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Abstract. Thanks to modern autopilot hardware and software, multi-
rotor drones can fly and perform different maneuvers in a precise way,
guided merely by high-level commands. This, in turn, opens the way
towards fully automated drone-based systems whose operation can be
driven by a computer program, without any human intervention. In this
work, we present a modular architecture for such a system, which inte-
grates a drone, a hangar, battery charger and a weather station with the
necessary software components so as to provide an autonomous remote
sensing service, which can operate at the edge while being interfaced
as needed with external systems and applications. The proposed system
architecture is described in detail, focusing on the core software compo-
nents and the interaction between them. We also discuss the drone and
ground station that is used to test our implementation in the field as well
as a simulation environment which allows us to perform a wide range of
experiments in a flexible and controlled way.

Keywords: System architecture · Software design · Drones ·
Automation · Remote monitoring · Edge computing

1 Introduction

Remote monitoring has long been used to gather data about geographical regions
of interest. For many years this was done through advanced satellite technology.
However, this comes at a very high cost and in numerous cases data for the area
of interest is available only during specific times of the day depending on the
location and field of view of the satellite carrying the required sensing equipment.
For this reason, a large number of on-demand sensing tasks were conducted using
manned aircraft equipped with the proper sensors.
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During the recent years, a far cheaper and more flexible approach is to use
unmanned aerial vehicles, also referred to as drones. Indeed, drones have become
very popular and are now being used in an increasing number of applications,
such as agriculture, structural health monitoring and surveillance. What drives
this widespread use is the fact that modern drones can practically fly on their
own, thanks to advanced embedded autopilot subsystems which continuously
gather data from various on-board sensors, process them in real-time, and take
all the steering decisions necessary to keep the vehicle steady during flight. In
particular, multi-rotor drones (polycopters) can perform very precise maneuvers
and even hold completely still, hovering in their current position. As a result,
these drones can be flown via simple high-level commands, even by laymen who
have little or no piloting experience.

In the same manner, such drones can be flown by computer programs too.
There are several efforts to provide suitable tools and programming abstractions
that simplify the development of computer-driven missions. Moreover, using
available precision landing sensor technologies, the drone can accurately land
even on small target areas, such as the landing pad of a hangar that can provide
shelter when the drone is not being used and serve as a battery recharging (or
battery switching) station during missions.

By combining these technologies, it becomes possible to fully automate the
entire cycle of drone operation, thereby opening the way to a new class of drone-
based remote sensing systems. This is particularly attractive if the drone rou-
tinely needs to perform the same sensing tasks over an area of interest, as this
is typically the case in several monitoring and surveillance applications.

In this paper, we present a complete architecture for such a system, which
integrates a drone, its hangar and battery charging subsystem, a local weather
station and all the software components that are needed in order to provide a
complete and fully autonomous remote sensing service. The main contributions
of the paper are: (i) We propose a modular architecture for autonomous drone-
based remote sensing systems, which can operate at the edge in a standalone way
or as part of a more complex ecosystem. (ii) We describe the proposed design
in detail, focusing on the software components that are responsible for the core
system operation and mission execution. (iii) We discuss the drone and ground
station setup we use in our field tests as well as a simulation environment used
to test the functionality of our system in the lab for a wide range of scenarios.

We wish to note that our work focuses on outdoor sensing scenarios, using
drones with autonomous flight, navigation and landing capability – many such
platforms exist, and nowadays it is also relatively straightforward to even have
custom designs, such as the drone we use in our tests. While some elements of
the proposed system could be potentially reused to support indoor scenarios,
this direction is beyond the scope of this work.

The rest of the paper is structured as follows. Section 2 presents the high-level
system architecture. Section 3 discusses the main management logic, while Sect. 4
focuses on the aspect of mission execution. Section 5 describes the hardware-
based and simulation-based setup used to test our implementation. Section 6
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gives an overview of related work. Finally, Sect. 7 concludes the paper and pro-
vides some directions for future work.

2 System Concept and Architecture

We assume a geographical area or specific points of interest where certain sensing
tasks can be performed using a drone. On the one hand, there can be standard
sensing tasks that have to be conducted on a periodic basis, without any explicit
request. On the other hand, certain sensing tasks may be introduced on demand,
triggered by requests coming from external systems, e.g., end-user applications.

To support such a remote sensing capability, we propose a system that can
manage the full cycle of operation—not just the flight of the drone during a
mission, but also all the take-off and landing, storage and battery charging
procedures—with little or no human intervention. Of course, the sensing equip-
ment that needs to be mounted on the drone, the data collected via these sensors
and the processing that needs to be performed on this data, all depend on the
application. Nevertheless, having a general system design and implementation,
which properly addresses all the application-neutral aspects of such a drone-
based remote sensing system, is of big value as it is then possible to support any
specific application with minimal customization and debugging effort.

