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Abstract. Poor sitting habits have been identified as a risk factor to muscu-
loskeletal disorders and lower back pain especially on the elderly, disabled
people, and office workers. In the current computerized world, even while
involved in leisure or work activity, people tend to spend most of their days sitting
at computer desks. This can result in spinal pain and related problems. Therefore,
a means to remind people about their sitting habits and provide recommendations
to counterbalance, such as physical exercise, is important. Posture recognition for
seated postures have not received enough attention as most works focus on
standing postures. Wearable sensors, pressure or force sensors, videos and images
were used for posture recognition in the literature. The aim of this study is to build
Machine Learning models for classifying sitting posture of a person by analyzing
data collected from a chair platted with two 32 by 32 pressure sensors at its seat
and backrest. Models were built using five algorithms: Random Forest (RF),
Gaussian Naïve Bayes, Logistic Regression, Support Vector Machine and Deep
Neural Network (DNN). All the models are evaluated using KFold cross vali-
dation technique. This paper presents experiments conducted using the two
separate datasets, controlled and realistic, and discusses results achieved at
classifying six sitting postures. Average classification accuracies of 98% and 97%
were achieved on the controlled and realistic datasets, respectively.

Keywords: Sitting posture � Smart chair � Pressure sensor � Deep neural
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1 Introduction

Many people spend a large portion of their daily time, sitting in an office chair, lounge
chair, car seat or on wheelchairs. Due to this reason, seat comfort has gained particular
attention for nursing homes, military, workplace, and assistive technology applications.
Sore muscles, heavy legs, uneven pressure, stiffness, restlessness, fatigue, and pain was
considered as symptoms which are caused due to seating discomfort in the office
environment [1–3].
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Everyone needs to be more active but at the same time they also wanted to spend
less time sitting down. A person in the developed world who primarily works using a
computer could reasonably sit for up to 15 h a day [4]. Other studies also showed that
some older adults (aged 65 and over) spend 10 h or more each day sitting or lying
down, making them the most sedentary population group. All of this sitting comes with
significant health costs, both from inactivity and from poor posture.

Long periods of sitting have been linked to obesity, cardiovascular disease and
premature mortality. Although there is also evidence that these adverse effects can be
mitigated by short standing breaks [5, 6]. Poor sitting posture has been identified as a
risk factor for musculoskeletal disorders [7], and particularly for lower back pain.
Musculoskeletal disorders can cause chronic pain in the limbs, neck and back. In
general, this shows us that postural imbalance has a great impact on the health of
individuals by causing different diseases. Specially, senior citizens (older adults) and
people with disabilities are impacted with this. So, finding a solution to improve
postural imbalance of an individual is the key for achieving a healthy and active life. As
a result, the aim of this study is also to focus on finding ways to prevent or treat the
postural distortions that has a greater impact on the individuals’ health and daily
activities.

This paper is structured into five sections. Section 2 presents related works found in
the literature and the research gap that we worked on in this paper. Our proposed
methodology is discussed in Sect. 3. Experiment results are presented in Sect. 4.
Finally, conclusion of our work and recommendations for future work are presented in
Sect. 5.

2 Related Work

A study by [8] used 19 pressure sensors to identify sitting postures. This study used an
approximation algorithm for a near-optimal sensor placement. The researchers used a
dataset which contains pressure data for ten postures, collected from 52 participants. In
this study the researchers achieved an accuracy of 82%. Another research by Kazuhiro
et al. [9] used a pressure sensor seat on a chair for identifying sitting postures. In their
experiments, [9] classified nine postures, including leaning forward/backward/right/left
and legs crossed. In this study, they obtained a classification accuracy of 98.9% when
the sitting person was known and 93.9% when the person was not known. A study by
[10] also designed a personalized smart chair system to recognize sitting behaviors. The
system can receive surface pressure data from the designed sensor and provide feed-
back for guiding the user towards proper sitting postures. They used a liquid state
machine and a Logistic Regression (LR) classifier to construct a spiking neural network
for classifying 15 sitting postures. The experimental results consisting of 15 sitting
postures from 19 participants show that a prediction precision of 88.52%. Yong et al.
developed a system for classifying sitting postures for children using CNN, Naïve
Bayes, Decision Tree (DT), Multinomial Logistic Regression (MLR), Neural Network
(NN), and Support Vector Machine (SVM) machine learning algorithms [11]. Ten
children participated in this research and achieved an accuracy of 95.3% using CNN.
Another researcher [12] proposed a system that uses a specialized Arduino-based chair
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to predict and analyze the sitting posture of the user and provides appropriate videos to
help them correct their posture by analyzing the user statistics on their overall posture
data. They used deep CNNs and LBCNet (Lower-Balanced Check Network).

