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Abstract. The performance of machine learning models deteriorates when the
distribution of test data changes, which is called concept drift. One way to deal
with concept drift is to continuously rebuild the model. If we want to minimize the
frequency of rebuilding due to some constraints, however, it is important to detect
concept drift as the timing when rebuilding is truly necessary. Taking advantage of
ensemble models for concept drift detection may improve the detection accuracy.
However, the behavior of ensemble model’s predictions and parameters in the
presence of concept drift has not been fully investigated. In this study, we inves-
tigated how the ensemble models constructed by two different methods behave
in the presence of concept drift. In the experiments, we monitored some metrics
including the metrics that can be calculated only by the ensemble model and the
metrics based on the model parameters. As a result, we found that the metrics
show some behaviors that seem to be influenced by concept drift, suggesting that
the detection accuracy of concept drift may be improved by using these metrics.
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1 Introduction

Before a machine learning model can be integrated into a real service, the model alone or
the machine learning pipeline' is built and verified in the development environment, and
then deployed to the production environment [1]. The statistical properties of the data
handled in a real service may differ in the distribution of the data between the time when
the model is trained and the time when the model performs inference. For example, in
a news service, user preferences change over time, so when recommending articles or
products, a category with a high response rate in the past may have a low response rate
in the recent past [2]. This phenomenon is called concept drift, and it is one of the causes
in model performance degradation [2].

L A series of processes including preprocessing, model training, data and model validation, and
inference using the model.
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There are two approaches to deal with concept drift: one is to retrain the model
continuously, and the other is to retrain the model only when the statistical properties
of the data change significantly [3]. In order to implement the former approach, the
following conditions must be met: the labels necessary for training must be constantly
available, and the possibility of production deployment of the retrained model must be
automatically determined. On the other hand, in the latter approach, labels need to be
obtained only when they are needed. Besides, in the latter approach, the retrained model
can be manually audited, so that the validity of the inference basis can be verified in terms
of fairness and causality before the decision to deploy is made. In this paper, we will
deal with the latter case, assuming that the conditions for implementing the former are
not met. In this case, it is important to detect concept drift as the timing when retraining
is truly necessary.

One approach to concept drift detection is based on the change in model parameters
when the model is updated with new data [13], which has potential for development in
terms of explainability of concept drift and other aspects.

As a related field to concept drift detection, in the field of outlier detection, it has
been proposed to increase the reliability of detection by using an ensemble of multiple
methods [4]. As for ensembles of neural networks, it has been reported that predictions
tend to be agreed upon among ensemble members depending on how the members are
created [5]. Thus, it is possible that concept drift may be missed by simply monitoring
the output of the model.

Taking advantage of ensemble models for concept drift detection may improve the
detection accuracy. However, ensemble models may not be able to fully exploit the
mutual agreement rate among ensemble members [12] or the uncertainty in the model
output [20] because the predictions may be similar depending on how the members are
composed [5]. Thus, it can be said that there are conflicting possibilities. On the other
hand, model parameters retain sufficient diversity among members depending on how
they are organized [5]. Thus, it can be said that ensemble models may be useful for
concept drift detection if they are based on model parameters. In order to investigate
these possibilities, this paper investigates how ensemble models constructed by two
different methods behave in terms of predictions and model parameters in the presence
of concept drift. To the best of our knowledge, this is the first work to monitor some
metrics based on ensemble models under concept drift, such as cohesiveness of internal
representations in the ensemble, cohesiveness of gradients in the ensemble, and so on.

2 Related Works

2.1 The Sources of Concept Drift

Let X be the input of the model and Y be the label. In the case of labeled data, the
distribution of the data at a certain time ¢ can be expressed by the joint probability
P(X,Y). This can be decomposed as P;(X, Y) = P;(Y|X)P;(X). Thus, there are three
patterns in which the distribution of the data changes in comparison with time ¢ and # + 1
as follows [6]. (1) When only the input distribution changes, i.e., P;(X) # P;+1(X) but
P:(Y|X) = P;+1(Y|X). This is called a covariate shift or virtual drift. (2) When only
the conditional distribution changes, i.e., P;(Y |X) # P;y1(Y|X) but P4(X) = Pr11(X).
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This is called the actual drift or real drift. (3) When both the input distribution and the
conditional distribution change, i.e., P;(X) # P;+1(X) and at the same time P;(Y|X) #
Prii (Y[X).

