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Abstract. Body capacitance change is an interesting signal for a vari-
ety of body sensor network applications in activity recognition. Although
many promising applications have been published, capacitive on body
sensing is much less understood than more dominant wearable sensing
modalities such as IMUs and has been primarily studied in individual,
constrained applications. This paper aims to go from such individual-
specific application to a systemic analysis of how much the body capaci-
tance is influenced by what type of factors and how does it vary from per-
son to person. The idea is to provide a basic form which other researchers
can decide if and in what form capacitive sensing is suitable for their spe-
cific applications. To this end, we present a design of a low power, small
form factor measurement device and use it to measure the capacitance of
the human body in various settings relevant for wearable activity recogni-
tion. We also demonstrate on simple examples how those measurements
can be translated into use cases such as ground type recognition, exact
step counting and gait partitioning.

Keywords: Human body capacitance · Electric field sensing ·
Capacitive sensing · Respiration detection · Gait partitioning · Touch
sensing · Ground type recognition · Step counting

1 Introduction

Electric capacitance, defined as the ratio between charge and the resulting elec-
tric potential, is a fundamental physical property. For a given object, “self-
capacitance” reflects the electric potential with respect to the ground. It depends
primarily on the object composition and size but is also significantly influenced
by the shape and the spatial relation between the object and ground (Fig. 1).
When considering the Human Body Capacitance (HBC), we have a baseline
given by the body composition (which is 60% water) and a specific person’s
size plus components related to posture, limb motion, the contact surface to the
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ground and contact with other objects. The latter varying components make
HBC an interesting modality for on-body sensing as they allow a single quan-
tity to capture complex phenomena ranging from complex postures and motions,
through clothing and the composition of the environment (in particular the floor)
to physiological parameters such as breathing.

A well-known HBC application is the musical instrument Theremin [1,2]
where the acoustic volume and pitch are controlled by the distance between
limbs and two metal loop antennas. Besides that, HBC was finitely explored
in specific motion-sensing applications. Arshad et al. designed a floor sensing
system to monitor the motion of elderly patients [3] to various gesture monitoring
systems. Marco [4] presented a textile neckband for head gesture recognition.
Bian [5] showed a capacitive wristband for on-board hand gesture recognition.
The background behind is the capacitance between two positions on the skin.
The variation of the skin capacitance was used to deduce the neck movement.
Cohn [6] took advantage of the HBC to detect the arm movement by supplying
a conductive ground plane near the wrist.

1.1 Paper Aims

This paper aims to go from individual-specific application to a systemic analysis
of how much the body capacitance is influenced by what type of factors and
how does it vary from person to person. The idea is to provide a basic form
which other researchers can decide if and in what capacitive sensing is suitable
for their specific applications. To this end, we have designed and implemented
a low-cost, low-power consumption, wearable prototype capable of monitoring
the value of the HBC when the user is in both static and dynamic (moving,
walking) states. We also briefly show in simple illustrative experiments how the
property that we investigated can contribute to use cases such as ground type
recognition (F-score of 0.63), exact step counting (with 99.4% accuracy, 94.3%
with a gyroscope for comparison), gait partitioning (with an accuracy of 95.3%
and 93.7% for stance and swing phases, respectively, 93.1% and 90.8% with a
gyroscope for comparison).

Fig. 1. Human body capacitance: the coupling between body and earthed ground/
surroundings
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Table 1. Human body capacitance measurement

Authors/Year Tool HBC value
(pf)

Test condition Variation source

Bonet et al.
[7,8] 2012

Impedance
analyzer
(10 kHz–1 MHz)

70–110
110–180

Foot on ground
Foot 10 cm above
ground

Different frequency
input of the
analyser

Buller et al.
[9] 2006

Mathematical
model of
body-conducive
wire mutual
capacitance

48.5–48.9 Static standing Body - wire
distance

Forster et al.
[10] 1974

Cathode-ray
oscilloscope and a
shielded resistive
probe

100–330 Volunteer lying on
medical bed

Laboratory
environment

Greason et al.
[11] 1995

Mathematical
model of ESD and
the human body

Qualitative
analysis

Grounding, charge
sources, etc.

Huang et al.
[12] 1997

Capacitive meter 112–113 Sitting on chair Human body
resistance, leakage
resistance

Pallas et al.
[13] 1991

Oscilloscope and
voltage divider
probe

120–520 Static standing Interference from
power line

Iceanu et al.
[14] 2004

Electrometer
(6517A model)
and Faraday’s cup

160–170
159–165

Static standing
Sitting on chair

Different charging
voltage from the
electrometer

Jonasson
et al. [15] 1998

Mathematical
model
Electrometer
(charger sharing
method)
Conventional
AC-bridge
(AC-measurement
method)

100–300
268
170

Static standing
Standing with
polymeric soles,
linoleum floor
Standing with
polymeric soles,
linoleum floor

Shoes and floor

Fujiwara et al.
[16] 2002

Polyhedral model,
power charger,
analog switch
(surface charger
method)

120–130 Static standing Foot-ground
distance

Serrano et al.
[17] 2003

Physical model,
oscilloscope and
voltage divider
probe

110–3905 Static standing,
touching
surrounding

Power lines and
surroundings

Haberman
et al. [18] 2011

Fluke 112
multimeter and
customised circuit

110–280 Standing, sitting,
touching
surrounding

Power lines and
surroundings
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1.2 Related Work

Research on the measurement of human body capacitance was mainly per-
formed many years ago. Table 1 summarizes the result of such work by different
groups. Most of the concluded value matches the definition of the human body
capacitance from the Electrostatic Discharge Association (ESDA), in which a
value of 100 pF is stated. However, the related explorations are either based on
mathematic estimation methods [7,9,15,17], or measured in a laboratory with
heavy, expensive instruments, like impedance analyzer, oscilloscope [8,12–14,16].
Besides the theoretical or laboratory methods, all those works focused on the
HBC value with a static body state, like sitting, standing, or lying.

