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Abstract. Unlicensed LTE-WiFi coexistence networks are undergoing
consistent densification to meet the rising mobile data demands. With
the increase in coexistence network complexity, it is important to study
network feature relationships (NFRs) and utilize them to optimize dense
coexistence network performance. This work studies NFRs in unlicensed
LTE-WiFi (LTE-U and LTE-LAA) networks through supervised learning
of network data collected from real-world experiments. Different 802.11
standards and varying channel bandwidths are considered in the experi-
ments and the learning model selection policy is precisely outlined. There-
after, a comparative analysis of different LTE-WiFi network configu-
rations is performed through learning model parameters such as R-sq,
residual error, outliers, choice of predictor, etc. Further, a Network Fea-
ture Relationship based Optimization (NeFRO) framework is proposed.
NeFRO improves upon the conventional optimization formulations by uti-
lizing the feature-relationship equations learned from network data. It is
demonstrated to be highly suitable for time-critical dense coexistence net-
works through two optimization objectives, viz., network capacity and sig-
nal strength. NeFRO is validated against four recent works on network
optimization. NeFRO is successfully able to reduce optimization conver-
gence time by as much as 24% while maintaining accuracy as high as
97.16%, on average.

Keywords: LTE-WiFi coexistence · Network optimization · Machine
learning

1 Introduction

Cellular networks are a vital component of a truly mobile augmented reality (AR)
system/application such as “Pokemon Go,” as they offer the widest coverage to
the end-users. With the rising demand for immersive AR experience, the AR
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market is set to cross $100 Billion and the total mobile network traffic is expected
to exceed 300 Exabytes per month in 2026 [10].

However, mobile AR traffic is latency-critical, uplink-heavy, and bursty
in nature and the current LTE/LTE-A (Long Term Evolution/Long Term
Evolution-Advanced) networks lack the capability to offer a seamless mobile AR
experience [2]. Consequently, cellular operators have taken several measures such
as dense deployment of small-cells (SCs) and access points (APs) and utilization
of the unlicensed spectrum through LTE-WiFi coexistence.

The prospect of effectively utilizing the unlicensed spectrum through LTE
in unlicensed spectrum (LTE-U) and LTE license assisted access (LTE-LAA)
appeals to the mobile operators. Hence, there is a rapid deployment of both LTE
small-cells and Wi-Fi APs in the 5 GHz band where 500 MHz of the unlicensed
spectrum is shared by both LTE and Wi-Fi networks [19,25].

This work focuses on two aspects of LTE-WiFi coexistence viz., coexistence
network performance analysis and time-critical optimization. To that end, a
comparative performance analysis of unlicensed LTE standards (LTE-U/LAA)
is done through network feature relationship parameters learned from network
data. Thereafter, the learned feature relationships are utilized to reduce the
time-cost of performance optimization in a dense coexistence network.

1.1 Motivation

With the proliferation of unlicensed coexistence networks, there has been a sig-
nificant debate on the comparison of LTE-U and LAA standards and their per-
formance. While cellular operators such as AT&T and Verizon have opted in
favor of LAA deployments [25], recent works claim that LTE-U may offer better
coexistence with Wi-Fi under specific conditions [7].

The existing comparative studies of LTE unlicensed standards are lacking in
three respects. First, they primarily rely on simulations and make several assump-
tions [7,8]. Secondly, the offered comparative analysis is based only on measure-
ments, i.e., by simply comparing several network performance evaluation metrics
such as throughput, latency, number of re-transmissions, etc. In contrast, feature
relationship analysis looks for patterns in network data that can reveal relation-
ships between network variables such as dependence, correlation, causation, etc.
Finally, the variation in performance of LTE unlicensed variant with the variation
in coexisting Wi-Fi standard is often overlooked. In addition, the impact of factors
such as bandwidth allocation and signaling data is rarely studied.

With the increase in the deployment of small-cells and access points,
dense networks (DNs) with inter-site distance ≤ 10 m, and ultra-dense networks
(UDNs) with inter-site distance ≤ 5 m, have proliferated in most urban centers
[14]. Thus, performance optimization of the rapidly growing dense coexistence
networks is a major challenge. This becomes particularly important when time-
critical mobile AR services/applications need to be supported by coexistence
networks. However, the literature currently lacks network feature relationship
(NFR) analysis from the perspective of dense LTE-WiFi coexistence networks.
Further, to the best of our knowledge no existing study makes use of network
feature relationships in dense coexistence network optimization.
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1.2 Contributions

In this work, we address these concerns through the following contributions

– Study network feature relationship in dense coexistence networks such as
SINR-Capacity relationship, through machine learning algorithms.

– Analyze the impact of factors such as the choice of LTE unlicensed standard,
coexisting Wi-Fi standard, and bandwidth allocation on NFRs in coexistence
networks.

– Compare LTE-LAA/LTE-U and Wi-Fi 802.11n/ac coexistence performance
based on NFR parameters such as the choice of predictor variable, R-sq
(model validity), residual error (absolute and normalized), outliers, etc.

– Utilize NFRs to optimize dense coexistence network performance through
network capacity and signal strength optimization.

