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Abstract. In this paper, a branching convolutional encoder (BCE)-based
spatio-spectral hyperspectral image dimensionality reduction model is pre-
sented. The architecture consists of a pointwise separable convolution to extract
spectral features, and a two-dimensional convolution network to filter spatial
features. Later, these two features are fused and fed into a decoder network
which attempts to reconstruct the original image. This network is trained in a
similar fashion to autoencoders, using a loss function to track the similarity
between the original and the reconstructed image. Classification and change
detection are important applications of hyperspectral images. The branching
convolutional encoder is used together with classification and change detection
models to demonstrate its feature representation performance – since the raw
image has redundant features and poor interclass separability. The performance
of the proposed dimensionality reduction model is compared with a spatial
convolutional encoder and a densely-connected encoder. Classification accuracy
reaches over 90% on all the datasets which out-performs the comparative
methods. Moreover, the branching encoder’s representation power is observed
with the change detection model as the rate of accuracy reaches over 99% for the
Hermiston City-data. This research demonstrably presents the success of a
branching convolutional dimensionality encoder for classification and change
detection applications.
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1 Introduction

Multiclass classification and change detection are important applications of hyper-
spectral images used to track changes in a specified geographic location [1, 2]. Mul-
titemporal hyperspectral images are used to track changes in precision agriculture,
mineral mining and exploration, security surveillance for military applications, moni-
toring environment for hazard and natural disasters, etc. [3–5]. Considering the hun-
dreds of bands and redundant information available in HSIs, it is quite evident that
these images are useful for spectral analysis to track changes in a desired area in more
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detail. However, this advantage also introduces computational and algorithmic com-
plexity. Performing computation on high dimensional data is resource intensive and
takes a long time. This complexity introduced by high dimensional data is called “the
curse of dimensionality” [6–9].

This problem has been researched for several decades years now with different
techniques ranging from complex feature extractors and change detection algorithms,
going through machine learning algorithms in the 2000s and most recently with deep
learning architectures. Feature extraction and selection algorithms were employed to
reduce the dimension of the original hyperspectral data making the output easy to
manipulate for further applications [10]. However, most feature extraction algorithms
do not consider both the spatial and spectral information available in HSIs when
forming a feature representation.

In this research efficient ways of autoencoder based dimensionality reduction
(DR) techniques were explored that involve a deep spatio-spectral feature extractor that
creates an efficient latent feature representation for classification and change detection
applications. The efficiency of the feature extractor is tested via different classification
algorithms. After this has been demonstrated the feature extractor is used with the
change detection algorithm. These two are trained in a coupled manner and the
effectiveness of the entire framework is tested by different performance metrics.
Finally, the framework’s performance is compared with existing algorithms to prove its
effectiveness of existing techniques.

The rest of the paper is organized as follows. Section 2 introduces previous
dimensionality reductions approaches used and the most recent deep learning-based
feature extraction techniques for the classification and change detection application.
Section 3 presents the detailed of the branching convolutional encoder model archi-
tecture along with the classifier and change detection models used to test the DR
module’s effectiveness. Section 4 includes the details of data preparation and training.
It also consists of training results and comparison with other comparative methods.
Section 5 concludes the paper and makes recommendations for future works.

2 Dimensionality Reduction for Hyperspectral Images

Dimensionality reduction is the change of information from a high-dimensional space
into a low-dimensional space with the goal that the low-dimensional portrayal holds
some important properties of the first content, preferably near its natural measurement.
Popular dimensionality reduction techniques are commonly divided into linear and
nonlinear approaches. Approaches can also be divided into feature selection and feature
extraction based on how features are treated. Dimensionality reduction can be utilized
for noise reduction, information perception, bunch investigation, or as a transitional
step to facilitate different tasks [6, 7].
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Lloyd Windrim et al. propose a stacked autoencoder based unsupervised feature
learning for Dimensionality reduction [11]. The feature learning algorithm projects
feature representation in to a latent space so as to reduce the dimension of the original
data to be used for classification application. Moreover, they integrated an information
theoretic measure based spectral information divergence metric to make the recon-
structed output spectrally similar with the original input. Also, they used Cosine Angle
Similarity (CSA) measure to train the autoencoder’s latent representation efficient.
However, their method does not consider the spatial aspect of the representation as they
used a one-dimensional (1D) stacked autoencoder which learns to reconstruct the
original spectra.