2.2 The Types of Concept Drift

The following four patterns of data distribution change over time have been pointed out
[6]. (1) A case where the old data distribution is switched to a new one in a short period
of time. This case is called sudden drift. (2) A case where the old data distribution is
switched to the new data distribution over a period of time. Both distributions are mixed
in a certain ratio in the middle of the switch, and the ratio of the new data distribution
gradually becomes larger. This case is called gradual drift. (3) A case where the old
data distribution is switched to the new data distribution over time passing through
an intermediate distribution. In this case, the distribution itself change continuously
during the switching process. This case is called incremental drift. (4) A case where the
distribution switches from the old data distribution to the new data distribution and then
switches back to the old data distribution after a certain period of time has elapsed. This
case is called reoccurring drift.

2.3 Two Major Approaches to Deal with Concept Drift

There are two main ways to deal with the degradation of model performance due to
concept drift [3]. The first approach is to adapt to changes in the data distribution by
repeatedly retraining the model using the most recently obtained data. This is called
continuous rebuild. The second approach is to retrain the model only when concept drift
is detected based on some indicator. This is called triggered rebuild.

The advantage of continuous rebuild is that it adapts quickly to concept drift and
does not require additional computation. The disadvantages are that labels are always
needed, deployment frequency is high, data and model validation need to be automated,
and computational resources are always consumed for retraining.

The advantages of triggered rebuild are that labels are obtained only when retraining
is required, the number of deployments can be reduced, validation of data and models
does not necessarily have to be automated, and computational resources for retraining
can be reduced. The disadvantages are that the adaptation to concept drift is delayed by
the detection delay, and that the detection algorithm requires additional computational
burden in terms of memory and CPU power to run.

2.4 Concept Drift Detection Methods

The methods of concept drift detection can be classified into three categories according to
the target to be monitored [7]. The first is a method that monitors the input of the model.
There are methods based on the Hellinger distance between the feature distributions
during training and inference [8], and methods based on principal component analysis
[9]. While these methods do not require labels and are model-agnostic, they may react
to changes that are unrelated to the degradation of model performance, and require a
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feature extractor when dealing with unstructured data. The second method is to monitor
the output of the model. One method that requires labels is based on prediction error [10].
Methods that do not require labels include a method based on the number of cases that
fall into the margin of the classifier [11], a method based on the mutual agreement rate
among ensemble members [12], the method based on the distribution of the confidence
in the model’s output [3], and the method based on the uncertainty of the model’s output
[20]. While there is always a loss of accuracy or confidence in the model when these
concept drift detection methods are reactive, labels are required or the model type is
constrained. The third method is to monitor the parameters of the model. There are
methods based on changes in the prior distribution of model parameters [13]. While the
detection index is theoretically valid, it requires labels and is limited to models that can
be handled by Bayesian learning.

2.5 Ensemble

In the field of outlier detection, it has been proposed to use multiple methods or ensembles
of models, rather than relying on a single method or model, in order to reduce the
possibility of missing outliers [4]. Compared to using a single model, uncertainty can
be well quantified when using an ensemble of models [14]. Besides, the uncertainty
measure calculated based on an ensemble of models can well reflect distributional shift
[24]. Thus, it is expected that the accuracy of concept drift detection will be improved
if we employ the uncertainty measure based on ensemble models.

For ensembles of neural networks, it has been reported that randomizing the initial-
ization of model parameters is effective in improving performance [15]. On the other
hand, there are cases where it is not practical to prepare multiple production models
with different initializations of parameters to monitor the performance. In such cases,
the subspace sampling technique can be applied to obtain multiple models that can be
members of an ensemble from a single trained model. Subspace sampling is a method of
obtaining multiple models with diversity by adding some noise to the models. The sim-
plest method is to add random values to the model parameters. According to [5], random
initialization has a larger performance gain than subspace sampling. It has also been
reported that models obtained by subspace sampling tend to have similar predictions
even if the weights are different [5].