The comparative analysis in this work is distinct from the state-of-the-art
studies [7,8] in that it is not limited to measuring and analyzing individual net-
work variables. It involves data-learning to discover feature relationship patterns
which determine network performance. Further, the data is gathered through
real-time experiments instead of simulations. For the experiments, dense and
ultra-dense co-existence networks were implemented with the help of USRP NI-
SDRs and WiFi APs. The learning model selection policy considered for feature
relationship analysis is also explicitly described for replication and validation.

2 A Review of Related Works

2.1 Network Feature Relationships in Dense Networks

In the recent past, several state-of-the-art studies have used regression algo-
rithms, decision trees, and other machine learning techniques for NFR analysis
[1,6,17,19]. Some of these works leverage the learned NFRs to improve network
performance. For example, learning 802.11n feature relationships can facilitate
improved configuration selection and enhanced rate adaption [1]. Yet, the cur-
rent literature lacks a robust analysis of NFRs, such as the capacity-interference
relationship (CIR) in unlicensed coexistence networks.

Further, as shown in Fig. 1, densification of LTE-WiFi coexistence systems
will exacerbate the adverse impact of interference and pose additional challenges.
While densification may lead to an initial gain in LTE-WiFi coexistence sys-
tem capacity, network performance eventually deteriorates with rise in density
[28]. Moreover, the impact of factors e.g., unlicensed LTE variant, Wi-Fi stan-
dard, bandwidth allocated, and signaling data, etc., on dense coexistence CIR
also remains unexplored. For example, the analysis presented in [18] is lim-
ited to demonstrating how the SINR-Capacity relationship differs in regular and
dense/ultra-dense networks, and fails to explore the impact of the factors listed
above.

Therefore, this work focuses on various aspects of the relationship between
interference and network performance in a dense coexistence network.
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Fig. 1. Interference in dense unlicensed coexistence networks

2.2 Optimization Challenges in Dense Networks

The need for low association times and fast-handovers in a dense environment
makes network optimization time-critical. However, consistent densification
significantly increases network scale and complexity which leads to high con-
vergence times and computational overhead to arrive at optimal solutions [14].
This is a major challenge for ultra-low-latency AR applications as already the
LTE/LTE-A deployments account for almost 30% of the end-to-end AR latency
[2]. With densification, the latency problem will exacerbate and diminish the
gains in throughput.

Thus, it is important not only to study the impact of densification on NFRs
but also ascertain how these feature relationships can be used to accelerate
optimization in dense coexistence networks by making it computationally less
expensive [13]. Broadly speaking, wireless network performance can be optimized
through three major frameworks viz., optimization, machine learning, and a
hybrid approach that involves machine learning based optimization [13,21].

This work paves the way for an empirical and practical approach to net-
work feature relationship based optimization (NeFRO). NeFRO adopts
the hybrid model wherein feature relationships learned from network data serve
as a constraint in network optimization formulations. By using the feature rela-
tionship equation for performance optimization, NeFRO accounts for the ambi-
ent network environment and is free from theoretical pre-suppositions. Due to
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these factors, NeFRO is shown to significantly reduce the time-costs in dense
network performance optimization.

3 Experimental Set-up

This section describes the experimental platform designed to create a dense LTE-
WiFi coexistence environment in the 5 GHz unlicensed spectrum. The testbed
is used to collect data for NFR analysis.

Fig. 2. Wi-Fi, LTE-LAA, and LTE-U: Channel Access Mechanisms

3.1 Testbed Design

Two variants of LTE unlicensed operation have been standardized and released,
viz., LTE-U and LTE-LAA, albeit with starkly different medium sensing and
access mechanisms. LTE-U relies on a load-dependent duty-cycle mechanism
based on Carrier Sense Adaptive Transmission (CSAT). On the other hand,
LTE-LAA depends on a Listen-Before-Talk (LBT) mechanism which is similar
to the CSMA/CD MAC protocol of Wi-Fi, making it relatively easier for LAA
to coexist with IEEE 802.11 WLANs. The medium access mechanisms of the
two LTE unlicensed variants and Wi-Fi are juxtaposed in Fig. 2.
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LAA-LTE/LTE-U Platform. The National Instruments NI RIO testing-
platform is used as the LAA/LTE-U testbed as shown in Fig. 3 (a). The
PHY on the NI Labview system is the standard PHY implementation as pre-
scribed in the LTE-A 3GPP release. More technical details on the testbed
are presented in Table 1. The system offers high operational flexibility through
advanced user-defined configuration of signal transmission and reception. Sev-
eral network parameters can be configured, such as the sub-carrier modula-
tion scheme, resource block allocation, LAA transmission opportunity (TXOP),
Energy Detection (ED) threshold, LBT category option, LTE-U duty cylce ON
& OFF, transmission power, OFDM parameters (e.g., 1 to 3 control channels),
carrier frequency offset, and timing offset estimation.