Ayma et al. propose an orthogonal autoencoder dimensionality reduction approach
for classification of hyperspectral images [12]. They introduce an orthogonal recon-
struction error which is defined as the sum of mean squared error between the original
and reconstructed output, and the mean squared error between the latent variable
product and an identity matrix I. The orthogonality between components in the latent
space is ensured by the loss function and the training optimizer so that the orthogo-
nality of latent components improves classification performance. They tested their
models on the Pavia University, Kennedy Space Center, and Botwana hyperspectral
images. However, one obvious draw back in this method is that it does not consider
spatial and spatial components during the feature representation.

Filtering approach by using 1D pooling has been proposed by Paul and Chaki to
reduce/select important spectral features while reducing the dimension of the original
image [13]. The one benefit of this method is that it clearly reduces the computation
time taken while reducing the dimension and is less complex in its computation.
However, this technique is also in line with the 1D techniques that focus on spectral
information primarily, and require reshaping the original input to two-dimensional (2D)
pixel vector array which jumbles spatial information along the process.

The alternative candidates to 1D autoencoders are convolutional autoencoder that
capture spatial information from the hundreds of channels present in the image [14].
Mei et al. propose a three-dimensional (3D) convolutional autoencoder spatial-spectral
feature learning for hyperspectral image classification application [15]. Elementwise
3D convolutions, 3D pooling and batch normalization have been included in this work.
The encoder is trained together with a decoder counter-part that attempts to reconstruct
the original input from the spatial-spectral feature representation. They tested the
model’s performance on a support vector machine (SVM) classifier to test the feature
representation performance allowing the components to be easily classified.

There is a clear progression from 1D multilayer perceptron autoencoder techniques
to higher dimensional convolutional autoencoder to train encoder to create latent
representation learning either from hundreds of bands spatially, or from both the spatial
and spectral representation. However, separate treatment of the spatial and spectral
components is yet to be seen as spectral relationships, spatial relationships and spatio-
spectral relationships need to successively considered when designing feature
extractor-based dimensionality reduction techniques. BCE aims to overcome this
shortage by incorporating a spatio-spectral dimensionality reduction framework.
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3 Branching Convolutional Autoencoder

The numerous literatures surveyed in the previous chapter show that most techniques
do not effectively combine spatial-spectral representation for dimensionality reduction.
This requires a combined dimensionality reduction architecture that integrates both the
spatial-spectral features. Branching Convolutional Encoder aims to alleviate this
problem by designing to separate convolutional encoder to represent the spatial and
spectral information from the original hyperspectral cube. The spectral encoder consists
of a point wise convolution that performs 1D convolutions with the pixel vectors which
correspond to the values present at a single pixel slice having hundreds of spectral
bands.

Since the original cube is in reflectance value corresponding to each and every
spectrum, the pixel values need to undergo normalization to avoid gradient explosion
during training. After normalization, patches of the original cube will be taken to make
the dataset required to train the network. These patches will be later fed in to the
encoder section of the autoencoder. The encoder section of branching autoencoder
performs separate convolutions on the patches through a spectral and a spatial encoders
sub-section.

Later, the output of these encoders is fused together to form the spatial-spectral
representation. The output of these feature space is fed into a convolutional decoder
that attempts to reconstruct the original input. This output will be compared on with the
original patch to compare whether the reconstructed output is similar to the original or
not. Training of the autoencoder took place until the reconstruction closely resembled
the original. Finally, the encoder section was taken out and used as a feature extractor
for classification and change detection application.