3 Methods

Since we are interested in ensembles of neural networks, we use a multilayer perceptron
as the base model. The number of units in each hidden layer was set to 7. For the
activation function of the hidden layer, we used the Leaky ReLLU [17], which has a slope
of 0.01 when the input value is negative. For the activation function of the output layer,
we used a sigmoid function. A bias term was provided for all units. All these choices
are determined empirically.
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Two methods for obtaining the ensemble members are investigated: random ini-
tialization and random subspace sampling [5]. In random initialization, the ensemble
members are obtained by initializing the weights of the base model with random val-
ues and training it. In random subspace sampling, the ensemble member is obtained by
adding random values to the learned main model. The random values to be added are
calculated by multiplying a random unit vector by 10% or 20% of the L2 norm of the
weights of the model. As the random unit vector, we obtained a random orthogonal matrix
with the dimensionality of the model parameters as the number of rows and columns by
the method of [18], and used its row vector. If the number of ensemble members to be
created was larger than the number of dimensions of the model parameters, the random
orthogonal matrix was obtained multiple times.

4 Experiments

4.1 Datasets

The dataset used in the experiment consists of five synthetic data using the scikit-
multiflow package [21] and one real world data. The data used as synthetic data are
MIXED, STAGGER, SINE, SEA, and AGRAWAL. In each data set, concept drift was
introduced by changing the classification function (labeling rule). The number of clas-
sification functions varies depending on the dataset, but in all datasets, concept drift
was introduced so that the number of classification functions cycled in ascending order
(e.g., 0 > 1 = 2 — 0 in STAGGER). In terms of noise, two irrelevant features were
introduced in SINE, the label flip rate was set to 10% in SEA, and the feature disturbance
rate was set to 10% in AGRAWAL.

The data used as real-world data is Spambase [16]. The Spambase dataset is a dataset
for a binary classification task. The target variable is the binary value of whether an e-
mail is judged to be spam or not. The features include the percentage of occurrence of
specific words (48 types), the percentage of occurrence of specific letters (6 types), and
the mean, maximum, and sum of the lengths of consecutive capital letters. The number
of samples is 4601.

Since Spambase is not stream data, concept drift needs to be artificially introduced.
To artificially introduce sudden drift into Spambase, we refer to the procedure in [11].
Specifically, the features (continuous values) were normalized to the range [0, 1], and
the absolute values of the correlation coefficients with the target variable (in [11], infor-
mation gain was used instead) were calculated for each feature dimension and ranked.
The samples are then arranged in a random order to simulate stream data. When a sud-
den concept drift is to be introduced, the order of the feature dimensions with the top
50% absolute values of the correlation coefficients is randomly reordered to simulate a
sudden concept drift. This method makes it easier to observe the influence of concept
drift on the prediction accuracy and the optimal solution of the model.
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4.2 Evaluation

The evaluation was conducted in two phases: a warm-up phase and a prequential phase.
The warm-up phase corresponds to a phase in which models were built in a development
environment. The prequential phase corresponds to a phase in which the trained model is
deployed in a production environment and trying to detect concept drift while performing
inferences.

First, in the warm up phase, the training data and validation data are obtained from
the data described above, and the trained main model is obtained by early stopping
based on the monitoring of the validation loss. The number of samples for the training
and validation data is 10000 and 2000 for the synthetic data, and 2760 and 460 for the
real-world data. The base model has one hidden layer, the learning algorithm is Adam
[19], the learning rate is 0.1, the batch size is 32, the number of steps per epoch is 10,
the maximum number of epochs is 300, and the early stopping patience is 30 epochs.

Next, in the prequential phase, an ensemble is formed, and one batch of test data
obtained from the data described above is acquired for each time step to perform predic-
tion, performance evaluation, and model updating. During the process, a sudden concept
drift was generated using the method described above. The number of samples for the
test data is 25600 for the synthetic data and 1376 for the real-world data. The size of the
batch to be acquired was set to 32. In the model update, the learning algorithm is Adam,
and the learning rate is 0.1. The time steps when the concept drifts were introduced were
200, 400, and 600 for the synthetic data and 21 for the real-world data.