To understand how the body capacitance changes in real-time, we developed
a wearable, low-cost, low power consumption prototype capable of measuring the
value of HBC in real-time (in Sect. 2). We first explored the body capacitance
with a static body state, sitting and standing with this prototype. Secondly, we
tested the potential influence factors that could change the body capacitance,
like the body postures, the wearings like the sole’s height, the surroundings like
the different indoor spots and ground types (in Sect. 3). Then we observed the
body capacitance’s real-time change while the tester was in a dynamic state,
like walking around a building (in Sect. 4). Finally, we showed several potential
applications either quantitively or non-quantitively with our wearable prototype,
like exact step counting, gait partitioning, passive touch sensing, respiration
monitoring (in Sect. 5).

2 Sensing Approach

Inspired by the Theremin [2], we designed a simple circuit that takes the body as
part of it so that the body capacitance could be measured in an straightforward
way. Capacitance itself usually is not easy to be measured directly, especially
when the sensing unit needs to be portable and battery-powered. Thus, physical
variables like the voltage, current, or frequency are adopted as a reflection of the
capacitance. Here we put the body into an oscillating circuit, by measuring the
frequency of the oscillator, the body capacitance could be deduced. The security
is guaranteed when the body is enclosed into the circuit since the current flowing
on the skin is in uA level and the voltage in mV level [19].

Figure 2 depicts the timer-based RC oscillator, where the capacitor charges
through R1 and R2, discharges through R2. The trigger and threshold termi-
nals are connected so that the oscillator will trigger itself and free run as a
multivibrator. The frequency can be calculated by Eq. 1 [20]:

f =
1.44

(R1 + 2 ∗ R2)C
(1)

Where C is the capacitance of the parallelly connected C2 and C4. C4 indi-
cates the capacitance of the body. To be noticed, this equation does not account
for the propagation delay of the timer as well as the input capacitance of the
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Fig. 2. Human body capacitance sens-
ing front-end

Fig. 3. Hardware prototype

trigger and threshold terminals (around 2 pF each pin). The input capacitance
is a particular value, while the propagation delay of the timer will increase with
a higher frequency [21]. To address the propagation delay and the pins’ input
capacitance caused virtual capacitance, we put C2 alone in the circuit, and mea-
sured an output frequency of 335 kHz, meaning that the virtual capacitance was
10.47 pF. Then we changed C2 from 10 pF to 20 pF, got a virtual capacitance of
10.62 pF, which is not too much different from the previous value. Thus in the
following experiment, we first read the oscillating frequency, then calculated the
body capacitance enclosed into the circuit by subtracting the virtual capacitance
of 10.5 pF from the result of Eq. 1.

Figure 3 shows the hardware prototype. The sensing front end is followed by a
Teensy 3.6 development board from the market [22], which is capable of counting
the frequency up to ten’s MHz. The signal data is collected with 10 Hz sample
rate and is recorded into an SD card, or transmitted by a low power Bluetooth
or a USB cable to the computer. An IMU (BNO055) is also attached to the main
board for supplying comparable movement data. The electrode is the universal
ECG electrode that can stick on the skin. A 3.7 V lithium battery with 1050
mAh capacity is used to power the hardware after being boosted to 5.0 V. The
whole design consumes 85 mA current, where the capacitance measurement part
consumes only 2 mA current. The cost for the capacitance measurement part
is nothing more than a normal timer as well as a few capacitors and resistors,
costing less than one dollar.

A similar front end was used by Tobias [23], where he used a timer-based
oscillator for capacitive cm-level proximity sensing. The difference is that the
charging and discharging object in the reference was from the environment out-
side the circuit, namely the capacitance between the electrode and the environ-
ment. Another remarkable design was from Cheng’s work [24], where the authors
used a transistor-based LC oscillator (Colpitts oscillator) for capacitive move-
ment sensing, and focused on the activity recognition. Although an LC-based
oscillator enjoys a higher oscillating frequency than RC based timer oscillator,
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it is less sensitive to the capacitance variation than an RC oscillator, as the fre-
quency of an LC oscillator is inversely proportional to the root of a capacitance.