The 1D convolution operation convolves a kernel k having dimensions (1 � B),
where B is the number of channels/bands. This kernel is convolved with each and every
pixel vector (slice) of the hyperspectral cube give a 2D output of shape (M � N) where
M and N the number of row and column pixel count. 2D-convolution (Conv2D) layer
of the Keras library initializes numerous kernels of different initializations where after
each 1D kernel has been convolved with the input the output shape becomes (M, N, K).
K adjusts the output dimension of the convolution without affecting M and N.

Moving on to the spatial encoder section, 2D convolution is performed to capture
spatial information and reduce the size of the output whose depth is determined by the
number of kernels present. One convolution operation with a single kernel amongst the
total count K’ gives output shape specified by the number of strides, zero padding and
kernel size. Differing kernel size are used to effectively capture the spatial features
present on different neighborhood size. Stacking up these convolutions also stacks up
the feature representations where at a certain point the output of the last layers contains
some information about each and every pixel vector before it. This enhances spatial
feature representation on an integrated 2D level (Fig. 1).
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The third step is fusing the spatial and spectral representation via a concatenation
step. The concatenated output contains both the spectral and spatial features without
any significant omission. This concatenated spatio-spectral representation goes to the
decoder which consists of deconvolutions (transposed convolution) and up sampling
steps that attempt to reconstruct the original dimensions input the encoder network. The
spatial dimensions are controlled by the kernel size, stride, and zero paddings, while the
depth is maintained by the number of pixels in each ConvTranspose2D layer. Using 1D
and 2D convolution will reduce the number of operations done in 3D densely con-
nected models. Training of the encoder-decoder architecture is controlled by a loss
function that computes error between the original and the reconstructed output.

X11 X12 X13 . . . X1N

X21 X22 X23 . . . X2N

X31 X32 X33 . . . X3N

..

. ..
. ..

. ..
. ..

.
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3
77777775
M�N

ð1Þ

Unfolding of the matrix above reveals the vectorized representation and the pixel
elements on the B bands available in the image. Equation (1) gives the flattened
representation of the input where each and every element in the above matrix is
expanded to reveal the corresponding pixel elements.

Fig. 1. Branching convolutional autoencoder architecture
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Pointwise convolution between the elements and kernel gives the out where each
point in the matrix is the convolution between the kernel and the pixel vectors at the
corresponding points. The kernel width has to be set equal to the number of the bands
as in Eq. (3) for the first step so that the output of the convolution becomes a single
matrix as shown in Eq. 4.

K1 ¼ K1
1 K2

1 K3
1 � � � KB

1

� �
ðI�BÞ ð3Þ

Equation (4) demonstrates the convolution between the kernel vectors and the pixel
vectors.

K1 � X ¼

k1 � XT
11

k1 � XT
12

..

.

k1 � XT
MN

2
66664

3
77775

ð4Þ

Where, the convolution between the several kernels and the input becomes:

K1 � XT
11 ¼ k11 � XT

11 þ k21 � X2
11 þ � � � þ kB1 � XB

11

� �� 1
B

ð5Þ

The final depth of the convolution step is determined by the number of kernels
specified which successively drops in equal number of steps. Therefore, the output has
the same shape as the input show in Eq. (6) but different depth. Later the convolution
outputs will be multiplied by weights and added with the biases specified.

C1 ¼

k1 � X11 k1 � X12 k1 � X13 . . . k1 � X1N

k1 � X21 k1 � X22 k1 � X23 . . . k1 � X2N
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..

. ..
. ..

. ..
. ..