Wi-Fi Platform. Netgear wireless routers are used to design the Wi-Fi testbed.
The off-the-shelf Wi-Fi routers, supporting both 802.11n and 802.11ac in the
5 GHz band serve as the typical Wi-Fi nodes. The Wi-Fi testbed supports easy
modification and monitoring of parameters and functions in both the MAC and
PHY layers of Wi-Fi such as DIFS, CWmin, CWmax, channel bandwidth, and
transmission power.

3.2 Experiment Design

All experiments are carried out in the typical setting of an indoor office at the
University of Chicago campus. This work focuses mainly on gathering SNR and
throughput data for NFR analysis. Other network parameters such as contention
window size, request to send (RTS), clear to send (CTS), inter-beacon interval
time, power range, channel assignment (static or dynamic), and bandwidth in
the PHY layer are also configured as required. In the experiments, the LAA
transmitter always uses LBT protocol to sense if the channel is available and
the maximum TXOP is 8 ms, which is similar to the transmission of LTE-A
in licensed bands. The Power Spectral Density (PSD) of LAA transmissions
is controlled so as to ensure that the power of the interference from LAA is
below Clear Channel Assessment (CCA) threshold of Wi-Fi communications.
Several experiments were designed to explore dense unlicensed coexistence per-
formance by creating combinations of LAA/LTE-U, 802.11n/802.11ac, and dif-
ferent bandwidths (5/10/15/20 MHz). LAA and LTE-U use the same underlying
mechanism of Dynamic Bandwidth Adaptation (DBA) for spectral efficiency
as LTE-A. Therefore, while Wi-Fi APs generally operate in a bandwidth of
20 MHz, LAA and LTE-U possess the capability to support multiple bandwidths
(1.4/3/5/10/15/20 MHz). Bandwidth is an important factor that may influence
capacity interference relationship due to cross-talk interference. Therefore, this
work considers bandwidth to be an important parameter for CIR analysis. Fur-
ther, dense random topologies are considered where LAA/LTE-U/Wi-Fi nodes
are placed at inter-nodal distances of 5 m to 10 m. A representative illustration
is presented in Fig. 3 (b). Apart from a small inter-nodal distance, a dense coex-
istence scenario in an indoor setting is also interesting due to the prevalence of
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Fig. 3. Experimental set-up

significant multi-path fading and presence of obstacles such as walls, furniture,
objects, etc.

Table 1. Experiment parameters

Parameter Value

Number of nodes 6

Transmission power 23 dBm

Operating frequency 5 GHz

LTE-U/LAA RF transmission Loopback

LTE transmission channel PDSCH, PDCCH

Data traffic Full buffer

Wi-Fi channel access protocol CSMA

LAA channel access protocol LBT

* PDSCH - Physical Downlink Shared Channel

4 Network Feature Relationship Analysis Methodology

Regression is a popular machine learning paradigm used to determine the rela-
tionship between network parameters in continuous space [1,6,17,19]. Regression
algorithms not only offer reliable feature relationships, but also provide insights
into the relationship in terms of model validity, outliers, residual error etc. Thus
CIR is modeled as a bi-directional regression problem where the goal is to esti-
mate or predict network capacity through SINR feature points, and vice versa.
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4.1 Learning Algorithms for Relationship Analysis

Let N represent the number of training points and let dimensionality of the
feature vector be denoted by D. Then, the coexistence network data can be
represented as {xi, yi}N

i=1, where xi ∈ R
D is the feature vector and yi ∈ R is the

ground truth value for ith training point. The goal is to learn a mapping f : xi −→
yi where xi is the predictor (SINR or Capacity) and yi is the response (Capacity
or SINR). This work considers the following basket of learning algorithms for
the regression analysis:

– Linear Regression. This group of algorithms learns a linear relationship by
solving arg minw,b

∑N
i=1 ||(w�xi + b) − yi||22 + αw�w [24]. Here, the weight

vector is denoted by w ∈ R
D and the bias term is b ∈ R. Further, the weigh-

tage (importance) of the l2-regularization term is controlled by the hyper-
parameter denoted by α, which is set to zero for Ordinary Least Squares Lin-
ear Regression (OLS). However, for Ridge Regression (RR), α is set through
k-fold cross validation (kCV).

– Kernel Ridge Regression. A non-linear mapping is expected to be more
suitable for the SINR-Capacity relationship [16]. Therefore, we make use of
the Kernel Ridge Regression [24] that employs non-linear transformations
such as Polynomial and Radial Basis Function (RBF). Its goal is to solve
arg minw,b

∑N
i=1 ||K(w,xi) + b − yi||22 + αw�w. Here, w ∈ R

D is the weight
vector, b ∈ R is the bias term, and α is a hyper-parameter defined above.
Finally, K(a, b) is a kernel function which allows to compute dot product
in an arbitrary large space without the need to explicitly project features
in high dimensional space. Varying the kernel function as RBF and Polyno-
mial leads to Kernel RBF Regression (RBF) and Multi-variate Polynomial
Regression (MPR), respectively.