A research conducted by Griffiths et al. [13], in a laboratory study with 18 par-
ticipants, evaluated a range of common sitting positions to determine when heart rate
and respiratory rate detection was possible and evaluate the accuracy of the detected
rate. Griffiths et al. employ conductive fabric on the chair’s armrests to sense heart rate
and pressure sensors on the back of the chair for sensing respiratory rate. Arnrich et al.
used detected chair information for understanding stress level of individuals during
office work [14]. A collective of 33 subjects were involved while a set of physiological
signals was collected. In [14], Self-Organized Map (SOM) and XY-fused Kohonen
Network were used and a classification accuracy of 73.75% achieved for discriminating
stress from cognitive load. Another research by [15] used sitting postures to identify
emotion expressions. The sitting postures have the semantic factors: “arousal”,
“pleasantness”, and “dominance”, so emotion expressions of the sitting postures are
like those of the facial expressions [15].

Our proposed approach differs from the existing literature in two main aspects:
(1) most of the above works focused their study on office workers but our study, in
addition to office workers, targets older people who spend much of their time at home;
(2) we employ different algorithms for modeling our posture classifier using several
pressure sensors both at the seat and backrest of the chair (32 � 32). Furthermore, in
addition to the traditional techniques, we also implemented Deep Neural Network
(DNN) algorithm for building predictive models. In the current computerized world,
even while involved in leisure or work activity, people tend to spend most of their daily
life sitting at computer desks. Therefore, a means to remind people about their sitting
habits and provide recommendations that can counterbalance, such as physical exer-
cise, is important. In this work, we propose to identify six sitting postures, which are
back, empty, left, right, front and still. An identified sitting posture could potentially be
used by an end-user or researcher towards putting solutions to bad sitting posture
habits.

3 Proposed Method

3.1 Data Collection

In this study, pressure sensors were used for collecting the pressure distribution data
from a sensor plated chair. The pressure mat was built by members of the Micro
Electro-Mechanical-Systems (MEMS) unit of Fondazione Bruno Kessler (FBK) re-
search institute. The dataset was collected at the Intelligent Interfaces and Interaction
(I3) research unit of FBK. These mats have a 32 by 32 pressure sensors, which are
placed at the seat (bottom) and backrest of the chair. These 64 sensors cover the seat
and backrest body of the chair and are able to detect every pressure which is placed on
it. In this study, we have tried to investigate whether it is possible to predict sitting
postures using the collected information from the pressure sensors. In order to collect
both the controlled and realistic datasets, we involved a total of 50 participants, 11 and
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39 individuals for each respectively. In the controlled dataset collection, participants
were told what positions to hold in a controlled lab setting. Similarly, the realistic
dataset were collected in a controlled lab environment by employing a wizard Oz
method where participants perform activities to change a television channel by simply
moving/changing their body position (moving right corresponds to channel+, moving
left for channel-, moving forward for channel page up and moving backward for
channel page down). The channels of the television were changed when the button
(corresponding to the body movement) was clicked.