.

k1 � XM1 k1 � XM2 k1 � XM3 � � � k1 � XMN

2
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3
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ð6Þ

3.1 Densely-Connected Classifier

The conventional setup of classifiers used in image classification networks has been
used to design the classifier scheme. Once the dimensionality reduction model has been
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trained on the available data it will be integrated with the densely connected layers that
consist of SoftMax layer that outputs class probabilities on the given it input classifying
it to the number of classes available for that dataset. Cross categorical entropy has been
used to train this model and update the weights of the network. This model will be used
to test performance of BCE and the comparative dimensionality reduction techniques
(Densely connected network and a 2D convolutional autoencoder). The diagrammatic
representation of the architecture of this network is given below.

3.2 Adapted Convolutional LSTM-Based Change Detection Architecture

The convolutional Long Short-term Memory (LSTM) architecture proposed by Ahram
Song et al. is used for determining changes between two multitemporal hyperspectral
images [16]. This architecture is trained using paired patches from two multitemporal
images and the resulting output is fed in to a densely connected multiclass classification
network to plot the multiclass change detection map that not only gives the changed
areas but also the classes to which each changed pixel belongs to. A conventional
Convolutional LSTM (ConvLSTM) block is used here extract temporal information
between the bitemporal images. The cascaded ConvLSTM layers extract information
from a time distributed that simultaneously applies a 2D convolutional operation and
extracts features which might give information about changes in the bitemporal images.
Several components make up the ConvLSTM block such as sigmoid activation rep-
resented by r, tanh activation block, h-blocks that represent hidden layer input from
previous slices, forget gates represented by f, pointwise addition and multiplication
denoted by circled plus and asterisk sign, etc. (Fig. 2).

Fig. 2. Branching Convolutional Encoder concatenated with a densely connected classifier (e.g.,
for the Pavia University dataset)
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The architecture given on Fig. 3 is integrated with the dimensionality reduction
module given above and trained in an end-to-end manner to generate the multiclass
change detection map for each patch. Two images from the same spatial slice will be
fed in to the dimensionality reduction model and fed to the change detection model, so
that change detection model learns from the feature representations of the change
detection model. Finally, the densely connected layer at the end of the ConvLSTM
model outputs a feature classification map that contains pixels where changes took
place and what kind of images took place in those pixels.

4 Implementation Details and Results

In this section the datasets used, the details of implementation step, and the results of
the training are provided.

4.1 Branching Convolutional Autoencoder Implementation Details

First the Branching Convolutional Autoencoder (BCAE) is implemented with
branching encoders whose outputs are reshaped to match each other and fused together
to form the latent representation. Figure 4 below shows the implementation level view
of the BCAE model. The decoder consists of an ascending combination of filter size as
it is the convention to use varying kernel size in most papers that use convolutional
neural network architecture. Moreover, the exact detail showing how the two encoders
are implemented in TensorFlow 2.x is described on Table 1 and Table 2 respectively.
Table 1 shows that the spectral encoder is composed of convolution layers performing
point-wise convolutions on the input. While the spatial encoder has the regular 2D
convolution of descending kernel sizes.

4.2 Datasets

Four popular datasets were used first for training the autoencoder for each corresponding
dataset, and then used later for the classification task since they have a multiclass

Fig. 3. BCE concatenated with a change detection model
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annotation available. Pavia Center Scene dataset1 has 102 spectral bands, and each raster
is composed of 1096 * 715 pixels. Pavia Center Scene dataset has nine classes with one
extra class consisting of unclassified pixels. This image is used for demonstrating the
representation power of the hyperspectral images and later for the classification task.
The Pavia University dataset is closely related to the Pavia Center dataset as they were
both collected during the same flight. Compared with the Pavia center it has a smaller
spatial dimension (610 � 340) but has one extra channel than the Pavia Center dataset.
Both of them have the same number of classes and class descriptions.