4.2 Selection of Regression Models

Regression Model selection depends upon objective criteria such as R-sq, higher-
order terms, etc., and some subjective value-judgments, e.g., selecting a model
with a higher R-sq even if the higher-order terms are not significant. However,
studies often discuss network feature relationships and existence of correlation
without going into the details of the underlying regression models [6]. Failure to
highlight such details poses a challenge while replicating these studies. To avoid
this problem, the model selection policy considered in this work is described
below.

Regression Model Selection Policy. The regression algorithms are subjected
to k-Fold Cross-validation (kCV) averaged over 30 runs (for k = 5). Feature rela-
tionship models are evaluated based on their R-sq or Regression Model Validity
(RMV). A high RMV value signifies the goodness of the fit. Also, outlier detec-
tion and removal is performed using the Local Outlier Factor (LOF) algorithm.
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First, CIR models with 1–3 degree polynomials are learned and to avoid
over-fitting of feature point data, the higher-order terms considered are limited
to statistically significant cubic terms. Further, the optimal model is chosen
on the basis of RMV via kCV as it best explains the feature relationship [23].
For example, between a CIR model learned from the baseline data-set and the
model learned from the data-set processed through LOF outlier removal, the
model and feature relationship with the higher RMV is considered. This work
focuses primarily on quadratic CIR models for the following reasons. First, the %
difference in average RMVs of linear & quadratic and quadratic & cubic models is
3.63% and 0.98% respectively. Thus, as compared to quadratic models, the linear
models exhibit a relatively weak CIR and the RMV gain in cubic models is very
low. Second, CIR in wireless networks is expected to be quadratic [12]. Finally,
low convergence time is a primary constraint in dense network optimization.
Whatever little gain the higher RMV of a cubic model might offer in performance
optimization, will be irrelevant compared to the increase in the computational
overhead of a third-degree polynomial constraint.

4.3 Analytical Methodology

To study the impact of dense network configuration on NFRs, it is necessary to
isolate individual network parameters and observe the consequent variation in
the feature relationship.

Comparative Themes. The analysis seeks to draw a comparison between the
performance of LTE unlicensed variants (LTE-U and LTE-LAA) in coexistence
with the Wi-Fi variants (802.11n/ac). We also study the impact of bandwidth
allocation and the choice of predictor variable on CIR in these network configu-
rations. Thus, a total of 32 Test Scenarios are considered (denoted by TSi, where
i ∈ {1 . . . 32}). Each TSi indicates a unique unlicensed coexistence network sce-
nario based on the LTE unlicensed variant (LTE-U/LTE-LAA), coexisting Wi-Fi
standard (802.11n/ac), bandwidth allocated (5/10/15/20 MHz), and predictor
variable (SINR/Capacity). For each TSi, the CIR model is selected through the
regression model selection policy outlined earlier.

Comparison Parameters. The performance of different LTE-WiFi network
configurations is evaluated through analysis of learning parameters such as model
validity, standard deviation in RMV, residual standard deviation (RSD), out-
liers, etc. Trends of average network values observed in the experiments are used
as well. For each of these parameters, two types of comparisons are carried out,
viz. scenario-specific comparison and component-specific comparison for LTE-
WiFi-Predictor configurations. The former is aimed at a comparative analysis
of individual network scenarios (e.g., LTE-U, 802.11n, at 5 MHz vs. LTE-LAA,
802.11n, at 5 MHz) while the second is aimed at capturing component level
trends (e.g., SINR as a predictor vs. Capacity as a predictor). Reliable infer-
ences are drawn only if the findings are consistent at both levels of comparative
analysis. Wherever possible, plausible explanations are offered.
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5 CIR in Dense Unlicensed Coexistence Networks

CIR model parameters are analyzed, and the results are presented for scenario-
specific comparisons in Fig. 4, and configuration-level trends in Fig. 5. Please note
that only for Fig. 5 (b), a logarithmic scale is used to show “% Difference” due to
a high variation in values. Based on these results, various aspects of unlicensed
coexistence network performance are discussed ahead. Some results, such as
those related to outliers, are mentioned during the course of the discussion itself.

5.1 Unlicensed LTE: LTE-U vs LAA

We begin with measurement based observations on average network capacity, as
most comparative studies primarily focus on this metric [7]. In 75% of the test-
scenarios, LTE-LAA outperforms LTE-U in coexistence with corresponding Wi-
Fi variant (n/ac). Likewise, in 87.5% scenarios, 802.11ac outperforms 802.11n in
coexistence with corresponding LTE variant (LTE-U/LAA). Further, LTE-LAA
in coexistence with 802.11n/ac offers a higher SINR on average than LTE-U in
all scenarios save one.

The LBT mechanism of LAA is quite similar to the CSMA channel access
protocol of Wi-Fi and leads to a higher network capacity on average in LTE-
LAA. Further, LAA nodes sense the energy level on the medium (−72 dBm) prior
to transmission which mitigates co-channel interference from Wi-Fi and other
LAA APs, ensuring higher SINR on average than LTE-U. On the contrary LTE-
U has a duty-cycle based channel access mechanism which leads to inefficient
transmissions and packet-collisions in both, the LTE-U and Wi-Fi components
of the coexistence system.