3 Exploration of HBC in a Static State

We firstly explored the HBC while the body is in a static state: standing and
sitting. As Fig. 4 depicts, we had the sensing prototype and a computer for data
recording on an office desk, an electrode from the sensing unit was touched by
the left hand of the volunteer while the volunteer was sitting on an office chair or
standing beside. The prototype was connected to the computer by a USB cable,
so they both shared the same ground. The computer was grounded through
the power line so that the body was enclosed within the oscillator circuit, as
the capacitor C4 in Fig. 2 represents. In essence, HBC occurs as a form of an
electrostatic field, which is caused by the charge on the body and the charge
from the unshielded wiring in the environment. The floor (normally composed
of non-conductors like carpet, wood, concrete) itself cannot store charge. When
one walks across a floor, the electrostatic charge accumulates on the body. This
phenomenon does not implicate the existence of charge stored on the floor. The
reason behind locates in the triboelectric effect [25]. That is to say, the dielectrics
of the HBC include all the materials between the body and the grounded wires,
namely the series of shoes and floor, instead of the shoes alone. This also matches
the above mentioned literature [7–18] where all the instruments used to measure
the HBC, like the oscilloscope, impedance analyzer, were earthed to the power
lines, so as the mathematical or physical models in the literature. The human
body model (HBM) in section 3.4.1 of ESD Handbook defined by the ESDA [26]
also guarantees the grounded side in a body’s physical electric model.

Fig. 4. HBC measurement in static body state

In this experiment, seven participants joined the measurement. Table 2 lists
their gender, weight, and height. Table 3 lists the HBC of the volunteers with
standing and sitting state. They wore their daily clothes and shoes during this
measurement. This measurement was performed in a 4 m × 5 m working office.
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Table 2. Volunteers’ information

Volunteer 1 2 3 4 5 6 7

Age 31 21 25 25 19 29 28

Gender Male Male Male Female Female Female Male

Weight (kg) 98 83 71 64 54 58 92

Height (cm) 185 176 168 165 157 161 180

Table 3. HBC in standing and sitting

Volunteer 1 2 3 4 5 6 7

Standing frequency (MHz) 0.0580 0.0680 0.0685 0.0680 0.0698 0.0695 0.0655

Standing capacitance (pF) 97.72 80.34 79.60 80.34 77.74 78.16 84.19

Sitting frequency (MHz) 0.0570 0.0664 0.0675 0.0678 0.0672 0.0690 0.0650

Sitting capacitance (pF) 99.80 82.77 81.09 80.64 81.54 78.88 84.99

The measured capacitance from all volunteers shows a value of 77 to 100 pF,
which matches the result of previous work, where the HBC was measured by
labor used heavy instruments. The capacitance value from all volunteers also
shows that the HBC in sitting body state is slightly higher than in the standing
state. This is reasonable since the distance from the body to the ground will be
shorter by sitting down. The data also shows that volunteers with larger body
form (taller and higher weight) have a higher value of HBC, like volunteers one
and seven. Volunteers five and six have a smaller body form, and give a smaller
standing body capacitance. However, how the body form affects the HBC is
not clear at this point, since the body form related cross-objects observation
is not acquired with a controlled variable method and also the observation is
not common since volunteer two’s body form is also big, but he had the same
standing body capacitance with volunteer four.

The certain point is that factors like the environment, the wearing, will
impact the electrical characteristics of a body. For example, standing against a
working grounded refrigerator will form a relatively strong electric field between
the body and the appliance. Thus with our simplified HBC meter, we researched
the following factors that can affect the HBC by observing the HBC variation
within different configurations of a single volunteer.

(A) HBC Influence Factor: Wearing

We firstly focused on the wearing, especially the type and height of sole, which
is the main dielectrics that insulate the body from the grounded plane. Four
types of soles with two types of material and two sets of height were prepared
for the testers. Since it was not easy to find a sole with pure PVC or pure rubber,
we took the maximum composition as the sole type. The height of the sole was
rounded to the nearest integer number. Table 4 presents the measured HBC
with different sole configuration.
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Table 4. HBC of different sole height, type with the body standing (unit: pF )

Volunteer 1 2 3 4 5 6 7

bare feet 107.67 91.00 90.10 81.54 88.34 83.39 92.47

2 cm height PVC 95.72 81.54 80.34 79.60 79.46 73.43 89.21

3 cm height PVC 89.21 78.16 78.16 76.08 76.08 69.72 83.39

2 cm height rubber 93.40 77.74 79.60 76.76 78.16 70.32 86.98

3 cm height rubber 90.10 76.76 77.46 76.35 76.08 69.13 85.81

Fig. 5. Seven volunteers’ HBC with different sole configuration

Figure 5 depicts a clear HBC variation with different sole configuration for
each volunteer. While wearing nothing on the feet, each volunteer gives the
highest value of HBC. This value decreases as they wear a thicker sole, which is
reasonable since the capacitance value is inversely proportional to the distance
between the two corresponding conductive plates. The material types of the sole
should also have some influence on the HBC since they have distinct permittiv-
ities, but from our data, a clear and uniform difference from the sole material
type can not be observed.

(B) HBC Influence Factor: Posture

Besides the wearing, the body postures also play an important role on the HBC,
since the postures of the body will change the distance and the overlapping
area of the two plates of a capacitor, as Table 3 represents. Besides sitting and
standing, we also researched posture variations from the limbs. Table 5 lists the
measured capacitance with different postures when the tested volunteer was
sitting on the office chair.

The measured capacitance from the seven volunteers locates in the range of
72 pF to 107 pF and shows a uniform variation with the five postures (Fig. 6).
Lifting legs will decrease the HBC, the decreased scale can be up to 10 pF, and
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can be as low as less than 1 pF. It should have something to do with the lifting
height that the volunteers performed (unfortunately we didn’t instruct the lifting
height during the test). Lifting the arm will enlarge the HBC, the reason behind
is the enlarged body area relative to the ground. This also explains the result of
postures with different distance between the two legs, moving the leg apart will
enlarge the HBC.