The Salinas Valley scene consists of 16 classes plus one extra unclassified class
labelled as zero. The surface reflectance values are available over a grid of 517 � 217
pixels. This dataset is used for testing the feature representation power of the dimen-
sionality reduction models and for testing classification performance. This Kennedy
Space Center (KSC) image was captured in the year 1996. The KSC scene image band
has been reduced to 176 bands after the removal of water absorption bands. The
hyperspectral cube’s image is dark and hard to see due to the nature of the conditions
when the image was taken – this makes the reconstruction task challenging as the
contrast difference between the pixels is not sparse enough to differentiate. The Her-
miston city bitemporal images has 242 spectral channels each of which have a
390 � 200 dimension monochromatic images. The represents crop transition of dif-
ferent classes in Hermiston city where center pivot irrigation creates the circular pat-
terns in the image due to water supply.

Fig. 4. Implementation-level view of BCAE model (for the PaviaC dataset)

1 PaviaU, PaviaC, KSC, and Salinas Scene datasets will be found at http://www.ehu.eus/ccwintco/
index.php/Hyperspectral_Remote_Sensing_Scenes.
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4.3 Comparative Models

The encoder sections of the following two comparative autoencoder models were taken
as a feature extractor and used for classification and change detection. Their perfor-
mance was recorded and included below for comparison purpose.

4.3.1 Densely Connected Autoencoder
A densely connected autoencoder was designed and implemented as an autoencoder.
The input to the autoencoder is not flattened as with stacked autoencoders, but is the
raw patched hyperspectral image (e.g., 64 � 64 � 102 for the PaviaC Image). Later
the autoencoder outputs the reconstructed output at the end. In a manner similar to
BCAE the dimension at the feature space is consistent so that there is not any dis-
crepancy (e.g., 64 � 64 � 32 for the PaviaC image).

4.3.2 Convolutional Autoencoder
This is a plain convolutional autoencoder where the encoder section consists of max
pooling to reduce the size of the image, while the output has a series of interleaved up-
sampling layers combined with convolution layers. The dimension of the data at the
feature space is the same with the BCAE.

Table 1. TensorFlow implementation level summary for spectral encoder

Convolution
operation

Filter size No. of
filters

Padding
size

Stride
size

Input size Output size

Conv2D (1 � 1 � 102) 85 Zero Pad (1, 1) 64 � 64 � 102 64 � 64 � 85
Conv2D (1 � 1 � 85) 68 Zero Pad (1, 1) 64 � 64 � 85 64 � 64 � 68
Conv2D (1 � 1 � 68) 51 Zero Pad (1, 1) 64 � 64 � 68 64 � 64 � 51
Conv2D (1 � 1 � 51) 34 Zero Pad (1, 1) 64 � 64 � 51 64 � 64 � 34
Conv2D (1 � 1 � 34) 16 Zero Pad (1, 1) 64 � 64 � 34 64 � 64 � 16

Table 2. TensorFlow implementation level summary of the spatial encoder

Operation Filter size No. of
filters

Padding
size

Stride
size

Input size Output size

Conv2D (7 � 7 � 102) 16 Same (1, 1) 64 � 64 � 102 64 � 64 � 16
MaxPool2D (2 � 2) – Same (1, 1) 64 � 64 � 16 32 � 32 � 16
Conv2D (5 � 5 � 16) 64 Same (1, 1) 32 � 32 � 16 32 � 32 � 64
MaxPool2D (2 � 2) – Same (1, 1) 32 � 32 � 64 16 � 16 � 64
Conv2D (5 � 5 � 64) 112 Same (1, 1) 16 � 16 � 64 16 � 16 � 112
Conv2D (3 � 3 � 112) 160 Same (1, 1) 16 � 16 � 112 16 � 16 � 160
Conv2D (3 � 3 � 160) 208 Same (1, 1) 16 � 16 � 160 16 � 16 � 208
Conv2D (3 � 3 � 208) 256 Same (1, 1) 16 � 16 � 208 16 � 16 � 256
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4.4 Implementation Details

In order to use the encoder section of the three autoencoder models including the
BCAE the autoencoders first had to be trained until the loss between the original and
the reconstructed patches became very small. For the four images mentioned above the
original images were normalized and patched to form a dataset that can be used to train
the networks. Out of the four datasets 85% of the data was used to train the models and
15% to test the model performance. Once the autoencoders were trained their encoders
were sectioned out and integrated with the classification and change detection models.
The classification and change detection models were trained after being integrated with
the dimensionality reduction model (feature extractor). Optimal hyperparameters for
the BCAE and the other networks was determined using grid search. All the models
were trained on a computer having NVIDIA RTX 2070 Ti installed.