In the spirit of edge computing, we envision such a system to run on a ground
station close to the area of operation. This way one can have a direct and low-
latency communication with the drone via WiFi or long-range RF technology,
enabling autonomous and robust operation without relying on fast and stable
connectivity with the cloud—even in the era of 5G, good Internet connectivity
is by no means guaranteed if the system needs to operate in remote areas. The
basic system infrastructure includes a suitably designed hangar where the drone
can land autonomously, a battery charging subsystem (inside the hangar) and
a local weather station, with which the ground station can communicate over
dedicated serial links or a local area network. We assume that standard GPS
accuracy is sufficient for the navigation and sensing tasks of the drone. To sup-
port applications with higher accuracy requirements, the system infrastructure
and the drone need to be equipped with more advanced positioning subsystems,
such as GPS RTK and/or visual positioning systems (VPS), but this does not
affect the proposed system design. Finally, we assume that the drone can land on
the hangar with high accuracy, supported by an appropriate precision landing
mechanism, and dock on the battery charging system without manual interven-
tion.

From a software perspective, the proposed system is built in a modular way,
being composed of micro-services which are combined to provide the overall func-
tionality. The top-level system architecture is shown in Fig. 1. Some components
play the role of high-level drivers and provide access to the physical parts of the
system, while others are responsible for purely software-based functions. Next,
we outline the role of each component.
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Fig. 1. Top-level system architecture.

The Gateway provides a technology-neutral interface towards external sys-
tems, including the end-user application through which the system can be man-
aged remotely. Its role is to convey incoming requests to the Manager and send
back the corresponding replies. Note that the interaction with external systems
is not crucial for the core system operation; the system can execute monitoring
tasks in an autonomous manner, even when having unstable/bad connectivity
to external systems. Of course, access to the Gateway needs to be properly
secured in order to avoid unauthorized access. This can be achieved using well-
established technologies, such as VPNs in combination with more refined access
control mechanisms (which is not the focus of this work).

The heart of the system is the Manager, which is responsible for the automa-
tion of the entire cycle of operation. Briefly, the Manager picks the mission
plan for the sensing task at hand, makes the initial preparations and starts the
execution of the plan. During execution, it monitors progress and updates the
mission state. When the mission is completed, the Manager performs the neces-
sary finalization actions so that the system becomes ready for the next sensing
task. Section 3 describes the Manager in more detail.

The mission plans for the sensing tasks can be predefined or generated in a
dynamic way. The former typically applies to standard tasks with fixed oper-
ational parameters. The latter is needed for tasks with open parameters that
are determined at launch time (e.g., the specific points of interest are supplied
as part of an on-demand sensing request), or to support replanning in case a
sensing task is aborted. In these cases, the Mission Planner is invoked in order
to produce a suitable plan. If the application does not have such requirements,
the Mission Planner component becomes superfluous and is not included in the
system configuration.

The Mission Executor is responsible for the actual execution of the mission
plans. This is done using a so-called driver program, which parses the plan and
performs the required interactions with the drone. It is important to note that the
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system may support various types/formats of sensing missions, and each mission
type typically comes with its own driver program. The internal operation of the
Mission Executor is described in Sect. 4.

The rest of the components serve as front-ends for different peripheral subsys-
tems. The Hangar API supports the interaction with the hangar where the drone
is stored, while the Charger API is used to access the battery charging subsys-
tem. Information about the current weather conditions can be retrieved via the
Weather API that communicates with a local station near the area of operation.
Finally, the Processing API is used to process the data collected by the drone by
employing suitable services, which may run locally on the ground station or be
deployed in more powerful nearby edge infrastructure. Data processing may take
place during the mission or once the mission completes, depending on the appli-
cation and system configuration. Of course, the Processing API is not needed
for pure data collection applications.

Further, the system keeps certain information on persistent storage. This
includes specific points of interest, no-fly zones and drone characteristics, e.g.,
estimated flight time as a function of average flight speed, which may need to
be taken into account when generating a new mission plan. Also, the system
stores the available (predefined or auto-generated) mission plans and the driver
program(s) for their execution. Last but not least, it keeps a log for each sens-
ing task and corresponding mission execution, including its status and the data
that was collected (and possibly processed) in this context. The different system
components create/access this information via a shared repository, e.g., using a
database for structured information in conjunction with a file system for unstruc-
tured data. This information can also be inspected and updated by authorized
external systems and end-user applications via the Gateway.

3 Manager

The Manager oversees the different phases of a full monitoring cycle, in a similar
way this would be done by a human operator. Namely, it invokes other compo-
nents to perform the necessary actions and decides when to move the system to
the next state of operation.

The internal organization of the Manager is shown in Fig. 2. It includes an
RPC Server that is invoked by the Gateway when external requests arrive, an
event-driven finite state machine (FSM) that implements the coordination of
the operation cycle, and a set of observers that monitor different processes or
subsystems and issue an event when certain conditions apply. These entities are
independent threads running concurrently to each other. Sensing tasks are kept
in a queue, sorted according to the scheduled start times. The events generated
by the observers are kept in a separate FIFO queue, from where they are retrieved
and handled by the FSM in a sequential manner. The operation of the FSM and
the observers is described in more detail in the following subsections.
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Fig. 2. Internal organization of the Manager.