Regression Model Validity (RMV). LAA and LTE-U models fare equally
well, in a scenario specific comparison with ≤5% difference in RMVs in 13/16
comparisons (26/32 scenarios). CIR in LAA seems to be only slightly better as
it outperforms LTE-U in the remaining 3 scenarios. In terms of average RMVs
across all 32 scenarios, LAA and LTE-U are comparable, although LAA has a
slight edge (<1%). Likewise, in LAA-WiFi-Predictor configuration combinations,
LAA has a slight edge (0–2%). Prima facie, based on RMV alone, CIR does not
seem to be impacted by the unlicensed LTE variant. However, RMV can not
be considered to be the sole goodness-of-fit measure for feature relationships.
Higher RMV is an indicator of the variation in dependent variable explained by
the model, but it does not indicate how far the data-points lie from the regression
line. Further, the standard deviation of RMV with kCV for a specific scenario
must also be low. The analysis ahead explores these dimensions.

Residual Standard Deviation (RSD). The capability of a feature relation-
ship model to make accurate predictions is highly desirable for the model to be
deployed in real-world network performance management. Thus, residual error
or RSD is a measure of precision of the model’s predictions and should ideally
be low for a robust CIR.
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Fig. 4. Test-scenario specific comparative analysis

Higher residual error is observed in twice as many LTE-U scenarios as com-
pared to LAA scenarios (5% margin of error). On average, LTE-U scenarios have
a 6% higher RSD than LAA. Further, average residual error in all LTE-WiFi-
Predictor network-configurations is lower for LAA when compared to LTE-U.
Thus, LAA models seem to be more precise in their ability to predict coexistence
network performance, regardless of the response variable (Capacity or SINR).

Gain and Standard Deviation in RMV. It is important to notice the stan-
dard deviation (SD) in CIR model validities when subjected to kCV, especially
after LOF outlier removal. While outlier reduction yields higher RMVs, the Gain
in RMV should be accompanied with low SD in RMV, averaged across all kCV
runs. Thus, we consider high Gain and low SD as a characteristic for stable CIR
models.

LTE-U fares much worse than LAA in terms of both Gain and SD. LAA
outperforms LTE-U by 47.67% in Gain and registers a 24.5% lower SD, averaged
across all scenarios. A similar trend can be observed in LTE-WiFi-Predictor
combinations as well. Thus, LAA has a higher Gain post-outlier-removal along
with a lower SD, which demonstrates robustness of the LAA CIR models.

Outliers. For a network system, the outlier % may be considered to be a good
indicator of the degree of fluctuation in network performance, and consequently
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Fig. 5. Configuration-level comparative analysis

the ability of a network to deliver the promised Quality of Service (QoS). How-
ever, the selection of outlier detection algorithm is a subjective choice. While
this work steers clear of making inferences based on outliers, we compare the
outliers in LTE-U and LAA data detected by LOF algorithm with the outliers
detected by “Minitab,” a standard tool for data-analysis [22]. Minitab’s outlier
detection algorithm labels samples with extreme “leverage points” and “large
residuals” as outliers. As expected the percentage of data-points labeled as out-
liers is different in LOF and Minitab. However, LTE-U has higher a fraction of
outliers as compared to LAA in both LOF (by 9.11%) and Minitab (by 5.14%).

The reason for high fluctuation in LTE-U can be attributed to greater sus-
ceptibility of an LTE-U node to the unpredictable interference from Wi-Fi APs
in its proximity. This primarily happens during the LTE-U ON state as there are
no energy detection thresholds in LTE-U. Unlike LTE-U, Wi-Fi considers the
energy threshold as −62 dBm and preamble detection threshold as −82 dBm.
Similar to Wi-Fi, the LBT mechanism in LAA has an energy threshold of −72
dBm, making it less vulnerable to interference from Wi-Fi APs, and ensuring
fewer extreme network performance fluctuations. Thus, LAA seems to offer a
more reliable performance from the perspective of end-user QoS experience.

LTE-LAA vs LTE-U: A Feature Relationship Perspective. A clear pat-
tern emerges after the analysis of various learning model parameters. Residual
error, standard deviation in RMV, and outlier % in LTE-U is higher than LAA,
while post-outlier-removal Gain in RMV is lower. This is true for the majority of
test-scenarios regardless of the choice of Wi-Fi variant, predictor variable, and
bandwidth allocated. Thus, CIR in LTE-LAA networks is qualitatively better
in terms of the spread of data along the expected curve fit. This implies that
LAA offers greater consistency in networks performance and lower fluctuations
in system variables such as the signal strength or the throughput at the end-
user device. This finding has a strong correlation with the industry trends. The
Global Mobile Suppliers Association (GMSA) report states that 38 operators in
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21 countries have made investments in LAA as compared to only 11 operators
investing in LTE-U. In terms of global deployments, 30 operators are planning
to deploy or are actively deploying LAA networks in 18 countries, in contrast to
LTE-U which is being deployed in only 3 countries. Further, LTE-U deployments
are designed with an upgrade path to LAA and eLAA [3]. Clearly, LAA is the
preferred choice of industry for LTE unlicensed networks. From a data-learning
perspective, this appears to be reasonable as LAA offers a more robust network
performance than LTE-U.