Table 5. HBC of different postures with the body sitting on the chair (unit: pF )

Volunteer 1 2 3 4 5 6 7

Sitting 99.80 82.77 81.09 80.64 81.54 78.88 84.99

Lift one foot 90.10 78.30 74.08 80.04 76.08 75.00 81.84

Lift two feet 86.64 77.46 73.43 79.17 72.16 73.43 80.79

Lift right arm 104.63 86.81 83.39 81.24 83.39 79.90 90.10

Two legs close to each other 93.78 78.88 74.74 76.08 76.76 77.18 82.15

Two legs apart from each other 106.48 88.34 82.15 81.84 84.19 80.34 89.56

Fig. 6. Seven volunteers’ HBC in different body postures

(C) HBC Influence Factor: Environment

Lastly, we tested the influence of the environment, including four ground
types. All the objects wore their daily clothes and shoes, stood static in different
spots in the office building. Table 6 lists the measured body capacitance value.
It is evident that the environment, referring to different spots, different ground
types in an office building in this paper, has a significant influence on the HBC
while the body is in a static standing state. The largest HBC change was from
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volunteer one, where around 50 pF was raised while he stood against the wall
compared to his standing state in the social hall. The smallest HBC variation
was 18.28 pF from volunteer four while she stood against the wall and stood on
the wood floor stair.

Table 6. HBC of different environment (unit: pF )

Volunteer 1 2 3 4 5 6 7

Office room 97.72 80.34 79.60 80.34 77.74 78.16 84.19

Against server room door 111.37 103.05 91.91 91.91 83.71 83.08 104.86

Social hall 94.55 77.88 77.74 78.88 77.46 69.72 82.92

Near wall 142.76 113.43 122.35 94.36 95.72 86.64 129.22

Textile floor 99.80 93.03 85.98 77.46 78.88 72.16 95.72

Carpet floor 116.09 102.39 88.34 84.35 84.99 81.84 112.65

Concrete floor 108.88 80.34 81.84 81.84 80.04 78.88 98.13

Wood floor 99.38 74.74 77.46 76.08 74.74 63.12 91.54

Fig. 7. Seven volunteers’ HBC in different environment

Figure 7 depicts the variation of HBC in different environments. The first
four spots (office room, near the server room, social hall, and near the wall)
had the same textile floor. Each volunteer shows the highest capacitance value
while standing against the bearing wall since the solid iron inside the wall is
good-coupled with the grounded cables inside the building. The server room is
occupied with grounded electric instruments, thus causes a higher HBC while
the volunteers stood near the server room’s door. At the social hall, all volunteers
have the lowest capacitance value compared to the other three spots. The four
floor types were chosen since those are pretty common types inside a building.
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The textile floor and carpet floor are in the aisle, and the concrete floor locates
between the elevator and aisle, the wood floor is the wood stairs between each
storey. From the measured capacitance, the body capacitance on the textile
floor and concrete floor are different from each other and also do not show a
uniform relation among the seven volunteers. The carpet floor gives the highest
capacitance value, and the wood floor shows the lowest. However, we can only
compare the value measured with the body standing on the carpet and textile
floor since they have the same surrounding (wall at both sides), the concrete
floor is far from walls, and the wood floor is the stairs. Apparently the body
on the carpet floor has higher capacitance than the body on the textile floor,
demonstrating that the floor type also affects the HBC.

(D) HBC in static state: briefly summarise

The above-collected data demonstrates that the HBC is not a constant value.
The volunteer’s wearings, postures, environments are three critical factors that
affect the HBC. For example, decreasing the distance between body and ground,
enlarging the overlapping area of body and ground, wearing a pair of shoes with a
thin sole, standing in an environment where good-grounded metal or wire exists,
will enlarge the body’s capacitance. This section’s study supplied a closer look
of the value of HBC in static body state with different wearings, postures, and
environment configurations with the low-cost prototype.

4 HBC in Real-Time and Dynamic State

In this section, we recorded the HBC value with a dynamic body state in real-
time. Firstly, we cut off the sensing hardware’s earthed path so that the vol-
unteers can walk indoors and outdoors without space limitation. Secondly, we
stretched the local ground of the sensing unit to the soles with two pieces of
wire and conductive tapes (attaching to the underside of the shoe sole). The
hardware was worn on the upper back with the sensing electrode attached to
the back neck, as Fig. 8 depicts.

4.1 HBC While Walking

Since in this wearable way, the prototype only senses the capacitance between
body and underside sole, it does not indicate the value of HBC precisely. For
verification, we attached the sensing electrode to the floor, and earthed the pro-
totype through the computer, aiming to measure the capacitance between the
floor and the earth by averaging the measured one-shot values from over twenty
spots of the certain floor type (Fig. 9). Table 7 lists the measured averaged capac-
itance of different floor types, including the cement brick outside our working
building. The value of HBC could be deduced by combining the floor capaci-
tance and the capacitance of the body part measured in the wearable way (when
dismissing the tiny step-caused sole-to-ground capacitance).
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Fig. 8. Body part capacitance measurement in dynamic state

Table 7. Capacitance between floor and earthed ground

Floor type Textile Carpet Concrete
(indoors)

Concrete (exit
stairway)

Wood Cement brick
(outdoors)