3.1 Finite State Machine

The FSM runs in a loop. In each iteration, the next event is removed from the
queue and the respective handler is invoked, which performs a state transition
along with some actions. An event is dropped if it is not compatible with the
current state or the last processed event was of the same type. If the queue is
empty, the FSM blocks until an event is added to the queue.

The FSM has six states, representing the key phases of the operation cycle.
The state diagram and the respective transitions are given in Fig. 3. The events
that trigger the state transitions are indicated by the capitalized labels over the
edges while the sources of each event are given in brackets. Figure 4 shows the
core logic of the event handlers, where the dashed arrows denote the logical flow
between handler invocations resulting as a side-effect of event generation.

Initially, the Manager is in the READY state where the drone is fully charged
and can be used for the next sensing task. A new cycle is triggered via the
START event, generated by the Queue Observer when it is time to start the next
sensing task. As a result, the Manager invokes the Mission Planner to generate
the mission plan for the task at hand, if such a plan is not already available. It
also confirms, via the Weather API, that the weather conditions are good (else
the task is postponed for a later point in time and the state remains READY).
Then, the hangar is instructed to open its hatch via a call to the respective API.
Since this operation may take some time, it is tracked by the Hangar Observer
while the system moves in the OPENING state. When the hangar opens, the
Hangar Observer generates an OPENED event. As a result, the Manager invokes
the Mission Executor to start the execution of the mission plan, and moves to
the RUNNING state.

Once the mission completes and the drone has properly landed, the Mission
Observer generates the DONE event. The Manager then checks the mission
status, and if the mission was aborted it may reschedule the remainder of the
task (discussed in more detail in the sequel). In any case, the Manager instructs
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Fig. 3. State diagram of the FSM.

Fig. 4. Event handling logic of the FSM.
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the hangar to close its hatch and moves to the CLOSING state, and when the
Hangar Observer generates the CLOSED event the Manager starts charging the
drone’s batteries via the Charger API and enters the CHARGING state. Finally,
when the Charger Observer generates a CHARGED event, the Manager starts
the Queue Observer, if the task queue is not empty, and makes the transition
back to the READY state from where the system can repeat the same procedure
for the next sensing task. If there are no pending scheduled tasks, the system
remains idle until a new task is submitted via the Gateway, in which case the
RPC Server adds it in the queue and starts the Queue Observer.

During the above cycle of operation, some hard failures may occur which
cannot be handled by the Manager in a graceful manner so that the system
can continue its operation. More specifically, in the OPENING state, the hangar
may not open; in the RUNNING state, the drone may not respond to critical
commands or fail to land properly; in the CLOSING state, the hangar may not
close; also, in the CHARGING state, the charger may not be able to properly
charge the drone’s batteries. In all these cases, a FAILURE event is generated
by the respective observer. In turn, the Manager notifies the administrator and
makes the transition to the FAILED state. The system remains in this state until
it is reset manually; in some cases, it may be possible for the administrator to
inspect and correct the problem remotely, via the Gateway, while other problems
may require physical intervention. We note that a mission abort is not considered
a hard failure. Even if a sensing task is stopped prematurely, it may be perfectly
possible to reschedule it or proceed with the next task in the queue.

3.2 Observers

The observers are started on a need-to basis by the event handlers of the FSM,
as indicated in Fig. 4. An observer is automatically stopped when it generates
an event or the FSM makes a state transition.

The Queue Observer is responsible for triggering the execution of the next
sensing task. To this end, it checks the task queue, determines when the next
task needs to start and sets a timer accordingly in order to issue the START
event. If a task is postponed or rescheduled, it is put back at the head of the
queue so that its execution starts as early as possible.

The Hangar Observer uses the Hangar API to receive information about the
position of its door/hatch. When this is fully opened or closed, it generates the
OPENED and CLOSED event, respectively. If a problem occurs when trying to
open/close the hatch, the FAILURE event is generated.

The Charger Observer uses the Charger API to check the progress of battery
charging. When the drone’s batteries are fully charged, it issues the CHARGED
event. If charging does not work properly, it issues the FAILURE event.

The Weather Observer uses the Weather API to receive information about
the weather conditions from the local station. If weather conditions deteriorate
while a mission is already in progress, the Mission Executor is invoked to abort
the mission. Note that the Weather Observer does not abort the mission itself nor
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does it generate an FSM event; if the Mission Executor indeed aborts the mis-
sion, the corresponding DONE event will be generated by the Mission Observer,
discussed next.

The Mission Observer periodically polls the Mission Executor in order to
receive information about the mission execution status. If the mission was ter-
minated in a graceful manner, either because it was completed or because it was
aborted, the Mission Observer generates the DONE event. If the mission status
indicates abnormal termination due to a hard problem, the observer generates
a FAILURE event.