4.5 Evaluation Metrics

There are three clearly distinct tasks in this paper namely training the autoencoder
models for via reconstruction, training the classifier, and training the change detection
model. For the first task similarity metrics L1 and L2 losses were used to measure
whether the reconstructed image is similar to the original or not. Also, spectral simi-
larity measures Spectral Angle (SA) and Cosine of Spectral Angle (CSA) were used to
measure whether the reconstructed images are spectral consistent with their original
counter parts. Since the classification and the change detection models have a multi-
class map as their output Accuracy, Recall, Precision, and F1-Score are used to
measure their performance.

4.6 Experimental Results

Here the results of the three experiments mentioned above are provided with the
necessary visualizations.

4.6.1 Autoencoders Reconstruction Results
Each of the autoencoder models BCAE, Densely Connected Autoencoder (DCAE), and
Convolutional Autoencoder (CAE) were trained on the four datasets. Finally, they were
tested for their reconstruction ability on the four datasets using the similarity evaluation
metrics. Out the three models the BCAE has the smallest number of additional artifacts
on the reconstructed image, visually resembles the original input. Some significant
results to note are the densely connected autoencoder (DCAE) performs the worst on
the KSC dataset because of the narrow contrast in the image. Since the DCAE simply
performs linear activation and does not have any significant feature transformation, its
performance is the lowest. As for the CAE it has a good performance compared to the
DCAE, but there are noticeable additional artifacts (grid like and some blurring lines)
on the reconstructed image especially on the KSC dataset. The BCAE also has
noticeable artifacts on the KSC dataset, but has a better visual similarity to the original
than the other two (Fig. 5).
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Taking a closer look at the reconstruction task via the performance evaluation
metrics the BCAE reconstruction outputs have the overall small spatial (L1 and L2) and
spectral (SA and CSA) losses. However, there are cases where the BCAE losses are not
the smallest. This, nonetheless is better understood further by the classification and

DCAE 

Fig. 5. Reconstruction results for the three autoencoders using the datasets
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change detection metrics. The smallest results for each dataset are given in bold. With
the exception of two instances BCAE outperforms the others. Table 1 summarizes the
reconstruction results (Table 3).

4.6.2 Classification Results
Once the autoencoders finished their training, their encoders (Branching Convolutional
Encoder (BCE), Densely Connected Autoencoder (DCE), and Convolutional Encoder
(CE)) were sectioned out and used together with the classifier as a feature extractor.
Figure 6 below shows the classification map output for three datasets along with the
original ground truth map comparison. It can be seen from the image that the number of
artifacts present in BCE are smaller compared with DCE and CE. DCE results in the
lowest performance out of the three as it’s feature representation performance is the
lowest. Tabular summary given on Table 4 shows the overall performance of the
classifier network with respect to accuracy, recall, precision, and F1-score. With one
exception for the Salinas dataset where the CAE has the highest recall, BCAE out-
performs the rest with significant margin – which is a clear testament to its feature
representation power.