5.2 Wi-Fi: 802.11n vs 802.11ac

Measurement Based Analysis. 802.11ac outperforms 802.11n in 87.5% sce-
narios in terms of average network capacity. This is expected as 802.11ac sup-
ports 80 MHz channels (with optional support up to 160 MHz), higher modula-
tion schemes (256 QAM), and 8 × 8 Multi-user Multiple-input Multiple-output
(MU-MIMO), among other features.

Feature Relationship Analysis. 802.11ac is slightly better than 802.11n in
scenario-specific RMV comparison, while in terms of component-specific average
RMV, the two are comparable. The post-outlier-removal Gain in 802.11n is much
higher, even though the average RMVs are comparable. However, 802.11ac has
a lower deviation in model validities, which implies more reliable CIR models
than 802.11n. In terms of residual error, 802.11ac registers lower error in 33%
more models as compared to 802.11n. This signifies more accurate predictive
modeling in 802.11ac.

802.11ac vs 802.11n: A Feature Relationship Perspective. The CIR anal-
ysis reveals only a marginal advantage in coexistence performance for 802.11ac as
compared to 802.11n. The trends are underwhelming because the 802.11ac stan-
dard supports compressed beamforming which along with channel state infor-
mation (CSI) is quite efficient in mitigating link-conflicts [5]. Hence, a stronger
relationship between network capacity and SINR was expected.

However, the observations can be reasonably explained through two facts.
First, in an LTE-WiFi coexistence system, the unlicensed LTE (LTE-U/LAA)
subsystem has a greater impact on the performance of the Wi-Fi subsystem than
the latter has on the former. Thus, the unlicensed LTE subsystem is the primary
determinant of the overall system performance. Second, the adverse impact of
LTE-U on coexisting Wi-Fi (n/ac) performance is much worse than that of LAA
on Wi-Fi [7]. The duty cycling mechanism of LTE-U combined with the LTE-U’s
transmission at energy threshold’s lower than those prescribed by Wi-Fi cause
interference to Wi-Fi transmissions [15]. LAA’s LBT avoids collisions with Wi-
Fi transmissions, and leads to a better coexistence system performance. This is
observed in the LTE-WiFi-Predictor combination analysis as well.

Thus, from a data analysis perspective, the unlicensed LTE is the domi-
nant subsystem in the coexistence paradigm, and determines the overall sys-
tem performance. Further, the feature relationship analysis of network-data also
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supports the findings from measurement based studies that LTE-U has a higher
adverse impact on Wi-Fi performance as compared to LAA [7]. Another major
takeaway is that it seems more appropriate to study the Wi-Fi (n/ac/ax) sub-
systems performance only in conjugation with the coexisting unlicensed LTE
(LTE-U/LAA) or 5G NR-U subsystem.

5.3 Choice of Network Predictor Variable

A bidirectional regression analysis reveals the impact that the choice of predic-
tor variable e.g., SINR (PSINR) or Capacity (PCap), has on network feature
relationships. We find that network capacity is a much better predictor of SINR
than SINR is of network capacity. This is a pattern that can be clearly and
consistently seen across all CIR model parameters and all comparative themes
without any ambiguity. In scenario-specific comparison, RMV of PSINR models
is always either comparable to, or lower than PCap models. RMV of PCap models
is higher on average for both LTE-U and LAA components when compared to
RMV of corresponding PSINR models. PCap models also exhibit a significantly
higher post-outlier-removal Gain and lower average standard deviation in RMV.
Finally, the residual error is higher in PSINR on average, and in twice as many
scenarios, when compared to PCap.

It may seem counter-intuitive that it is more accurate to predict the expected
values of SINR for given values of network capacity, than the reverse. However,
recent analysis of operator data gathered from public LAA deployments shows
that high SINR doesn’t always guarantee high throughput in coexistence deploy-
ments, as end-user QoS depends on other factors such as resource block allocation
[19]. On the other hand, for high throughput a high SINR is a necessary, if not
a sufficient condition.

Thus, the direction of NFR analysis and the choice of predictor has a clear
effect on the learned network model, regardless of the unlicensed LTE and Wi-
Fi variants considered. Further, this also indicates that other variables may also
be relevant to the unlicensed coexistence NFR analysis such as resource block
allocation, physical cell-id, etc.

5.4 Impact of Bandwidth

From Fig. 6 (a), prima facie it appears that when throughput is the response
variable, the residual error of the models increases consistently with bandwidth.
This pattern seems consistent for both LTE-U and LAA models. This would
make sense as well, because with higher bandwidth allocation there is a greater
possibility of fluctuation in network capacity values in real-world systems due to
poor resource allocation and temporal variation in factors such as interference.

To confirm this pattern, we normalized the coexistence data and learned the
feature relationships and associated parameters again. The data was normalized
as ẑ = z−μ

σ , where μ, σ are the mean and the standard deviation of the data.
As a result, the processed data is zero mean and unit variance, and thus more
suited to evaluate the impact of bandwidth. Prior to normalization, in 11 out
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of 12 scenario-specific comparisons the RSD had increased with an increase in
bandwidth. However, after normalization, in almost half the scenarios there is
no increase in residual error with increase in bandwidth and the earlier trend is
non-existent.