3.3 Task Rescheduling and Data Processing

As was mentioned above, if a sensing task is aborted, the Manager can reschedule
it so that it is completed as planned. To this end, the driver program needs
to record in the system repository additional information regarding the degree
of mission completion. In turn, the Manager can pass this information to the
Mission Planner in order to produce a new plan for the remaining part of the task.
Furthermore, to reduce the number of take-offs and landings that are performed
by the drone, the Mission Planner can be asked to combine the rescheduled
task with the next one in the queue, provided both have the same type. Note,
however, that it may not be possible to support such an automated rescheduling
and replanning for all sensing tasks and mission types. If an aborted task cannot
be rescheduled, it keeps this status so that the administrator can take further
action as needed, e.g., by manually submitting a suitable follow-up sensing task.

The data that is collected by the drone is stored by the driver program in
the system repository from where it can be inspected/retrieved via the Gateway.
Moreover, in some application scenarios, this data may need to be processed
before making it available to external systems. This can be performed through
an independent process running in parallel to the core mission control loop,
in order to retrieve the data from the repository, invoke the corresponding data
processing services via the Processing API, and store back the results. We do not
elaborate about this aspect here, as this is does not affect the core operation of
the system. Finally, we note that the mission itself can be data-driven, in which
case some data processing will be performed by the driver program, without
involving the Manager; we discuss this aspect at the end of the next section.

3.4 System Failures

As mentioned above, if any subsystem fails (Hangar, Battery Charger, Mission
Executor), the Manager will enter the FAILED state, and the user (system
administrator) will be notified in order to take action. If the Manager itself
fails (e.g., the host machine crashes), this will be detected by the user when
attempting to interact with it through the Gateway. Upon restart after an abrupt
crash, the Manager enters the FAILED state and the user is notified as usual.

Of course, a system failure may also occur during the execution of a sensing
task. In this case, the wireless connection between the Manager and the drone will
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break, and the drone will return and land autonomously, without requiring any
external guidance. In principle, the Manager can resume such tasks, practically
in the same way this is done for tasks that are aborted: by checking the logs
and invoking the Mission Planner to produce a new plan for the part of the
task that was not completed due to the system crash. In this particular case,
however, we adopt a more conservative approach: the Manager does not attempt
to automatically resume operation after a failure, and it has to be reset manually.

Finally, we note that it is possible to make the Manager fault-tolerant by
adopting replication techniques, such as [16] or [24], so that system operation
continues smoothly as long as at least one of the replicas remains operational.
This discussion, however, is beyond the scope of this paper.

4 Mission Executor

The Mission Executor component is responsible for actually running a sensing
task according to its specific mission plan, while communicating with the drone
as needed. The interaction with the Manager takes places through an RPC
Server, while the core functionality of mission execution is implemented in a
separate environment that is invoked by the RPC Server, via a suitable front-
end that hides technology-specific details. In our current prototype, the mission
execution environment is implemented using the TeCoLa platform [23], as shown
in Fig. 5. TeCoLa supports a flexible, service-oriented interaction with the drone
in Python, and can work over different wireless technologies, including WiFi and
long-range RF.

Fig. 5. Mission execution approach.

In a nutshell, the Mission Executor takes as input a mission plan and the
driver program that will parse and execute the plan by invoking the drone’s ser-
vice as needed. The driver program runs on top of the Mission Execution Envi-
ronment, which takes care of the underlying communication with the drone over
a wireless link. The drone, in turn, runs the Node Environment, which processes
the requests of the Mission Execution Environment, calls the corresponding local
services and sends back the replies. In the basic system configuration used to
test our system, the drone provides two services: the mobility service for the
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navigation-related functions of the autopilot, and the camera service for taking
pictures via the onboard camera.

Fig. 6. Main logic of a driver program for taking aerial images over a target area
following a waypoint-based mission plan.

As an example of a driver program, Fig. 6 illustrates the main logic of a
program that is designed to execute waypoint-based mission plans while using the
camera as a sensor. Pictures are taken periodically during the entire mission as
the drone moves between the waypoints, as well as at certain waypoints specified
in the plan. Initially, the program arms the drone and instructs it to take-off. It
also starts a timer in order to perform periodic sensing, shown in the figure as an
independent thread. Concurrently, in a loop, the program instructs the drone to
move to the next waypoint. If a focused sensing action is required at that point,
the drone is instructed to take a picture before moving to the next waypoint.
When the drone successfully visits all waypoints, it is instructed to return and
land. Finally, the drone is disarmed, the recorded pictures are downloaded from
the drone and saved in the system repository, and the program returns a success
code, leading to the generation of the DONE event by the Mission Observer.