The following two methods were used to construct the ensemble: random initializa-
tion (RI) and random subspace sampling (RSS). When updating the model, all the ensem-
ble members are updated. For the main model, two cases were investigated: updating
(main model, MM) and not updating (Frozen). The number of members in an ensemble
M is set to 10. Because of the randomness in the generation of data and the composition
of the ensemble, the evaluation was performed 10 times using the same procedure.

4.3 Metrics

Several metrics were monitored in the prequential phase. To see how the performance
changes with the concept drift introduced in each dataset, the batch-average of the
loss and the accuracy per batch were calculated for each time step for Frozen, MM,
RI, and RSS. These metrics were ensemble-averaged for RI and RSS (LOS and ACC,
respectively).

To examine the diversity of the predictions in the ensemble, the ensemble standard
deviation (SD) of the predictions was calculated and batch-averaged (YSD).

As predicted values are related to uncertainty of prediction, we also calculated the
batch-average of the entropy of the ensemble-average of the predictions (ENT). Namely,
ENT = —l—é—lzielgpilogpi, pi = |71W|Zme/\/lfm(xi; 0,,). Here, B is a batch, M is
the ensemble, and p; is the ensemble-average of prediction by m-th model f,;, in M
parameterized by 6,, for i-th sample, whose feature is x;.
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To examine the diversity of model parameters in the ensemble, we calculated the
dimension-average of the ensemble standard deviation of the model parameters (PSD).

Namely, PSD = fy Y gepvas va =\ g Smert Ona = 0a): B = gy ZnestOna-
Here, D is a set of dimensions in 6,,, v; is the ensemble standard deviation of 6,,,;, which
is d-th dimension of 6,,, and 6, is the ensemble-average of 6,,;.

Since we suppose the diversity of model parameters is related to the internal repre-
sentations, the ensemble-average of the centered kernel alignment (CKA) [23] between
the internal representations of each ensemble member and those of the ensemble-
average were also calculated (CKA). Namely, CKA = ﬁZme mlinear_cka(zip, 7).

B = |717|Zme mZmp- Here, linear_cka is the CKA function with a linear kernel, z, is
internal representations of the batch B obtained from model m, and zp is the ensemble-
average of z,p. This metric indicates cohesiveness of internal representations in the
ensemble. Here, CKA is considered to be a reasonable similarity measure for comparing
the internal representations of neural networks [22].

We also focused on the dynamics of the model parameters. We calculated the
ensemble-average of the cosine similarity between the gradient of each ensemble mem-
ber and that of the ensemble-average (GCO). Namely, GCO = ﬁzme MC0s(gm> &),

g = \/\l/t_\Zme m&m- Here, g, is the batch-average of gradient of for model m, and
g is the ensemble-average of g,. This metric indicates cohesiveness of gradients in
the ensemble. We also calculated the ensemble-average of the L2 norm of the gradient
(GNO). The above values were calculated for each evaluation trial, and then the mean
and standard deviation were calculated for each time step.

5 Results

In the following figures, the solid line is the inter-trial mean of each metric for each
time step, and the upper and lower bound of each error band are the inter-trial standard
deviations. To make the graphs easier to read, the values are smoothed using moving
averages. The window length of the moving average was set to 10 for the synthetic data
and 3 for the real-world data.

5.1 Changes in Prediction Performance

We show how the performance changes with concept drift. Figure 1 shows LOS and
Fig. 2 shows ACC. For all datasets except SEA, there is a significant increase in LOS
and decrease in ACC at each time point of all drifts for Frozen, MM, RI, and RSS,
indicating performance degradation due to concept drift. The exception is SEA, where
the drift effects at t = 400 for Frozen and t = 200, 400 for the other models appear to
be difficult to recognize.
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Table 1. Summary of changes of each metrics in each dataset in the case of RI.
MIXED STAGGER Spambase SINE AGRAWAL SEA
YSD v v v v/ 4
ENT v v v v X
PSD v v 4 X
CKA v v X
GCO v v 4
GNO v v 4 v/ 4
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Table 2. Summary of changes of each metrics in each dataset in the case of RSS.
MIXED STAGGER Spambase SINE AGRAWAL SEA
YSD v v v v 4
ENT v v 4 v X
PSD 4 4 X v X
CKA v v v
GCO v v
GNO v v 4 v 4
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5.2 Changes in the Diversity of Predictions