This finding has serious implications for QoS promised to the end-user. Cel-
lular operators attempt to satisfy the guaranteed user demand according to the
data plan. Had higher bandwidth allocation exhibited an association (if not cau-
sation) with greater fluctuation in network performance, it would be worrisome.
However, this does not seem to be the case.

Fig. 6. Impact of bandwidth

6 NFRs and Dense Network Optimization

The feature relationships learned from network-data can be further utilized in
improving dense network performance.

6.1 Network Feature Relationship Based Optimization (NeFRO)

To facilitate the use of NFRs in network performance enhancement, this work
proposes the Network Feature Relationship based Optimization (NeFRO)
framework. The high-level schema of the NeFRO framework is outlined in Fig. 7.
First, data is collected for a network deployment periodically. In each epoch,
network feature relationship analysis is performed using machine learning algo-
rithms. Strong NFRs are identified and selected for possible utilization in net-
work performance optimization. These NFRs are fed to a constraint selector
module that selects relevant constraints for the optimization model/formulation.
The module compares an NFR learned from network data for a network feature-
point set {f1, f2, . . . , fn} with available theoretical constraints relevant to the
feature point set. While the NFR is more “suitable,” as it is derived from actual
network data, it still has to be tested for convergence time viability. Thus the
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Fig. 7. Network feature relationship based optimization

constraint selector module compares the NFR with the theoretical constraint
for complexity, and selects the more viable constraint for network optimization.
Although the illustration highlights the process-flow for a coexistence network,
the NeFRO approach will apply similarly to network optimization in all wireless
networks, with minor modifications, if required.

Benefits of the NeFRO Approach. There are several advantages of the pro-
posed NeFRO framework over conventional network optimization. First, since
the learned NFRs are grounded in empirical data, they reflect the ambient net-
work conditions. Therefore, it is more practical to use them in network perfor-
mance optimization than theoretical constraints involving similar network vari-
ables. Second, NFRs can be used “as is” in optimization without making any
assumptions, unlike theoretical constraints which need to be justified through
assumptions. Finally, if the learned NFRs are less complex than the theoretical
constraints, it automatically solves the problem of arbitrary or forced relaxation
of constraints. Even if the NFRs are of a comparable complexity and require
similar computational overhead, they have the advantage of reflecting the actual
network parameter dynamics, which facilitates a more informed network opti-
mization.
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6.2 Implementation and Validation of NeFRO

Convergence time and accuracy trade-off is a primary challenge in dense network
performance optimization [20]. Therefore, NeFRO envisions the twin objectives
of convergence time reduction, while maintaining high accuracy, vis-à-vis the
baseline optimization model. The validation of NeFRO is done by implementing
it on recent state-of-the-art studies on coexistence network optimization.

Validation Methodology. The validation methodology involves the following
steps. First, works with two optimization objectives are considered, viz. network
signal strength optimization and network capacity optimization. The proposed
optimization models are implemented on GAMS [11], as per the network con-
figuration and specifications of the testbed/experiments. Second, the baseline
optimization models are implemented for the test-scenarios considered in this
work. Further, two values are observed, (a) the optimal value of network perfor-
mance metric (SINR or Capacity), and (b) the convergence time required by the
formulation to arrive at the optimal value. Thereafter, the complex theoretical
SINR-Capacity constraint in each of the proposed optimization formulation is
replaced with the second-degree polynomial CIR equation derived from feature
relationship analysis in this work. Please note that the baseline models that
optimize network capacity are considered for test-scenarios with SINR as the
predictor, and vice-versa.

Evaluation of NeFRO. Two yardsticks are considered to carry out the per-
formance evaluation of NeFRO. First, is the closeness of the “NeFRO Optimal”
value generated by the NeFRO model, to the optimal value generated by the
baseline literature model. This is referred to as the Accuracy of the NeFRO
model. Accuracy can be defined as, the “% difference in the optimal value gener-
ated by the baseline model and the NeFRO-optimal value.” Second, is the reduc-
tion in the time taken by the NeFRO model to arrive at the optimal value.
This is defined as Convergence Time Fraction (CTF). CTF indicates “what
fraction (%) of the baseline model’s convergence time is NeFRO’s convergence
time.”1

Thus, NeFRO is evaluated on its ability to offer a low CTF while maintaining
high Accuracy, with respect to the baseline optimization model. Please note
that the state-of-the-art optimization models are implemented for the small-
scale dense unlicensed coexistence scenarios implemented on the experimental
testbed. We expect that in a real-world network of a much higher scale and
density, the benefits of NeFRO will be far more pronounced.

Baseline Optimization Models Considered. Four recent works are consid-
ered that propose formulations to optimize coexistence network performance.

