
Passive Electromagnetic Field Positioning
Method Based on BP Neural Network

in Underwater 3-D Space

Chaoyi Wang1, Yidong Xu1,3(B), Junwei Qi1, Wenjing Shang1, Mingxin Liu1,
and Wenjian Chen2

1 College of Information and Communication Engineering, Harbin Engineering
University, Harbin 150001, China

xuyidong@hrbeu.edu.cn
2 College of Underwater Acoustic Engineering, Harbin Engineering University,

Harbin 150001, China
3 Yantai Research Institute of Harbin Engineering University, Yantai 264000, China

Abstract. This paper studies the positioning method of combining the
passive electric field positioning and passive magnetic field positioning
under three-dimensional (3-D) water. This technology can be applied
to underwater submarine positioning, underwater leakage power supply
positioning, underwater rescue and other occasions. We collect the sam-
ples data by electromagnetic sensors array, and recover the location of
the targets. After the data preprocessing process includes data normal-
ization, de-redundancy process, and generalization process, we use Back
Propagation (BP) neural networks to build electric field and magnetic
field distribution models of electric dipole source. Finally, we enter the
test data to obtain the target position in the well-trained positioning
model. We take the Euclidean distance between the ideal position and
the model output target position as an absolute error. The results show
that this method can effectively improve the accuracy of underwater
target positioning and anti-interference ability of the training model,
and the nonlinear function model trained by the neural network can be
applied to the complex and changeable underwater environment.
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1 Introduction

With the development and enrichment of underwater electric and magnetic sen-
sor technology, the acquisition accuracy and acquisition speed of the sensors have
been greatly improved, and the conditions of data acquisition device can gradu-
ally meet the requirements of theoretical experiments. Research on passive posi-
tioning of underwater targets has also attracted more and more attention from
scientific researchers [1]. This technology is widely used in underwater rescue,
underwater exploration and maintenance of flooded urban facilities. In practical
applications, small data fluctuations may introduce huge errors, especially in
the complex and changeable underwater environment. The adaptive weakening
of underwater interference and nonlinear multi-parameter inversion methods are
the main difficulties in this research direction.

Passive electric field positioning technology set electric dipole sources as tar-
gets that emits an electromagnetic field in an infinite homogeneous medium [2,3].
We studies the nonlinear mapping relationship between the position of the elec-
tric dipole source and electromagnetic field that it emits. Magnetic field data
positioning has stronger anti-interference ability, but the magnetic field data
is particularly weak and requires higher accuracy of the magnetic sensor [4–6].
Therefore, there is less research on passive magnetic field positioning technology.

We mainly study the method of combining passive electric field positioning and
passive magnetic field positioning based on BP neural network. BP artificial neural
network is suitable for training nonlinear mapping models. Our innovation lies in
the use of electromagnetic field data for positioning of targets, and the use of neu-
ral networks to deal with nonlinear inversion problems. It uses forward model for
data preprocessing, automatically configures weighting factors, and combines elec-
tric field data and magnetic field data to co-locate targets. Judging the weighting
factors of training samples by interference strength, on one hand, can improve the
adaptive adjustment ability of training parameters, and then improve the system’s
anti-interference ability in the complex and changeable underwater environment.
On another hand, it can remove useless parameter information, reduce the bur-
den of neural network training, and greatly improve training efficiency. Therefore,
positioning models trained by BP neural network obtain anti-jamming capabilities
and rapid positioning capabilities based on high accuracy.

2 Forward Model Derived from Theory

In an infinite uniform conductive medium, there is a nonlinear mapping relation-
ship between the position r of the electric dipole source and the electromagnetic
field data it emits. The electric potential difference U distribution model and
the magnetic field intensity H distribution model derived from r are defined
as forward models [7]. On the contrary, the process of obtaining r from U and
H is defined as the inversion process, that is, the positioning process. The for-
ward model provides reference samples for building a neural network model in
the inversion process. It can extract effective information, remove redundant
samples, and reduce computing space.
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As shown in Fig. 1, in an infinite uniform conductive medium, we set the
electric dipole source at the origin of the spherical coordinate system, the electric
dipole moment is p, the electric field intensity E at point Q is (Er, Eϕ, Eθ), and
the magnetic field intensity H at point Q is (Hr,Hϕ,Hθ). Suppose the conductive
medium is fresh water, the electric conductivity is σ, and the permittivity is ε.
The electric dipole source radiates a DC signal, and the angular frequency of the
signal is ω = 0.

Fig. 1. Electric field distribution diagram of electric dipole source.