3.2 Dataset Description

A total of 1980 and 4875 data examples were collected, from two set of participants,
for the controlled and realistic datasets, respectively. The controlled dataset was col-
lected from 11 individuals who were told to hold a certain posture for 15 s. For every
sitting posture, including empty and still positions, data were recorded for the 32 sensor
values in every half a second. So, we have 30 snapshots of sensor values. For the
realistic dataset collection, we only used five sitting postures excluding the empty
posture class. From a total of 39 participants, 25 examples were recorded for each of
the five postures resulting in a total of 125 data examples in each participant’s file. The
dataset was collected within an interval of 0.75 seconds as at time t01, t02, t03, t04 and
t05. The assumption in this data collection was that at t01, which is the 1st recurrent
element, a participant might not have moved yet or might just be starting to move. At
time t05 participant might already be moving back to “center”. We found t03, the 3rd
recurrent element, and element t234, which is a combination of 2nd, 3rd, and 4th
recurrent elements, to be less noisy than the other timestamps, good representatives of
the final posture and hence easier to predict and useful for learning.

We used the still sitting posture to normalize both datasets by subtracting it from
the other sitting postures. The empty sitting posture data was collected from the empty
chair (while there was no one sitting on it). Although the data collected from empty
chair were supposed to be empty, there were some sensor reading values. These data
were collected from a sensorized chair which was built by members of the Micro
Electromechanical-Systems (MEMS) unit of FBK research institute. The chair has a 32

Fig. 1. Sensor mounted smart chair.
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by 32 pressure sensors, which are placed at the seat (bottom) and backrest of the chair
as indicated in Fig. 1. These 64 sensors cover the whole body of the chair and able to
detect every pressure which is placed on it.

3.3 Data Preprocessing

Since the goal of this study is to investigate whether it is possible to predict sitting
postures using data collected from sensor slipped chair (from both the seat and back of
the chair), unnecessary columns and invalid sensor readings and outliers are removed
from the datasets. The 8 � 8 matrix where the data collected from each of the 32
sensors is mapped on (see Table 1), does not contain missing values.

Inside each individual file, there are 125 examples collected for each of the five
sitting postures. The raw data has a total of 80 features. Since, our goal in this study is
to investigate whether it is possible to predict or classify person’s sitting posture, we
only consider the 64 back and seat sensor features and the class label posture feature.
As a result, we removed a total of 15 features from the dataset. After we extracted all of
the initial features, we then continued to read the sensor values from each individual for
each posture and put them into a nested list which we then mapped to an 8 � 8 matrix
for ease of manipulation. Then we merged all individual files into a single Comma-
Separated Values file.

In the raw collected sensor data, we saw that some of the sensor readings were
outliers that deviate from most of the values of a particular sensor in each person’s file.
In order to handle this, we first calculate the average still value of each sensor column
by summing the sensor values in that column for a single person file (which contains
125 data records) and we set a certain threshold. Then we replace the sensor’s values
which are above the threshold, with the average still value. We did this for the entire 64
seat and back sensors. In addition to this, to avoid discrepancies of sensor readings due
to weight variation and fluctuating seating habits of individuals, we normalize each
column sensor’s for each person with the average still value of the column sensor’s that

Fig. 3. A person seated on a sensor plated
smart chair (mirror view.)

Fig. 2. The distribution of the 32 sensors on
the printed circuit board.
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we calculated before. Using these average values, we then subtract it from each of the
other posture values of the individual. Normalizing using these still posture values
helps to avoid some defects that come due to weight variation between individuals,
fluctuating sitting habits and others. The numbers in Table 1 are the positions of the
sensors on the printed circuit board of the Texas instrument board. As can be seen in
Fig. 2 and Fig. 3, we can visualize the back sensors projection as the face of the sitting
person coming out of the mirror.

3.4 Feature Generation

In addition to the 64 sensor features, we generate other features that will better describe
our dataset and contribute to improve classification accuracy. Since the pressure dis-
tribution of sensors on the chair has a great impact, we generate four other features by
calculating the center of mass of the 32 sensors of the seat and 32 sensors of the back.
We calculated the center of mass for both the seat and back sensors separately. We also
extracted features for each of the seat and back sensors dividing the given 32 sensors
into four quadrants and edges. Each category in both the quadrant and the edge con-
tains 8 sensor readings. Concerning the quadrant features, each of them are extracted by
taking half of the rows and half of the columns from the 8 � 8 matrix as indicated in
Table 2.

We used the Random Forest (RF) Classifier algorithm to evaluate the importance of
each of the features in both the controlled and realistic datasets.