Table 3. Reconstruction performance evaluation for the three autoencoders

Dataset DR model Evaluation metrics
L1-metric L2-metric SA CSA

KSC CAE 0.00223 0.04434 1.56569 0.9949
DCAE 0.00274 0.04333 1.56571 0.9949
BCAE 0.00224 0.04433 1.56562 0.9948

PaviaC CAE 0.01549 0.02418 1.56113 0.9904
DCAE 0.01191 0.01817 1.56111 0.9904
BCAE 0.01083 0.01667 1.56107 0.9903

PaviaU CAE 0.01687 0.03106 1.56112 0.9903
DCAE 0.02116 0.03250 1.56113 0.9902
BCAE 0.01083 0.01667 1.56107 0.9903

Salinas CAE 0.01010 0.02351 1.56591 0.9951
DCAE 0.01245 0.03090 1.56590 0.9951
BCAE 0.00549 0.01008 1.56591 0.9951
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4.6.3 Change Detection Results
The three encoders were concatenated with the change detection network and their-
change detection map was compared for visual similarity and with the appropriate
performance metrics (accuracy, recall, precision, and F1-score). Figure 7 show the
bitemporal change detection map for the Hermiston city dataset and the results show
that BCE has the smallest extra artifacts and CE having the lowest performance in this
case. To get a better view a multiclass change detection map of the test patches is given
on Fig. 8. There it can be clearly seen that BCE is almost identical with the original
change map, while the others have some minor extra artifacts. BCE’s feature repre-
sentation is able to better represent the between class separability information in the
feature space.

Fig. 6. Classification results for the three encoders on the datasets
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A numerical analysis of the change detection performance is given on Table and
Figure. Also, a confusion matrix is given for the three models to better visuality the rate
of classification and misclassification. Table 5 summary shows that BCE significantly
outperforms the others on all measure with the exception of F1-Score where it ranks
close to the DCE.

Fig. 7. Change detection shape map for Hermiston city dataset

Table 4. Classification results summary via performance metrics

Data sets Performance evaluation metric Dimensionality
reduction models
CE DCE BCE

PaviaC (10 classes) Accuracy 0.36 0.88 0.93
Recall 0.66 0.44 0.69
Precision 0.67 0.45 0.75
F1-score 0.63 0.70 0.70

PaviaU (10 classes) Accuracy 0.92 0.83 0.94
Recall 0.82 0.59 0.87
Precision 0.80 0.69 0.88
F1-score 0.81 0.57 0.88

Salinas (17 classes) Accuracy 0.94 0.65 0.96
Recall 0.96 0.76 0.94
Precision 0.91 0.77 0.94
F1-score 0.93 0.70 0.94

Table 5. Change detection results via performance evaluation metrics

Dataset Models
CE DCE BCE

Hermiston City (Accuracy) 0.96804 0.98626 0.99372
Hermiston City (Recall) 0.61131 0.76273 0.87152
Hermiston City (Precision) 0.70575 0.78573 0.96203
Hermiston City (F1-Score) 0.79516 0.93854 0.88978
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A graphical representation on Fig. 10 also shows a better visual comparison of the
performance metrics (Fig. 9).

Fig. 8. Multiclass change detection map with extra artifacts highlighted

Fig. 9. Confusion matrix for the multiclass change detection map
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5 Conclusion

Hyperspectral image classification and change detection are important applications of
hyperspectral images for remote sensing and other fields. One of the main challenges
when performing either classification or change detection on hyperspectral images is
the high dimensional nature of the images due to the large number of spectral bands
present. Overall, the research was designed to explore other autoencoder techniques for
the reduction of hyperspectral images. Namely a convolutional autoencoder and a
densely connected autoencoder network have been selected as a comparative technique
to compare the proposed techniques performance.

The branching autoencoder network has a better reconstruction capacity as
demonstrated by the visual appearance of the reconstructed images and reconstruction
loss being the smallest out of the three. For the classification task the dimensionality
reduction models were integrated with a classifier to be trained in and to end manner.
Out of the three models the classification result using the BCE section had better visual
consistency and performance with different metrics (overall accuracy, precision, recall,
and F1-score). Finally, the change detection model was trained using the Hermiston
bitemporal images in supervised manner. The change map prediction showed that the
model integrated with the BCE has fewer artifacts and overlaps on the different classes
that the other two models.
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