When σ >> ωε, under the spherical coordinate system, the radiant electro-
magnetic field of the DC electric dipole source is satisfied with the equation [8]:

Er =
|p| cos θ

2πσr3
(1)

Eθ =
|p| sin θ

2πσr3
(2)

Hϕ =
|p| sin θ

4πr2
(3)

Where r = (x, y, z), r = |r|. Multiply (Er, Eϕ, Eθ) and (Hr,Hϕ,Hθ) by the
transition matrix. The transition matrix transitions from the spherical coordi-
nate system to the rectangular coordinate system. Transform (Er, Eϕ, Eθ) and
(Hr,Hϕ,Hθ) into the expression of rectangular coordinate system:

Ex =
3 |p| zx

4πσr5
(4)

Ey =
3 |p| zy

4πσr5
(5)
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Ez =
3 |p| z2
4πσr5

− p
4πσr3 |p| (6)

Hx =
− |p| y
4πr3

(7)

Hy =
|p|x
4πr3

(8)

E can be deduced as:

E =
3(p • r)r − r2p

4πσr5
(9)

In the actual measurement process, the data measured by the electric field
sensor is the electric potential difference U . We need to transform E into U .
Therefore, in an infinite uniform underwater environment, the forward model
from the position information (r and p) to the electromagnetic field data (U
and H) is:

U =
p • r
4πσr3

(10)

H = (Hx,Hy, 0) (11)

3 Data Preprocessing

3.1 Acquisition of Training Samples

We place 24 receiving array elements in an underwater 3-D space with a range
of 100m × 100m × 30m to form a sensor array [9]. Set the reference electrode
of the electric sensors at the center of the array. Each array element is equipped
with an electric sensor and a magnetic sensor to receive U and H respectively. In
addition, we have arranged media that produce both electric and magnetic field
disturbances as the sources of interference underwater. Because the conductivity
and magnetic permeability of the media are different in strength, the disturbances
caused by the media are biased magnetic field or biased electric field.

In an underwater environment where the signal-to-noise ratio (SNR) is 40 dB,
after collecting N samples and normalizing them, the electric field training set
EN and the magnetic field training set MN can be obtained. Where EN contains
sample set R3×N (Electric dipole position), P3×N (electric dipole moment) and
label set U24×N, MN contains sample set R3×N, P3×N and label set H24×N.

3.2 De-redundancy and Generalization of Training Set

De-redundancy. The de-redundancy process can remove samples with large
data deviations caused by the interferences in the measured area. We substitute
R3×N and P3×N into the forward model of formulas (10), (11) to obtain the
theoretical electromagnetic field data sets (Uo

24×N and Ho
24×N). Next, we find

the Euclidean distance DN of the column vectors between the theoretical set
Uo

24×N and the measurement set U24×N, and calculate the average value D̄ of
DN. In this experiment, we removed the samples whose Euclidean distance is
greater than D̄ to obtain the new training set ES after de-redundancy. In the
same way, after removing the magnetic samples with large interference, the new
training set MT of the passive magnetic field positioning model is obtained.
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Generalization. The process of de-redundancy may lead to non-uniform distri-
bution of samples in the positioning area, which is manifested in the centralized
distribution of data or missing data in individual areas. We solve such problems
through a generalization process. The steps of generalization processing are as
follows:

We cut the positioning area (100m×100m×30m) into 25 sub-areas (20m×
20m × 30m) through refinement processing. The number of samples in the i-
th sub-area is defined as Mi, the maximum Mi in the 25 sub-areas is taken as
Mmax, and the minimum Mi is taken as Mmin. We take the decision threshold
as a = (Mmax + Mmin)/2, and set the step size to b = (Mmax − Mmin)/2.

The algorithm is used to traverse the samples in each sub-area. When judging
Mi > a, the training set samples in the i-th sub-area are sorted in ascending
order, according to the Euclidean distance between the theoretical data and the
measured data. The first b samples in this sub-area are removed to update the
training set in this sub-area. When Mi > b, keep the training set of this sub-area
unchanged.

After generalization, the result shows that ES is updated to EK, and the
number of samples is K. EK includes sample set U24×K, label set R3×K, P3×K.
We update MT to ML through the same steps, and the number of samples is
L. ML is divided into sample set H24×L and label set R3×L, P3×L for training
BP neural networks.

3.3 Weight Factors

The weight factors represent the ratio of the effective training data to the total
training data in a certain sub-area. In the data sets EK and ML, the number of
updated samples in the i-th sub-area is Ki and Li. We define the weight factor of
EK in the i-th sub-area as αi = Ki/(Ki + Li), and the weight factor of ML in the
i-th sub-area as βi = Ki/(Ki + Li). The conductivity and magnetic permeability
of the interference source are different in strength. The weight factors can judge
the credibility of the electric field model [10,11] and the magnetic field model
by proportion of the effective samples in the interference area, so as to allocate
the proportion of the outputs from the electric field model and the magnetic
field model, improve the accuracy and anti-interference ability of the positioning
model.

4 Inversion Model Trained by BP Neural Network

Research shows that the training accuracy of BP neural network is not greatly
affected by the number of layers. As long as the number of neurons in the hidden
layer is large enough, a single hidden layer can also approximate a nonlinear
function model with finite discontinuities in arbitrary accuracy. Therefore, we
choose a single hidden layer BP neural network to train the passive electric field
model and passive magnetic field positioning model.
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4.1 Passive Electric Field Positioning Model (E-model) and Passive
Magnetic Field Positioning Model (H-model)

The BP neural network for training E-model and H-model has three layers,
namely the input layer, the hidden layer and the output layer (Fig. 2).