If the drone does not reach the take-off altitude or a waypoint within a
reasonable amount of time, this is considered as an indication of very localized
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adverse weather conditions that are not detectable by the weather station. To be
safe, the driver program decides to abort the mission, and instructs the drone to
return to the hangar and land immediately. Similar checks can be performed for
other things, such as the drone’s battery level in order to abort the mission if this
drops below a safety margin (not shown in Fig. 6 to avoid clutter). In any case,
the fact that the plan was not carried out to full completion is reflected in the
return code of the program and the mission completion status reported by the
Mission Executor to the Manager, so that the latter can identify and reschedule
aborted tasks. Also, in the above example, the driver program explicitly records
each waypoint that is successfully visited by the drone. This information can be
passed (along with the original plan) to the Mission Planner to produce a plan
for the rest of the sensing task. Recall that even if the mission completion status
indicates an abort rather than full completion, the Mission Observer will still
generate a DONE event as the system can continue its operation.

If the drone fails to arm/disarm or does not land properly, is not possible for
the system to continue operation without manual inspection and perhaps even
hands-on maintenance. In these cases, the driver program terminates immedi-
ately with a failure code, which leads to the generation of a FAILURE event by
the Mission Observer. Several additional safety checks, e.g., for smooth motor
operation and lack of vibrations, can be performed along the same lines, in order
to put the system in the FAILED state whenever human intervention is required
(to focus on the essence, the example in Fig. 6 does not include such checks).

At any point in time during execution, the Manager may ask the Mission
Executor to pause, continue or abort the mission, due to a corresponding exter-
nal request received via the Gateway. Also, the Weather Observer may request
an abort if it detects deteriorating weather conditions. In these cases, the Mission
Executor up-calls special handlers of the driver program, which take the neces-
sary actions. More specifically, on pause, the last command that was sent to the
drone is recorded and the drone is instructed to hover in its current position,
while the driver program is suspended. When requested to continue execution,
the last command is re-sent to the drone and the driver program is resumed.
Finally, a requested abort leads to the same behavior as when the driver program
takes this decision by itself. The event handling logic of the driver program is
not shown in Fig. 6 for brevity.

We wish to stress that the format of the mission plans as well as the driver
program used for their execution can both be customized according to the appli-
cation’s requirements. It is also straightforward to introduce additional drone sen-
sor (and actuator) services, provided the drone features the corresponding hard-
ware. Furthermore, the system can employ different types of missions and cor-
responding driver programs, which may rely on platforms other than TeCoLa;
one merely needs to a add a corresponding mission execution environment and
front-end. This flexibility is important for sensing applications where there is no
single size that fits all needs. In particular, it is possible to support dynamic
data-driven missions. This can be done using a suitable driver program, which
receives data from the drone during the mission (e.g., at specific waypoints),
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processes this data and guides the drone based on the results. To minimize delays,
heavyweight data transfers between the drone and the driver program on the
ground station would need to be performed over sufficiently fast wireless links. The
driver program can perform the required data processing by invoking in a direct
way the appropriate services via the Processing API, without involving the Man-
ager. Depending on the system configuration and available computing resources,
the data processing services can run locally on the ground station or at a powerful
edge infrastructure with good connectivity to the ground station.

5 Functional Testing

We have implemented a complete system prototype, where all the software com-
ponents discussed in the previous sections are separate microservices, packaged
as Docker containers in order to support a managed deployment on the ground
station. The mission plans used to test our implementation are waypoint-based,
and the logic of the driver program that executes such plans is similar to that
in Fig. 6, with several additional checks that may lead to an abort or failure
depending on the gravity of the detected issue. We have performed a wide range
of tests using a custom drone and ground-station but also a suitable simulation
environment. We describe the two setups in more detail below.

5.1 Field Setup

The setup used to perform tests in the field is shown in Fig. 7. The drone is a
custom hexacopter with a CUAV V5 nano autopilot board [10], which provides
all flight-related sensors and runs the popular ArduPilot [1] autopilot software
for multicopters. The drone features as a separate companion board a Raspberry
Pi 3 Model B [8] (RPi) with a quad-core ARM Cortex A53 processor at 1.2 GHz
and 1 GB of RAM, running the Debian-based Raspberry Pi OS Buster, the
officially supported Linux distribution for the RPi. The RPi is connected to
the autopilot board over serial and runs the TeCoLa Node Environment. The
mobility service employs the DroneKit library [3], which communicates with the
autopilot through MAVProxy [6]. The camera service accesses an onboard 8 MP
RPi Camera Module v2 [9] via the picamera library [7].

For the ground station we use an Intel NUC mini PC running a Ubuntu
16.0 LTS Linux distribution, powered via an external car battery. Since the field
tests focus on the operation of the core system components, this configuration
does not include a weather station, a hangar or battery charger subsystem.
Instead, the Weather API is hardwired to report good weather conditions, the
Hangar API produces open/close events right after receiving the corresponding
commands, and the battery charging status reported by the Charger API is set
manually when the drone is equipped with fresh batteries. Also, to have full
control on the missions that are performed in the field, we do not use a Mission
Planner component. All tests are based on manually prepared mission plans and
no rescheduling takes place in case of an abort.
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Fig. 7. System setup used in the field tests.