Capacitance (pF) 23.01 30.28 22.36 24.02 24.61 12.54

Fig. 9. Six floor surface types

To address the human body capacitance in a dynamic body state, we worn
the prototype and recorded the body part capacitance while the volunteers were
walking through the office building. Figure 10 shows five sessions of the recorded
capacitance. In the first subplot of Fig. 10, the volunteer started walking on
textile (0 s to 9.5 s, 14 s to 19 s, 22.5 s to 24 s) and carpet (9.5 s to 14 s, 19 s to
22.5 s) ground surface, followed by concrete (24 s to 36 s, 48 s to 67.5 s) surface,
in between the volunteer went downstairs per wood stairs (36 s to 48 s). Then the
volunteer went to the exit stairway and downstairs on the concrete surface (67.5 s
to 105 s) for two floors. The outliers in between arose while the volunteer was at
the exit stairway’s joint spots, near the doors or windows. Finally, the volunteer
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walked out of the building and wandered around on cement brick ground (105 s
to 129 s) for a while.

The body part capacitance of the first volunteer indoors locates in the range
of 58 pF to 75 pF. When combined with the floor capacitance listing in Table 7,
the HBC will be in the range of 80 pF to 110 pF, which also matches the HBC
measured in a static body state. The peak-form signals in Fig. 10 is caused by
the swing phase of a gait process, which is like the “lift foot” posture presenting
in Table 6, causing around several pico-farads decrease in the body capacitance.
Again, each volunteer shows a different value of HBC while the body is in a
dynamic state. As explored in the last section, the influence factors could be
their body form, postures like step scale, wearing, distance to the wall, etc.

4.2 Classification of Floor Surface Type

As Fig. 10 represents, while walking on different ground surfaces through the
office building, the volunteers show regular body capacitance variation. This
variation could be used for ground type recognition. We collected 28 sessions
of body capacitance variation data from the seven volunteers. Each volunteer
walked indoors to outdoors and back with the same path for four times. The
interesting point is that the body capacitance variation mode in the exit stairway
while walking from indoors to outdoors is significantly distinct with the mode
while walking back, as the first two subplots depict (67.5 s to 105 s in the first
subplot, vs. 28 s to 65 s in the second subplot). This observation is uniform in all
sessions among all volunteers. Thus a potential conclusion can be made that the
body capacitance relates not only to where the body is but also to where the
body used to be, which will be quantitatively investigated in our future work.

In the HBC based dynamic body state applications, the absolute value of
HBC does not matter much. Instead, the variation of the value during different
activities is the decisive information. Suppose that the initial body part capac-
itance (standing on the textile ground surface) were known for each volunteer,
so the capacitance value in each session will take the “textile capacitance” as a
reference.

We performed the classification without considering the walking direction.
In the beginning, we used the sliding window approach to get instances. The
size of the window is 1 s, with 0.5 s overlapping. Classical approaches solving
the problem of classifying sequences of sensor data involve two steps. Firstly,
handcraft the features from the time series data with the sliding windows. Sec-
ondly, feed the models with the features and train the models. Different classic
machine learning approaches, like k-Nearest Neighbors, Support Vector Machine,
Gradient Boosting Machine, were tested, and we chose finally Random Forest
model since it provided the best result. All hyper-parameters we used were the
default ones by the scikit-learn [27]. We used two procedures to evaluate the
classification result.
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Fig. 10. Body part capacitance while walking around

– Firstly, we evaluated the model by leaving one session out, where each of
the seven test sessions was selected from the four sessions of each volunteer.
The model was then run with four-fold cross-validation.

– Secondly, to test across volunteers classification ability, we employed a leave
one user out procedure where, for each fold, the test set contains all sessions
of one volunteer, while the training set contains all sessions from the remain-
ing volunteers. We run the models with seven-fold cross-validation with one
volunteer out.

F-score and accuracy will represent the classification result. At the very begin-
ning of the model procession, we balanced the labels with the method of
SMOTE [28] since our data was unbalanced, more instances of the concrete
ground type in the exit stairway than instances of the carpet ground type.
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Fig. 11. Leave one session out Fig. 12. Leave one user out

The performance of a machine learning model relies on the quality of the
feature extraction result [29]. Within each window, we have 10 × 1 raw data.
We summarized the following mathematical features in the time domain: mean,
mad, SMA, energy, IQR, entropy, skewness, and kurtosis. We did not consider
the spectral domain since all volunteers wandered with a normal walking speed.
In total, we utilized eight features, so the input sample was an array of 1×8 per
window. The features were then normalized to 0–1.

Figure 11 and Fig. 12 depict the recognition of ground surface types. Over-
all, by the Random Forest model, a combined F-score of 0.63 is achieved. In
both procedures, the outdoor ground type and the indoor concrete ground type
have the highest classification rate. The textile surface and wood stairs are the
most easily miss-classified types between each other. Considering the HBC influ-
ence factors like wearing, body forms, this recognition result is robust and con-
cludes that the HBC signal could be a feasible information source for ground
type recognition. Further applications like indoor positioning fusing with other
sensing modalities could be explored (when HBC acts as a complementing app-
roach) to reach a higher accuracy, addressing other sensing modalities’ drawbacks
(like the un-robustness of RF-based approach, drift-accumulation of IMU-based
approach).