Input layer Hidden layer Output layer

E, M r, P

neuron

Fig. 2. The structure of BP neural network.

For E-model, characteristic parameters’ number of the input layer is 24, and
the number of samples is K. The number of neurons in the hidden layer is set to
240. characteristic parameters’ number of the output layer is 6, and the number
of samples is K. Since the data range of the feature parameter contains negative
numbers, we choose the tansig function as the transfer function of the hidden
layer. We select the adaptive gradient descent method (Levenberg-Marquardt
algorithm) as the training method. The algorithm is characterized by a large
memory requirement, a faster convergence speed. It is suitable for a network
structure with many neurons and few layers. The loss function chooses the Mean
Square Error function (MSE), because MSE is more suitable for neural networks
for nonlinear fitting.

As for H-model, there are 24 characteristic parameters and L samples in the
input layer. From formulas (7) and (8), P3×L only affects the linear relationship
during training, and what we invert is the non-linear mapping relationship. After
normalization, P3×L becomes invalid parameters. Due to the reduction of the
valid characteristic parameters of the output layer and the reduction of the
complexity of the network, the number of neurons in the hidden layer is taken
as 200. The training function is the Levenberg-Marquardt algorithm, the hidden
layer transfer function is the tansig function, and the loss function is MSE.

Figure 3 shows the convergence process of the E-model and H-model, the
abscissa is the number of iterations, and the ordinate is MSE value between
the positioning of the models and the label set. We observe that models are
approaching the ideal models from the tenth iteration, and the convergence speed
of the neural network fitting process is very rapid. In the positioning area with
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Fig. 3. Convergence processes of E-model and H-model.

a volume of 3000 m3, MSE eventually tends to 1.3 and 3.7. All of these indicate
that models trained by BP neural network has nicer precision and robustness.

4.2 Positioning Method Combining E-Model and H-Model

We measure the electric field data and magnetic field data generated by the elec-
tric dipole source at rtest [12], and perform normalization processing to obtain
Utest and Htest. Input Utest and Htest into E-model and H-model to find the
positioning (rE and rH).

Configure the weight factors vectors (α and β) of the E-model and the H-
model based on the strength of the interference intensity of EK and ML in all
sub-areas. The final positioning output of the positioning model(E-H-model)
that combines the E-model and the H-model is rEH = α • rE+β • rH.

Figure 4 shows a flowchart of the E-H-model positioning method.
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Fig. 4. Overall flow of the E-H-model positioning method.
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5 Simulation

We use the three inversion models to positioning scattered targets distributed in
the plane (z = 15), and visualize the positioning results. As shown in the Fig. 5, we
set the a interference with strong magnetic disturbance and weak electrical dis-
turbance at the coordinates (30, 10, 15). Another interference source with strong
electric disturbance and weak magnetic disturbance is placed at the coordinate
(−30, 10, 15).

E-model, H-model and E-H-model respectively locate the plane (z = 15) in the
underwater environment of Fig. 5, and the positioning results are as Fig. 6, Fig. 7
and Fig. 8.

Fig. 5. Distribution of interference sources.
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Fig. 6. E-model positioning.
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Fig. 7. H-model positioning.
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Fig. 8. E-H-model positioning.
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In Fig. 6, Fig. 7 and Fig. 8, The axis of abscissa and ordinate indicates the
position of the targets in the z = 15 plane. The color map bar represents
Euclidean distance (absolute error) between model positioning and target’s loca-
tion.

The positioning error of E-model and H-model is kept within 1 m in the sub-
areas without interference. Which indicates that the positioning model trained
by the BP neural network has high positioning accuracy. E-H-model reduces
the positioning error of E-model in the sub-areas (x ∈ (−10,−40), y ∈ (0, 20)),
reduces the positioning error of H-model in the sub-areas (x ∈ (10, 40), y ∈
(−10, 20)), and reduces the influence of interference in all sub-areas. These results
show that the E-H-model maintains high-precision positioning ability in the sub-
areas with greater interference, and improves the anti-interference ability.

We fix the abscissa, and find the Root Mean Square Error (RMSE) of the
Euclidean distance values of the column coordinates. The RMSE curves of the
E-H-model, E-model, and H-model is drawn in Fig. 9.
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Fig. 9. Comparison of RMSE.

The larger the RMSE value, the larger the positioning error of the abscissa
[13,14]. Obviously, the E-model curve is affected by electrical interference (x =
−30), the H-model curve is affected by magnetic interference (x = 30), while the
E-H-model curve minimizes these two interferences.
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6 Conclusion

This paper applies BP neural network to train E-model and H-model, and pro-
poses a passive electromagnetic field positioning method in underwater 3-D
space. This method uses E-model and H-model to ensure positioning accuracy,
and adaptively reduces the training samples with larger interference through
weight factors. Experiments show that this method overcomes the problem that
the E-model and H-model are greatly affected by interference, and reduces the
error caused by underwater interference. This method can quickly fit underwater
scenes and combine theoretical models with real scenes. It means that passive
electromagnetic field positioning methods may no longer be limited to theoret-
ical models. Applying this technology to real scenes is the main directions for
deep exploration and improvement.
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