3.5 Model Development and Testing

The study is conducted using both the controlled and realistic datasets separately. In
both cases, we have conducted various experiments using different combinations such
as using normalized and non-normalized dataset, using full sensor features, using
selected features, and using selected features with a portion of class labels (two, four,
five and all of the classes) with all the five machine learning algorithms used in the

Table 1. Projection of the seat and back sensors on an 8x8 matrix.

Left leg/right shoulder Right leg/left shoulder
Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8

Row 1 16 31 9 14
Row 2 24 23 1 12
Row 3 18 29 11 10
Row 4 26 21 3 8
Row 5 20 27 15 6
Row 6 28 17 5 4
Row 7 22 25 13 2
Row 8 30 19 7 0
Bottom
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study. Specifically, the different experiment settings conducted on the controlled
dataset are the following: non-normalized and normalized dataset and 3 other features,
non-normalized and normalized sensor and top 10 features, normalized dataset for the
whole 55 feature sets, top selected features for non-normalized and normalized data-
sets, selected features with selected class labels for non-normalized and normalized
dataset, and using a DNN on top selected features with the full class labels normalized
dataset, five class label normalized dataset with top selected features, and four class
label normalized dataset with top selected features.

Like the experiments on the controlled dataset, the following experiment settings
were used on the realistic dataset: non-normalized and normalized dataset, experi-
mentation using seat, back or both seat and back sensors dataset, using senior, young or
both age groups, using full, 234th and 3rd recurrent elements, experimentation using
various length class labels of the posture feature, and using third recurrent element with
varying number of classes. All of these experiments are conducted considering number
of participants, age group, class label, recurrent element, printed circuit board (seat or
backrest), extracted features, and normalized or non-normalized dataset. Unlike the
controlled dataset collection (which uses only the 32 sensors of the seat), we use both
the 32 by 32 sensors for the realistic dataset collection. In the realistic dataset, five
different postures (two before the click and 3 after the click) were collected within five
different time frames for each particular posture. Click is a wizard of Oz technique that
we employ to perform the position change. As a result, we conduct experiments by
using different levels of recurrent elements of the data.

We used five different algorithms and several classifier models are built using RF,
Gaussian Naïve Bayes (GNB), Logistic Regression, SVM and DNN. All the models
are evaluated using the KFold cross validation technique. Scikit-learn and TensorFlow
libraries were used. Accuracy of the five classifiers, which were trained with top
selected feature sets on the normalized controlled dataset, is reported in Table 3. We
train our models with a total of 1800 data examples where 1620 are used for training
and the rest 180 are used for testing. As can be seen in Table 3, DNN scores superior
performance measure compared to all the other methods, be it on the full class labels or

Table 2. Features from the 32 sensors of seat/back divided into four quadrants.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8
Row 1 16 31 9 14
Row 2 24 23 1 12
Row 3 18 29 11 10
Row 4 26 21 3 8
Row 5 20 27 15 6
Row 6 28 17 5 4
Row 7 22 25 13 2
Row 8 30 19 7 0
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a portion of them. The front, left and right postures are relatively easy to predict in all
of the classifiers compared to classifying the back posture. Table 4 shows the result of
the RF algorithm using the realistic dataset 3rd recurrent element with the left and right
class labels.

4 Results

We have conducted a total of eight experiments in the study using the controlled
dataset while we performed a total of six experiments in the study with the realistic
dataset using the five classifiers. From all the experiments, the one we did using the
DNN algorithm with normalized dataset and four class labels scored the highest result
with 98% prediction accuracy. Among the five classifiers, DNN, GNB and RF scored
the highest performance in most of our experiments. Although most of the models
trained on the controlled dataset were able to classify most of the sitting postures, it was
also difficult to easily predict the back posture. The main reason for this might be the
usage of only the seat sensors in the data collection, which resulted in the incomplete
representation of back postures.