5 Other Potential Use Cases

Previous sections described how much is the value of HBC in both static and
dynamic body states with our sensing unit and demonstrated the prototype’s
feasibility for HBC monitoring. In this section, we will focus on four potential
use cases with this prototype. To be noticed, the following evaluation does not
aim to give efficient context recognition based on a large amount of data, but
rather at presenting a significant information supplier that can be utilized in
future work of human-related interaction and computing.
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Fig. 13. Sensing unit on the calf

Since the acquisition of the absolute value of HBC is not necessary in the
application field, the contribution will be mainly from how it changes in a
dynamic context. Thus we simplified the deployment of our sensing unit to a
more portable device. Only one conductive tap was attached to the underside
sole, and the hardware was worn on the lower calf instead of the upper back, as
Fig. 13 represents.

5.1 Exact Step Counting

Traditional step counting relies on motion sensor [30,31], which is widely used
in current wearable devices. However, the accuracy is not guaranteed during
the relatively complicated algorithms (removing the noise, abstracting the step
information). Our prototype can be an effective approach for exact step count-
ing without any signal noise processing. By wearing the prototype on the lower
calf with a local-ground connected conductive tape beneath the sole, the testers
walked around the building on the different types of floors. To avoid components
damage from accumulated charge while walking, we used an insulated tape to
cover the conductive tape. Figure 14 depicts the capacitance measured on the calf
and the six axes signals from the IMU . Among the six IMU supplied motion
signals, the Z axis from gyroscope supplies the most obvious step information.
During each gait procedure (stance phase and swing phase), the prototype sam-
pled an obvious capacitance variation, and this variation information could be
used for exact step counting.

As Rhudy et al. [32] summarized in his comprehensive comparison paper, four
different step counting techniques were applied to the data from the traditional
motion sensing sensor for step counting mostly: peak detection, zero-crossing,
autocorrelation method, and fast fourier transform (FFT); and it was determined
that using gyroscope measurements allowed for better performance than the
typically used accelerometers. Before applying the step counting algorithm, the
IMU signals was firstly smoothed by a fourth-order low-pass Butterworth filter
with cut-off frequency 4 Hz. Lowpass filters are commonly used in step detection
algorithms to reduce undesirable sensor noise [33–35]. In our case, we use the
most widely used peak detection method for step counting. Figure 15 shows
the detected peaks with the capacitance and gyroscope z-axis data. For the
capacitance signal, we detects the peaks simply by checking if the new sampled
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Fig. 14. Capacitance and IMU signal on the calf part while walking around

Fig. 15. Peak detection for step counting

data is 1.0 pF smaller than the sampled data 1 s ago, and is 1 s away from the last
peak. The detection method can be accomplished by only one or two instructions
in code. For the gyroscope signal, we tried different peak detection methods,
including the same method as the capacitance one, and the find peaks function
from SciPy library [36] shows the best accuracy, with which we defined the
prominence of the function as 200 (the prominence of a peak measures how much
a peak stands out from the surrounding baseline of the signal and is defined as
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the vertical distance between the peak and its lowest contour line). Table 8 gives
the peak detection result from the ten sessions data sets, the capacitance signal
supplies the highest step counting accuracy with 99.4%.

Table 8. Step counting with signal from gyroscope and body-capacitance

Sets 1 2 3 4 5 6 7 8 9 10 Over all (accuracy)

Practical step 95 101 125 98 89 85 96 121 105 83 998 (100%)

Gyroscope z-axis 92 100 120 90 85 80 91 110 98 75 941 (94.3%)

Capacitance 94 101 126 97 88 85 95 119 104 83 992 (99.4%)

Compared with the movement sensor supplied step signals, the capacitance
sensing unit supplies a more clear signal of each step firstly. As a result, the step
number can be algorithmically easily captured with high accuracy. Secondly, the
capacitance sensing unit supplies also the ground information, which is beyond
the capability of the motion sensors. In Fig. 14, four types of ground could be
derived simply by reading the amplitude of the capacitance signal. The volun-
teer walked on the textile floor in three periods, from 19 s to 38 s, from 43 s to
56 s, from 138 s to 151 s, 29 steps all together. Also three periods during car-
pet floor: 38 s to 43 s, 56 s to 72 s, and 134 s to 138 s, 19 steps all together. And
three periods during concrete floor: 74 s to 80 s, 96 s to 111 s, and 127 s to 132 s,
19 steps all together. Two periods during wood floor: 80 s to 96 s and 112 s to
127 s, 22 steps all together. The steps are read directly by counting the peaks.
Besides those periods, there are also some time points locating at the transition
state, for example, 72 s to 74 s, during which the tester was on the textile floor
(located between a carpet and concrete floor). Benefitting from the body’s elec-
tric property in capacitance, tasks of exact step counting and potentially ground
classification can be implemented (as we described above). When combining this
sensing modality with the motion sensor, more accurate gait analysis and indoor
location work would also be interesting topics.

5.2 Gait Partitioning

Gait monitoring is used widely in clinical practice for the evaluation of abnor-
mal gait caused by disease, like Parkinson’s disease [37–39]; multiple sclero-
sis [40–42]; attention deficit hyperactivity disorder [43–45], etc. Among the gait-
related parameters, the temporal parameters (stride duration, stance duration,
and swing duration) are the mostly evaluated ones because of their intensive con-
nection to the gait abnormalities [46,47]. Whereas the stride length, gait speed
is more related to estimate the walk trajectory [48–50]. The exact partitioning
of the gait event is always the first step in gait analysis.