Precision landing is supported in the same way as this would be the case in
a real deployment. More specifically, we use the IRLock mechanism [5], which
is already supported by the off-the-shelf ArduPilot distribution. IRLock relies
on the onboard Pixy camera sensor to track an IR beacon. To achieve robust
tracking, we use the MarkOne beacon, which can be detected from a height of
up to 15 m. The beacon is powered by the same external battery as the mini PC,
using a long cable so that it can be placed at the desired landing position.

The communication between the ground station and the drone can be config-
ured to go over WiFi or RF telemetry. Both the drone and the embedded com-
puter have corresponding interfaces; the latter has an integrated WiFi antenna,
while the RF module is externally connected to it via USB and is mounted on a
pole for better coverage. The system can be configured to use only one of these
interfaces, or both of them concurrently with the option of service-based binding.
For instance, the RF which has a longer range can be used for the more critical
mobility service, whereas the WiFi which can support higher throughput can be
used for the camera service.

While field trials are important to verify the desired system operation under
real conditions, they also come with several limitations, primarily due to safety
rules and regulations in drone operation. Field trials are also very time consuming
since they require extensive preparation and travel. For these reasons, a large
number of more complex experiments are performed using a simulated setup
described in the sequel.



234 M. Koutsoubelias et al.

5.2 Simulated Setup

To thoroughly test all system functions and several corner cases in a flexible and
controlled way, we use a modular setup, which integrates different simulation
technologies through virtual machine (VM) and container technology in order
to support experimentation with different virtual unmanned vehicles and virtual
ground stations. In this particular setup, we employ the Gazebo simulator [4],
which is popular in the robotics community and has built-in support for the sim-
ulation of polycopters, and ns3 [27] for the simulation of wireless communication.
The setup is illustrated in Fig. 8 and is described in more detail below.

Fig. 8. System setup using the Gazebo simulator and ns3.

The drone functions are implemented within a virtual machine (v-drone VM),
mimicking a drone configuration where the flight controller and the companion
computer coexist on the same board. The autopilot software and the TeCoLa
Node Environment with the mobility and the camera services run as containers
within the v-drone VM. In this setup, we employ the official software-in-the-loop
(SITL) configuration of Ardupilot [2], coupled to the physics engine of Gazebo
that models the behavior of a typical quadcopter with high fidelity. Gazebo itself
runs in a separate container, outside the v-drone VM, and communicates with
the SITL ArduPilot via the Ardupilot plugin over a dedicated communication
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channel of the simulation environment. In addition, Gazebo is configured to
use the static map world plugin, which provides a ground plane with satellite
imagery used to feed real images to a virtual camera. The mobility service in
the v-drone VM communicates with the autopilot via Dronekit, in the same way
this is done in the real drone. The camera service is modified to access a virtual
camera container, which communicates with Gazebo to return images based on
the drone’s current position in the virtual world.

The ground station is also a virtual machine (v-GS VM) that includes the
entire management system. The communication between the v-drone and the
v-GS occurs over a virtual WiFi network. This is simulated using ns3, which
is configured to operate according to the 802.11b standard, and is accessed by
the VMs via proper (virtual) wireless interfaces that map into corresponding
so-called ghost nodes in ns3. We note that the WiFi simulation also takes into
account the distance between the ground station and the drone. The position of
the ground station is fixed at startup, while the position of the drone is updated
at runtime based on the reports of the autopilot that are sent to ns3 via a side
channel (not shown in the figure to avoid clutter).

In this configuration, we use a simple Mission Planner component, which
takes as input a sequence of waypoints and produces a plan in the format that
is expected by the driver program. The plans are produced taking into account
the drone’s operational autonomy (battery capacity vs energy needed for the
drone to fly at a certain speed). If a sensing task is too large, the planner will
produce several smaller plans, which the Manager schedules in sequence via the
task queue. The planner can also combine smaller plans into larger ones. This
feature is used when the Manager reschedules a task after an abort, in order to
merge it with the next one in the task queue (if any).

For the weather station, the hangar and the battery charger, we use mockups
which run as independent containers and are accessed by the corresponding API
components over a separate communication channel. These mockups can be pre-
configured as well as interactively controlled by the user during the simulation
to behave according to the test scenario. More specifically, the weather station
can report different conditions, while the hangar can open/close its hatch and
the charger appear to charge the drone’s battery with a configurable delay or
exhibit a malfunction.

5.3 User Interface

In our prototype, all system entities can be accessed and monitored via
command-line tools and different logs. Furthermore, as an indicative interactive
user interface, we have developed a simple GUI, shown in Fig. 9.

Through this GUI, the user can start, pause, continue and abort missions as
well as view the current drone position on top of a google map along with some
basic status information. There is also a panel, next to the map view and above
the control buttons, for displaying the most recent photo taken by the drone (as
soon as this is stored in the system repository).
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Fig. 9. Snapshot of user interface during system operation.

We note that the GUI is designed as an independent (web-based) application,
which communicates with our system via the Gateway. It can be used to interact
with the real ground station in field tests as well as with the virtual ground
station when performing simulated tests.