1 For example, if baseline model takes 10ms to converge at the optimal solution, and
NeFRO requires 9 ms to arrive at the NeFRO-optimal value, then CTF is 90%.
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Two of these works aim at optimizing network capacity, while the other two
optimize signal strength available to the UEs. A brief description is presented,
starting with the capacity optimization works. An optimal resource allocation
scheme aimed at maximizing LTE-LAA capacity in a LTE-WiFi coexistence
network is proposed in [9]. Another study proposes an LBT-compliant channel
access approach for both LTE-U/LAA in the 5 GHz band that seeks to maxi-
mize system throughput, while also mitigating the impact of interference from
the unlicensed LTE on the Wi-Fi subsystems capacity [27]. Further, [26] seeks
to enhance and optimize network signal strength for LTE-U/LAA coexistence
networks through strategic optimal placement of nodes. Finally, the model pro-
posed in [4], aims to optimize network performance by taking into account the
spectrum usage of Wi-Fi APs in addition to the optimal placement of nodes.
Henceforth, the capacity optimization models viz., [9] and [27], are referred to as
COM1 and COM2, respectively. Likewise, signal-strength optimization models
viz., [4] and [26], are referred to as SOM1 and SOM2, respectively.

Fig. 8. NeFRO performance in LAA capacity and SINR optimization
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6.3 Optimization Results and Performance Evaluation

The results of the optimization simulations run on GAMS are presented in Fig. 8
and Fig. 9, for LAA and LTE-U test-scenarios, respectively. Further, Figs. 8 (a),
8 (b), 9 (a), and 9 (b), present results for test-scenarios where the objective is to
optimize network capacity. The remaining figures show results for signal-strength
optimization test-scenarios.

It can be discerned that NeFRO performs remarkably well by reducing the
required convergence times while delivering NeFRO-optimal values very close to
the optimal results of the respective models. A scenario-specific evaluation of
NeFRO can be performed by observing the difference in the length of bars of
Accuracy and CTF for a particular test-scenario. The greater the difference in
their height, the lower is the trade-off, and the better is the NeFRO performance.
Two points are noteworthy. First, in LAA scenarios NeFRO offers a significant
reduction in convergence time, while in LTE-U scenarios, the CTF is somewhat
subdued. Network optimization in LTE-U is inherently more challenging due to
its channel access mechanism. Hence, it is more computationally intensive, and
requires a longer convergence time. Second, for LAA scenarios the difference in
NeFRO performance for capacity optimization and SINR optimization is negligi-
ble. However, in LTE-U, there appears to be a difference in NeFRO performance
for these two objectives. Particularly, the CTF for SINR optimization in LTE-U
is rather low.

The average performance of NeFRO across all test-scenarios for the four opti-
mization models is presented in Table 2. On average, when compared to SOM1

and SOM2, the CTF of NeFRO is lower than its average Accuracy, showing a
marginal gain. However, Fig. 9 (d) shows that for two scenarios there seems to
be no overall gain from NeFRO as compared to SOM2. Thus one dimension that
needs to be further investigated is the variation in accuracy and convergence
time-trade off with application of NeFRO. It is possible that the correlation
or association between the RMV of the learned model and the network perfor-
mance metric which is the objective of the optimization (SINR or Capacity),
may explain this variation.

In general, NeFRO outperforms the baseline model across all test-scenarios,
and both unlicensed LTE variants, by significantly reducing the convergence
time. The average Accuracy, as shown in Table 2, is very high as well. Further,
NeFRO seems to perform better in LTE-LAA scenarios as compared to LTE-U,
which can be expected based on the discussion and findings presented in this
work. Thus, the NeFRO framework stands validated.

Table 2. Performance trends in test-scenarios

NeFRO parameter LTE-LAA scenarios (%) LTE-U scenarios (%)

COM 1 COM 2 SOM 1 SOM 2 COM 1 COM 2 SOM 1 SOM 2

CTF 76.46 78.25 79.89 76.02 90.10 89.05 94.17 93.60

Accuracy 95.04 93.31 92.28 93.82 94.97 96.12 96.38 97.16
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Fig. 9. NeFRO performance in LTE-U capacity and SINR optimization

7 Conclusion and Future Direction

This work presented a comparative study of unlicensed coexistence networks
through network feature relationship analysis. Network-data was collected
through comprehensive real-world experiments and then analyzed through a fam-
ily of regression algorithms. The relevance of network feature relationships was
highlighted by analyzing LTE-WiFi networks on a variety of regression model
parameters such a R-sq, residual error, etc. Several insightful inferences were
made on aspects such as the impact of bandwidth, residual error, and outliers on
coexistence network performance. Further, NeFRO, a feature relationship based
optimization framework was proposed and validated through signal strength and
capacity optimization. NeFRO offered reduced convergence times by as much as
24% and offered accuracy as high as 97.16% on average.

In the future, we will investigate convergence time and accuracy trade-off
by considering feature relationships of varying degrees. Further, studying the
association between the R-sq of the learned models and the network performance
metrics is also a relevant topic. The impact of control/signaling data on network
feature relationships will be explored as well. Most importantly, we intend to
implement an AR system on a simulator and employ NeFRO to reduce latency.
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