A variety of sensors can be used for gait phase partitioning, as summarized
by Taborri et al. [51]. The most widely used sensor is the inertial sensor, like
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accelerometer [52,53], gyroscope [54,55], or IMU [56,57]. The inertial sensor
wins quantitatively in the number of works because of its competitive advan-
tages in size, cost, power consumption, and wearable capability. According to
Taborri’s survey, around two-thirds of gait analysis studies (among the 72 stud-
ies) relied on the inertial sensors. Anyway, to discriminate the gait event, the
inertial sensor-based approach suffers from its computational load, accumulated
drift over time, and also the necessary calibration procedure. Another popu-
lar gait partitioning approach is to use the footswitches [58] or foot pressure
insole [59,60]. Both are based on force-sensitive sensors and require simple sig-
nal conditioning as well as post-processing. They could provide high accuracy
in gait phase detection, which is reasonable since the gold standard in gait dis-
crimination is represented by the foot’s direct contact with the ground during
a gait cycle. Besides those two approaches, some other sensing modalities were
explored, like electromyography [61,62], ultrasound sensors [63], optoelectronic
sensors [64]. Those marginally proposed approaches could give accurate parti-
tioning results, but they are not feasible approaches for out-of-lab and long-term
gait monitoring.

Fig. 16. Gait events detection with sensors of FSR, capacitance and gyroscope

As we described above, body capacitance variation during a walk can sup-
ply the gait event information directly and explicitly. This subsection presents a
novel approach for gait partitioning (stance phase and swing phase) by utilizing
the variation of human body capacitance during the walk. We firstly deployed
the prototype (as depicted in Fig. 13) at the lower calf, with the sensing elec-
trode attached to the skin and the locally grounded conductive tap beneath
the shoe sole. Meanwhile, we added two FSR (Force Sensitive Sensor [65]) to
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the underside of the shoe sole (at the front and end position of the shoe sole),
aiming to sense the contact of heel and toe to the ground and to supply the
ground truth of the gait partitioning test. As described in [51], the direct mea-
surements of the contact between foot and ground by force-sensitive sensors are
often used as a gold standard for the validation of other methodologies. In this
study, five volunteers walked around our office place with a regular speed for
around one and a half minutes by wearing the prototype on the right calf. The
sample rate of all the signals in this study is 50 Hz. Figure 16 depicts the sensed
signals from FSR, z-axis of gyroscope, and the capacitance prototype. Among
the six signals supplied by the IMU (three axes of the accelerometer, three axes
of the gyroscope), z-axis of the gyroscope gives the most reliable source, which
is also demonstrated by other works [32,51,66]. The algorithm we used to detect
the heel-strike and toe-off from the gyroscope signal is a rule-based algorithm,
which was described by Catalfamo et al. in [67] (with some calibration of the
corresponding parameters), where the success rate for heel-strike and toe-off was
over 98%. The ground truth was supplied by the two FSR, where the contact of
the FSR to the ground could be easily detected by simply observing the volt-
age on the FSR. Once the voltage drops to zero (resistance of the FSR drops
to zero), the contact happened. The gait event detection from the capacitance
signal was attained by observing the change (the second subplot of Fig. 16) of
the observed capacitance value (the first subplot of Fig. 16), utilizing the same
algorithm described in [67]. To be noticed, the signal of z-axis of the gyroscope
from Fig. 15 and Fig. 16 is not in the same pattern simply because of the proto-
type’s orientation difference during the experiments. Overall, we recognized 523
steps from the FSR, 521 steps from the capacitance prototype, and 501 steps
from the z-axis of the gyroscope with the above-described methods. To compare
the performance of the gait event detection and gait phase partitioning from
different signal sources, we synchronized all the detected steps from the three
signal sources, meaning that the steps without the successful detection of all the
three sensing approaches are discarded.

Table 9. Gait event sensing time error with signals of Cap and Gyro (FSR source as
ground-truth)

Gait event and
signal source

Heel strike,
cap

Heel strike,
gyro

Toe off,
cap

Toe off,
gyro

Mean(s) −0.002 −0.022 0.043 0.040

Standard deviation(s) 0.010 0.014 0.009 0.019

Figure 17 depicted the gait event detection’s time error distribution from
the capacitance sensing and gyroscope sensing with a Boxplot [68]. The FSR
approach supplies the ground truth. The heel-strike detection by the capacitance
signal is significantly more accurate than the detection by the gyroscope z-axis
signal since the majority of the time error from the capacitance signal locates in
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Fig. 17. Time error of Heel Strike and Toe Off with sensing source of capacitance and
gyroscope

the field of the ground truth. For the event of toe-off, although most time errors
from both capacitance and gyroscope sensors have an error of around 40 ms,
the capacitance approach shows a much stable result. The same result could
also be viewed by the mean and standard deviation of the errors from Table 9,
where the mean error of the capacitance-based heel-strike detection is only two
milliseconds. The gait event detection shows that the human body capacitance
could be a reliable signal source for gait partitioning.