5.4 Indicative Test Scenario

Using the simulated setup, we have tested our implementation extensively for
a wide range of scenarios regarding different cases of user intervention (mission
pause, continue and abort), dynamically changing weather conditions, failures
of the hangar/chargers and disconnections between the ground station and the
drone. To give an indicative example, assume the administrator has added a
periodic sensing task for scanning a target area of 300 × 300 m through several
passes at an altitude of 10 m. The desired path of the task is defined via a
sequence of waypoints with a “horizontal” distance of 300 m and a “vertical”
distance of 20 m, depicted in Fig. 10a by the gray bullets.

The total flight distance that needs to be covered is about 5 Km without
taking into account take-off and landing, at a specified flying speed of 4 m/s.
However, at that speed, the drone has an autonomy of only about 3.5 Km. As
a consequence, this task is mapped to two smaller mission plans, illustrated in
Fig. 10a in orange and blue color, respectively. Since this is a periodic task, these
plans are produced offline and are stored in the system repository from where
they are retrieved by the Manager when the task is started.

During the execution of the first plan (orange), the weather station is set to
report bad conditions. As a result, the mission is aborted at the point marked
in Fig. 10b and the drone returns back to base and lands. The remaining part
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of the first plan is rescheduled and merged with the second plan (blue), thereby
producing a new ad-hoc plan (green) that is executed as soon as the drone’s
batteries are fully charged.

Figure 11a shows the sequence of system events that are generated for/during
the execution of this sensing task, in line with what was described in Sect. 3. To

(a) Initial offline plans. (b) Modified ad-hoc second plan.

Fig. 10. Original and adapted plan due to abort. (Color figure online)

(a) Sequence of system events, actions and states (timeline not in scale).

(b) Flight speed and altitude of the drone.

Fig. 11. System events and drone flight data. (Color figure online)
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display events that occur at widely different time scales, the timeline is not in
scale but merely illustrates the logical sequence of events with their timestamps
(given that granularity is in seconds, some events have the same timestamp; also,
larger time periods are denoted by a dashed line). The state of the FSM at the
various time intervals is indicated above the timeline (in blue). As can be seen
by observing the event timestamps, the simulation environment is configured so
that the time needed for the hangar to fully open/close its hatch is to 80 s, while
the delay for charging the drone’s batteries is set to 10 min (of course, the actual
recharging time for the batteries of the real drone is much larger).

Figure 11b depicts the drone’s speed and flight altitude relative to the home
position, which are recorded during the experiment in the system logs (as done
during real flight tests). Once the drone takes off and starts the mission accord-
ing to the first plan, its altitude remains constant at about 10 m, while its speed
is roughly 4 m/s except when the drone slows down in order to turn at the spec-
ified waypoints. When the sensing task is aborted, the mission driver program
activates the return-to-land behavior. As a result, the drone immediately rises
to a default altitude of 15 m and then moves with a default speed of 5 m/s to
the home position where it lands. The same basic pattern is repeated during
the execution of the second plan. The difference is that, in this case, the entire
mission is completed successfully, thus the drone follows the planned path back
to home without changing the specified flight altitude or speed.

6 Related Work

There is a growing body of work on supporting the development of autonomous
drone-based monitoring and tracking applications. Below, we briefly discuss
indicative efforts. A modular system for object-tracking applications is presented
in [28], consisting of a drone with an onboard computer, a camera and position-
ing sensors like GPS. The camera images and sensor data are processed on the
onboard computer in order to detect the target object and infer the drone’s posi-
tion. The results fed in a mission planning module, also running on the onboard
unit, which sends suitable control commands to the drone’s flight controller so
as to follow and approach the target object. [18] describes a drone-based system
for structural health monitoring. The drone is equipped with a camera and an
onboard computer that processes the camera images to detect special AR tags,
which are used to mark the desired points (structural elements) of interest. It
also features a separate stereo vision subsystem with two special (CCD point-
grey) cameras. The drone flies autonomously to the points of interest where it
takes stereoscopic images. After the flight, these images are transferred to a high-
performance computer in order to perform the required data processing. The goal
of the system presented in [29] is to pursuit intruder drones based on external
alerts. When an intruder drone enters the area, another drone is used to detect,
track and jam the intruder. The drone is equipped with a camera, an onboard
unit that processes the camera images in order to detect the intruder drone and
guide the drone by sending signals to the flight controller, and a software-defined
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radio used to jam the intruder as well as for self localization. The authors in [11]
propose a system for precision agriculture using UAVs and an edge server. The
photos taken by the UAVs are processed on an edge server to extract relevant
features for the crop in question, and to decide if more samples are needed, in
which case the next flight plan for the UAVs is produced. The above efforts
focus on the autonomous operation and flight control of the drone, in some cases
with the help of edge computing infrastructure. Our work is complementary to
such efforts, with the goal to automate the full operation cycle of drone-based
sensing systems, including storage, battery-charging, weather checking, mission
planning, mission execution and data processing, without any human interven-
tion. The proposed design can be flexibly customized to support different specific
application scenarios, including the ones outline above.