The study using the realistic dataset the highest score was recorded by the RF
algorithm with an accuracy score of 97% from a model developed using the third
recurrent element and only the left and right class labels as indicated in Table 5.
Classifying sitting postures using the full timeframe dataset with all the five class labels
was very difficult. As we have seen in our experimentations, the models performance
improved when we used varying length of class labels and different portions of the
timeframe dataset. The reason for not correctly classifying the full postures might be
due to the nature of the dataset as well as the participant’s motionless character.
Figure 4 shows the plot of the postures using the 3rd recurrent element with left and
right class labels normalized dataset.

Table 3. Summary classification accuracy results using the normalized controlled dataset.

Selected feature sets (normalized dataset) Classifiers
RF GNB SVM LR DNN

Full class label 82% 88% 75% 81% 93%
Five class label 86% 95% 82% 88% 95%
Four class label 85% 88% 83% 89% 98%

Table 4. Classification report of the RF algorithm using the 3rd recurrent element with left and
right class labels normalized realistic dataset.

Precision Recall F1-score Support

Left 0.98 0.95 0.97 195
Right 0.95 0.98 0.97 195
Avg/total 0.97 0.97 0.97 390
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As it can be observed from the results of the two studies, the one with the controlled
dataset seems to perform better than the one with the realistic dataset in classifying
sitting postures. Specially, the DNN performed much better in most of the experiments
involving the controlled dataset. In addition to this, it was difficult to predict back
sitting posture in the case of controlled dataset, but it was relatively easier using the
realistic dataset. The reason for this is due to the addition of the 32 back sensors
dataset. Variations in the number of class labels does not seem to have that much
impact in the case of classifying the controlled dataset while it is important in the
realistic dataset.

These differences exist due to the different nature of the two datasets. There is a
visible difference in each sensor readings in each of the different data examples in the
controlled dataset. This might be associated with a participant performing movements
to a certain degree. In the case of the realistic dataset, sensor readings in the different
data examples seem closer, meaning participants were in relatively steady sitting

Table 5. Summary accuracy of the models using the 3rd recurrent element with full/4/3/2 class
labels (realistic dataset.)

Recurrent element Classifiers
RF GNB LR SVM DNN

3rd Full 77% 66% 67% 69% 56%
4 77% 66% 70% 71% 64%
3 87% 78% 82% 84% 79%
2 97% 95% 93% 94% 96%

Fig. 4. Plot of the postures using only the third recurrent element with left and right class labels
normalized realistic dataset.
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conditions compared to the controlled dataset. In addition to the above reasons, we
associate performance differences with the variations in dataset size. In the controlled
dataset, we have used a total of 1800 data examples while we have a total of 4875
records in the realistic dataset for training and testing the models.

5 Conclusion and Recommendations

The main goal of this study was to build a predictive model which can classify the
sitting posture of a person and enable individuals to monitor their sitting habits for
healthy living. For this purpose, we have collected two datasets from 32 and 64 sensor
coated chairs and carried out two separate studies. In addition to the sensor data, we
have also generated new features in both studies depending on the center of weight of
the seat and back sensors, partitioning the seat and back of the chair into four quadrants
and edges.

We have conducted experiments using the sensor and the generated features to
build predictive models for both studies. As a result, the model that we built using
controlled dataset was able to classify six sitting postures (back, empty, left, right, front
and still) with an accuracy score of 93% using a DNN. The highest accuracy score of
98% was achieved in classifying four of the basic sitting postures (back, left, right and
front) using DNN. In the second study, our predictive model was able to classify five
sitting postures (back, front, left, right and still) with a classification accuracy of 77%
using the 3rd recurrent element. The model built on the 3rd recurrent element with only
two class labels was able to classify the left and right sitting postures with the highest
accuracy score of 97% using RF classifier.

In general, we have achieved good results for both studies in classifying sitting
postures, particularly using the controlled dataset. However, performance variation
exist between the two studies probably due to differences in dataset size, number of
class labels used, data collection method and participants’ sitting habit.

In this study, we used a dataset collected within a controlled lab environment,
employed limited numbers of participants, and identified six sitting postures. For future
work, our method can be extended by collecting real world dataset, employing
increased number of participants, and sitting postures. Different sitting activities can
also be considered towards developing a full system that can work with variety of chair
types and environments.
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