Based on the above analysis, we calculated the stance phase and swing phase’s
duration in each step after the gait partitioning by each signal source. The Box-
plot in Fig. 18 shows the distribution of sensed stance and swing duration in
seconds. The duration of both stance and swing phases detected by the capaci-
tance prototype is closer to the ground truth (supplied by FSR) than the dura-
tion sensed by the gyroscope. As Table 10 lists, the mean duration of stance and
swing phase from the FSR is 0.903 s and 0.674 s, respectively, the capacitance
sensing gives 0.945 s and 0.632 s for each phase, with a mean accuracy of 95.3%
and 93.7%, which is higher than the mean accuracy of the gyroscope-based stance
and swing duration detection (93.1% and 90.8%).

Table 10. Gait phase duration with signals of FSR, Cap and Gyro

Gait phase and
signal source

Stance,
FSR

Stance,
cap

Stance,
gyro

Swing,
FSR

Swing,
cap

Swing,
gyro

Mean(s) 0.903 0.945 0.965 0.674 0.632 0.612

Standard deviation(s) 0.041 0.040 0.045 0.035 0.036 0.038
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Fig. 18. Duration of stance and swing

The gait partitioning evaluation with our prototype demonstrated that the
human body capacitance is a reliable signal source for gait partitioning. Our
new approach is more simple (vs. force-based approach, only one small grounded
electrode is needed), lower-cost (vs. force-based approach), and more accurate
(vs. initial measurement unit).

5.3 Touch Sensing

Current HBC related capacitive sensing applications mostly focused on prox-
imity sensing [3,69,70], activity recognition [24,71–73]. Another body-utilized
capacitance application, probably one of the oldest, easiest, and most useful
applications is touch sensing [74,75]. The most widely used capacitive touch
sensing application is the capacitive touch button [76] and touch screen [77]
for decades. Those applications are mostly based on the induced current on
the sensing unit mounted on the touched object, caused by finger-touch. Differ-
ent electrode layouts enlarged its touching scenarios [78]. With our prototype
deployed at the lower calf (as Fig. 13 depicts), we utilized the body capacitance
for touch sensing with the sensing unit on the body, approached the awareness
of touch sensing at the executor side, instead of the receptor side as the previous
work described.

Figure 19 shows the capacitance signal when touching the different objects
within the working office. Three times handshakes caused the first three peaks
(1 s to 8 s). From 9 s to 20 s, the executor touched a ground-standing metal
frame, and a second volunteer touched the frame at a different position three
times. The executor could sense the touch-action from the second volunteer. This
sensing ability could be used for cooperation activity detection in an industrial
manufactory, where the presence of the hand from a second colleague needs to
be detected while processing the same objects. From 22 s to 31 s, 38 s to 44 s,
55 s to 62 s, and 69 s to 76 s, the executor touched the earthed computer, the
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whiteboard, the wall and the glass window for three times separately. While
touching the earthed or good earth-coupled object, the prototype could perceive
a visible touch signal. The wall and the window could be sensed by touching
since they both are good earth-coupled through the concrete reinforcing bars and
metal window frames. The deep peaks in the figure are signals of foot movement.
The described touch sensing is a passive, intrusive one, and without the need of
deploying the sensing unit near the touch point. Here we only present a primary
observation aiming to present the potential ability of the researched object, a
quantitative analysis will be presented in the future.

Fig. 19. Touch signal at the executor
side

Fig. 20. Respiration signal

5.4 Respiration Monitoring

Respiration detection can be addressed by multiple ways [79], for example, by
microphones, monitoring the loudness of the breath sound, or sensors that can
analyze the air breathed out. Recently some novel methods were provided, like
WIFI signal [80], ultra-wideband radar [81]. In our work, we use body capac-
itance to detect respiration, a wearable, and low-cost way. We attached the
sensing electrode on the chest, and the local-ground of the prototype as a sec-
ond electrode on another spot of the chest. The distance of the two electrodes
was kept around 15 cm. In essence, this kind of deployment measures the local
capacitance of part of the body, which was explained by Cheng [24] in detail,
namely the local capacitance variation caused by the structure change inside the
body.

Figure 20 recorded the capacitance signal in the level of sub-pF between the
two on the chest attached electrodes. In the beginning, the volunteer breathed
slowly and evenly three times, and then the respiration rate became faster. After
eight times of breath, the volunteer held the breath for a while. The latter breath
signal represents a repeat of the respiration in two rates. The scale of the signal
variation represents the breath depth of the volunteer.

Similar applications can be explored by the same deployment but at other
body parts. For example, when wearing the prototype on the wrist, with the
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sensing electrode attached to the finger, the local-ground electrode is also on the
wrist, then the finger’s movement can be observed. So as the head actions and
other joint-related movements.

6 Conclusion

As one of the body’s physiological variables, HBC is a pervasive signal worth
further research. In this work, we first used a wearable prototype to measure
the value of HBC in static and dynamic body states and got a reliable result.
We also validated that the factors like postures, wearings, and environment can
affect the value of HBC. Secondly, we briefly presented several body capacitance-
based use cases with the wearable prototype, including ground type recognition
(F-score of 0.63), exact step counting (with 99.4% accuracy), gait partitioning
(with the duration accuracy of 95.3% and 93.7% for stance and swing phases,
respectively), touch sensing, and respiration monitoring. Compared with tradi-
tional motion sensors, the HBC based sensing approach supplies body-related
motion detection with competitive performance and the sensing ability for envi-
ronmental and other physiological information. Future work will be focused on
the HBC-based use cases exploration with a quantitative way, aiming to present
a solid contribution of this signal.
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