There are several efforts on supporting the coordinated usage of multiple
robots or drones. TeCoLa [23] abstracts autonomous robots as nodes provid-
ing different services that can be accessed remotely via method calls with at-
most-once semantics. Mobility is modelled as a special service. The application
program can transparently discover and invoke the available nodes as needed,
while there is also support for the dynamic formation and grouped invocation
of smaller teams. Resh [12] is a domain-specific language and orchestration sys-
tem for multi-robot systems. Each robot has an agent that communicates with
a centralized runtime in order to advertise its capabilities/status and translate
the Resh protocol to the local robot-specific API. Dolphin [26] also follows a
centralized approach for task execution using a static team of autonomous vehi-
cles, where the platform’s runtime system is responsible for polling the vehicles,
sending tasks to them and managing platform-specific operations. In [13], the
ScaFi programming language is used to let a multi-agent system achieve a collec-
tive goal in a distributed fashion. An iterative protocol is followed, whereby each
agent evaluates its local state, checks for any messages coming from its neighbors,
runs an aggregation program based on the current context, performs correspond-
ing actions, updates its state and notifies its neighbors. Maple-Swarm [21] allows
the developer to submit partial high-level plans. These plans are used as input
to generate specific tasks for one or more robots, based on their capabilities and
the current state of the system. Our work is largely orthogonal to the problem
of coordinated task execution. In terms of design, the proposed system archi-
tecture can be extended to support sensing tasks with more than one drones.
In a nutshell, the Manager would need to handle multiple hangar and battery
charging subsystems in order to keep track of the drones that are ready to be
used for sensing tasks, the Planner would need to produce individual mission
plans while ensuring the necessary safety boundaries between the drones that
will be used at the same time, and the driver program would have to be written
accordingly in order to execute these mission plans in a coordinated way. Our
current implementation uses TeCoLa for mission execution, which already pro-
vides support for team-level operations that could be used to support sensing
tasks with multiple drones. However, in principle, any other platform could be
used to write the driver program for executing such sensing tasks.
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Some researchers investigate the remote usage of UAVs following cloud-based
approaches. In [32], UAVs appear as cloud services managed by a central coor-
dinator, which takes care of the underlying communication and maintains the
sessions between UAVs and their users. [14] proposes a cloud service through
which users can interactively request missions using an Android application.
The service plans the path, picks the best available UAV and sends the mission
to the UAV’s autopilot, while the user can monitor the mission by receiving live
status data and video streaming. Dronemap Planner [22] virtualizes UAVs by
offering suitable control and data retrieval web services, which run in the cloud
and can be invoked by third-party applications via standard web-service proto-
cols. All these approaches are definitely interesting if ones wishes for UAVs to
become a shared resource that can be used by different users possibly even at the
same time. Our work goes in the opposite direction, focusing on the automation
of remote sensing systems that employ their own (possibly highly customized)
drones and ground infrastructure in an exclusive way. Also, both control and
data processing take place at the edge, making it possible for the system to
operate with full autonomy even when having poor connectivity with the cloud.
If needed, the proposed system can also work in the cloud, using a 5G link for
the communication with the drone, provided the latency and bandwidth are
sufficient for the application in question.

Our work has some common goals with the concept of autonomic comput-
ing [19]. The benefits of an abstract architectural approach for autonomic com-
puting systems are stressed in [25], where the authors motivate their model
inspired by the domain of robotics. Most work in this area of research focuses
on resource/service monitoring and provisioning in cloud environments so as to
maintain QoS and satisfy SLA requirements [15,17,30], while several self-* prop-
erties have also been studied in the context of flying ad-hoc networks [20,31].
In contrast, the approach proposed in this paper tackles the self-management
of drone-based remote sensing systems, by monitoring key parameters of system
operation and taking corrective or preventive actions as needed.

7 Conclusion

We have presented a complete architecture for edge-based remote sensing sys-
tems that rely on drones. The system is designed to support the full cycle of
operation in an automated way, without requiring good connectivity to the cloud
or any human intervention (except when serious, non-recoverable failures occur).
We have implemented all software components of the proposed architecture and
have tested their functionality using both a real drone and ground station as well
as a suitable simulation environment. Thanks to its modular design, the system
can be flexibly customized according to application requirements, in terms of
both the drone and the mission types/driver programs that will be used to sup-
port the desired sensing tasks. Also, data processing can be performed during
the execution or after the completion of a sensing task, as needed.

As a next step, we intend to investigate the support of sensing tasks via
multiple drones in more depth. Apart from writing suitable driver programs
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that perform the necessary coordination, which is already feasible in our current
prototype, an additional challenge is to address the management of multiple
hangars and battery chargers as well as to perform a dynamic replanning when
a drone, hangar or battery charger fails so that the task is performed by the
drones that remain fully operational.
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