We show how the concept drift changed the diversity of predictions in the ensemble.
Table 1 for RI and Table 2 for RSS show how each metric changed at each drift point
for each dataset. “v’means that there was a significant change at all drift points, blank
means that there was at least a minor change at some drift points, and “X” means that
the change was difficult to recognize at all drift points. The order of the datasets in the
table is such that the dataset with the most v is on the left. Figure 3 shows YSD. The
value increases in most cases where the value changes at the drift point, indicating that
the diversity of predictions has increased. The exception is AGRAWAL, which falls
at t = 400, 600 for RI and RSS. In relation to the predictions, Fig. 4 shows ENT as
an uncertainty measure. The value increases when the value changes at the drift time,

YSD of each model in each dataset.

indicating that the uncertainty of the prediction has increased.
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5.3 Changes in the Diversity of Model Parameters

We show how the concept drift changes the diversity of the model parameters in the
ensemble. Figure 5 shows PSD. In most of the cases where the values change at the time
of drift, they go down and then up, which can be interpreted as the model parameters
becoming similar for a while and then diversifying. The exceptions are t = 200 for
SINE, STAGGER, and MIXED, and Spambase, where the values rise without falling.
In relation to the model parameters, Fig. 6 shows CKA. In most cases where the value
changes at the drift point, it falls, which can be interpreted as a diversification of the
internal representation. The exceptions are t = 200 for the RI of SINE and t = 600 for
the RI and RSS of SEA, which show an increase. In relation to the dynamics of the
model parameters, Fig. 7 shows GCO. When the values change at the drift point, there
are almost the same number of upward and downward cases, and thus no consistency
is observed. Figure 8 shows GNO. When the value changes at the point of drift, it is
elevated and is considered to be linked to the increase in loss.

5.4 Comparisons

Prediction Error and the Other Metrics. One case where drift effects are difficult to
recognize with prediction error-based metrics such as LOS and ACC is t = 400 for SEA.
In this case, the metrics that show drift effects are YSD (RI), CKA (RSS), GCO (RI),
and GNO (RI and RSS). It is suggested that the use of ensemble-specific and model-
parameter-based metrics may improve the accuracy of concept drift detection based on
prediction error.

Predictions and Model Parameters. The case where there is no significant change in
the prediction-based metrics such as YSD and ENT is SEA t = 200. In this case, the
metric that shows drift effects is GCO. It is desirable to clarify the mechanism of the
behaviors of these metrics to create better metrics.
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RI and RSS. RI may be more convenient because it has a higher diversity of ensemble
members and shows more ensemble-specific characteristics, while RSS is more practical
because its computational cost is lower than that of RI. In this paper, we discuss whether
RSS canreplace RI for each metric. The metrics based on predicted values are considered
to be substitutable because the patterns in the Tables 1 and 2 are the same. The metrics
based on model parameters are also considered to be substitutable because the overall
pattern of the Tables 1 and 2 is similar. As an exception, in Spambase, it is difficult to
recognize the effect of drift on PSD in RSS. On the other hand, it is difficult to recognize
the effect of drift on CKA in RI. Besides, it was assumed that there would be a trade-off
between the amount of computation and the prominence of the movement of the metrics.
However, depending on the combination of data set and indicator, the movement of RSS
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was larger than that of RI (e.g., CKA in AGRAWAL and SINE). This suggests that there
may not necessarily be a trade-off. It is desirable that the mechanism of the behaviors
of these metrics will be clarified to create better metrics.

6 Conclusion

In this study, we investigated the behavior of the predictions and parameters of ensemble
models constructed by two different methods in the presence of concept drifts. The
results showed that the metrics that can be calculated only by the ensemble model and
the metrics based on the model parameters showed behaviors suggestive of concept drift.
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Thus, it can be said that the detection accuracy of concept drift may be improved by
using the parameters of the ensemble model. There were some metrics based on model
parameters that complemented the metrics based on predicted values in terms of concept
drift detection, and some indices behaved differently between RI and RSS. It is desirable
to clarify the mechanism of the behaviors of these metrics to create better metrics.
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