] + 1}

Table 1. Simulation parameters

Parameters Values

Amount of transmit antennas N [2, 10]

Amount of APs K [100, 800]

Amount of UE M [50, 400]

Uplink pilot transmit power Pp for each UE [1, 10] W

Average downlink transmit power Pd [1, 40] W

4 Numerical Results

MATLAB-based simulations are carried out to validate and evaluate our pro-
posed cell-free massive MIMO based schemes for minimizing the error probability
in the finite blocklength regime. The simulation parameters are set as Table 1.

In Fig. 2, we set the amount of transmit antennas N = 4, the multiplexing
order Qm = 2, the uplink pilot transmit power Pp = 1 W, and the average
downlink transmit power Pd = 10 W. The error probability εm varies within
[10−7, 10−5], and the latency tD varies within [0.1 ms, 0.5 ms]. Fig. 2 shows that
the achievable data rate Rm(tD,m) varies with latency tD and error probability
εm. It can be seen from Fig. 2 that when the error probability is given, the
achievable data rate is obviously a monotonically increasing function of latency.
As the amount of APs increases, the favorable propagation brought by a great
quantity of APs can reduce the interference among massive users. Specifically,
when the error probability given by 105, by increasing the amount of APs form
100 to 200, the achievable data rate can be improved by 9.8%.

In Fig. 3, we set the amount of APs K = 200, the amount of UE M = 100,
the amount of transmit antennas N = 10, the multiplexing order Qm = 2, the
uplink pilot transmit power Pp = 1 W, and the average downlink transmit power
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Fig. 2. The achievable data rate Rm(tD, εm) vs. latency tD and error probability εm in
the FBL regime.
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Fig. 3. The error probability εm vs. latency tD for the proposed cell-free massive MIMO
system in the FBL regime.
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Pd = 10 W. Figure 3 demonstrates the trade-off between error probability and
latency. We can see from Fig. 3 that there is a trade-off between error proba-
bility and latency over 6G cell-free massive MIMO system in the FBL regime.
Therefore, according to the different requirements of 6G applications for latency
and reliability, we should reasonably configure the parameters to meet different
application requirements. Furthermore, increasing the transmit power of down-
link data transmission can effectively reduce the error probability.

In Fig. 4, we set the amount of APs K = 200, amount of UE M = 100,
amount of transmit antennas N = 8, the multiplexing order Qm = 4, and the
uplink pilot transmit power Pp = 1 W. We set the average downlink transmit
power Pd = 1 or 10 W, respectively. The theoretical value and the simulation
value of error probability under different pilot lengths are shown in Fig. 4. As
mentioned in the previous analysis, proper pilot length can reduce the error
probability. It can be seen from Fig. 4 that the optimal pilot length is 50, which
is obtained by the golden section search algorithm. By means of the simulation
results, it is found that the theoretical value is consistent with the simulation
value, which proves the correctness of the above theoretical analysis. We also
find that the optimal pilot length (pentagram) determined by the low complex-
ity golden section search algorithm is consistent with the pilot length (diamond)
determined based on the exhaustive search method, which verifies the effective-
ness of the golden section search algorithm.

20 30 40 50 60 70 80 90 100 110 120

Pilot Length n
p

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
rr

o
r 

P
ro

b
ab

il
it

y

P
d
 = 1W, theoretical value

P
d
 = 1W, simulation value

P
d
 = 10W, theoretical value

P
d
 = 10W, simulation value

P
d
 = 20W, theoretical value

P
d
 = 20W, simulation value

Fig. 4. The error probability εm vs. pilot length np in the FBL regime.

In Fig. 5, we set the average downlink transmit power Pd ∈ {1 W, 10 W}, and
the multiplexing order Qm ∈ {2, 4}. Figure 5 plots the achievable data rate with
varying amount of APs for the proposed 6G cell-free massive MIMO networks.
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From Fig. 5, we can find that the achievable data rate increases with the amount
of APs. Figure 5 reveals that a larger multiplexing order Qm can increase the
achievable data rate. Figure 5 also demonstrates that the gap between different
multiplexing orders increases with the amount of APs, which is the result from
the channel hardening effect. We can also find that increasing the multiplexing
order Qm can improve the achievable data rate. Specifically, by increasing the
multiplexing order Qm from 2 to 4, the achievable data rate is improved by up
to 6% and 9.9%, respectively.

Fig. 5. The achievable data rate vs. amount of APs in the FBL regime.

In Fig. 6, we let the amount of UE M = 100, the amount of transmit anten-
nas N = 10, the multiplexing order Qm = 2, and the uplink pilot transmit power
Pp = 1 W. Given different average downlink transmit power and pilot length,
Fig. 6 depicts the error probability with varying amounts of APs. Obviously, we
can find that the error probability decreases with the amounts of AP increasing.
We can see from Fig. 6 that the pilot length np can make an impact on the error
probability, and the proper pilot length can significantly reduce the error proba-
bility, which makes the pilot optimization problem more necessary. Specifically,
compared with the case where the pilot length is equals to the amount of UE
(np = M = 100), the optimal pilot length can improve the error probability by
up to 7.2% and 15.9% when K = 100, respectively.
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Fig. 6. The error probability vs. amount of APs in the FBL regime.

5 Conclusion

In this paper, we have developed an analytical model and quantitatively char-
acterized the metrics over 6G cell-free massive MIMO mobile wireless networks
in the FBL regime. We have derived the SINR for each UE and analyzed the
error probability performance in the downlink data transmission. Then, we have
formulated the pilot allocation problem with the goal of minimizing the error
probability, which has been solved by the golden section search algorithm. A
number of simulations have been conducted to verify and evaluate the proposed
cell-free massive MIMO scheme in the FBL regime. Our research can effectively
meet the requirements for mURLLC in 6G networks, and is of great significance
to the theoretical research and actual deployment of cell-free massive MIMO
systems.
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