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Abstract. A new growth degree encoding scheme (GDS) for online
fountain codes is proposed to achieve a low overhead when the feedback
is limited. When the feedback points are determined at the completion
phase, the encoder sends coded symbols with growth degrees between
the two feedback points, rather than symbols with fixed degrees. This
increases the effective probability of the coded symbols, thereby reducing
the overall overhead. We analyze the overhead of the proposed scheme to
demonstrate the performance. Simulation results show that our proposed
scheme has better overhead performance compared to the conventional
online fountain codes with limited feedback.
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1 Introduction

Fountain codes, also called rateless codes, are a class of erasure correction codes
that can generate an infinite number of coded symbols from a limited number
of original symbols through the eXclusive-OR (XOR) operation. In 2002, Luby
proposed the first practical realization of digital fountain, named LT codes [1].
In 2006, Raptor codes are proposed by Shokrollahi through cascading fixed-
rate codes and LT codes [2]. Later, spinal codes [3] and online fountain codes
(OFC) [4] were proposed as new classes of fountain codes to transmit data effi-
ciently and reliably.

Fountain codes were initially designed to transmit information without feed-
back. However, as it evolved, it made sense to use a small amount of feedback to
enhance its performance. In 2015, online fountain codes (OFC) [4] were first pro-
posed by Cassuto and Shokrollahi. The online property means that once given
an instantaneous decoding state, the encoder can find the optimal coding strat-
egy efficiently. Online fountain codes as a class of fountain codes, which feedback
the current decoding state of the receiver to the transmitter over the feedback
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channel, so that the transmitter can adjust the degree value of coding symbols
according to the feedback information, thereby efficiently transmitting encoding
symbols and reducing decoding overhead. Later, in [5] and [6], the full recov-
ery performance of online fountain codes is improved by non-random selection
of original symbols. The intermediate performance is important in many appli-
cations such as audio and video streaming. Therefore, the intermediate perfor-
mance of online fountain codes were studied in recent years [7–9]. In [10] and
[11], the unequal error protection (UEP) property and unequal recovery time
(URT) property are studied in online fountain codes.

With the research on online fountain codes, they have been applied to many
applications such as wireless sensor networks [12] and satellite broadcast sys-
tem [13]. However, the existing methods are designed for unlimited feedback.
In practical applications, due to the shortage of feedback resources, the feed-
back times are usually limited. Therefore, it is a meaningful research direction
to study how to efficiently transmit data with online fountain codes under lim-
ited feedback scenario. In [14], the authors first studied the feedback strategies
for online fountain codes with limited feedback and proposed two schemes to
select the optimal feedback points. However, since the degree value of the sym-
bols sent between the two feedback points is fixed, when there are too many
optimal degree values are skipped by the adjacent feedback points, the over-
head will be high. This explains why the feedback strategy has a large overhead
when the number of feedbacks is small. To address this problem, we propose
the growth degree encoding scheme (GDS), which sends coded symbols with
growth degrees between adjacent feedback points. This increases the effective
probability of coded symbols, thus reducing the overall overhead.

The rest of this paper is organized as follows. Section 2 introduces the online
fountain codes with limited feedback. The proposed growth degree encoding
scheme are provided in Sect. 3. Section 4 provides the overhead analysis for the
proposed scheme. The simulation results are given in Sect. 5. Section 6 concludes
this paper.

2 Online Fountain Codes with Limited Feedback

In this section, we briefly review the online fountain codes (OFC) and the online
fountain scheme with limited feedback. For the online fountain codes, the uni-
partite graph are introduced to represent the decoding state. As shown in Fig. 1,
an example of the bi-partite and the corresponding uni-partite graph is pre-
sented, the original symbols, or called source symbols, are represented by circle
nodes, while the output symbols, or called encoded symbols, are represented by
square nodes. In the bi-partite graph, if a square node are neighbored with two
circle nodes by edges, it means the corresponding encoded symbol are gener-
ated by the XOR of these two source symbols. While in the uni-partite graph,
the nodes are only used to represent the source symbols. The edge between two
nodes indicates that an encoded symbol generated by the XOR of the two source
symbols is received by the decoder. Blacked node represents the source symbol
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that have been recovered. A component means a set that any two circle nodes
in this set are connected by an edge. Obviously, a component is decoded when
one input symbol in this set is colored black. Note that the size of a component
is the number of source symbols in this component.

Fig. 1. A bi-partite graph for online fountain codes and the corresponding uni-partite
graph.

The decoder receives coded symbols and updates the uni-partite graph.
According to the uni-partite graph, the decoder can clear the current decoding
state and get the optimal degree value at this time. When the optimal degree
value changes, the decoder feeds back the decoding state to the transmitter.
Then the transmitter modifies the degree value to transmit encoded symbols.
At the decoder, an coded symbol is useful when it belongs to the following two
cases.

– Case 1: A received symbol that degree m is the XOR of a single white symbol
and m − 1 black symbols.

– Case 2: A received symbol that degree m is the XOR of two white symbols
and m − 2 black symbols.

We assume there are k source symbols. The encoding process of online foun-
tain codes is divided into two phases: build-up phase and completion phase.

Build-up Phase: The phase is consist of 2 steps. In the first step, the transmit-
ter generate coded symbols with degree 2 continuously. The decoder receives the
coded symbols and updates the uni-partite graph. Until the size of the largest
component is kβ0, where β0 is a predefined value that satisfies 0 < β0 < 1, the
decoder sends feedback to inform the transmitter, then the first step ends at this
time. In the second step, the transmitter sends the coded symbols with degree 1
until the largest component is colored black, which means all the source symbols
in the largest component is recovered. Then the build-up phase ends.

Completion Phase: The transmitter generates degree-m̂ coded symbols based
on β until the decoding process is successful. β represents the recovery ratio
of source symbols. The encoder selects an optimal value of m̂ to maximize the
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probability of the coded symbol becoming a useful symbol. In other words, to
maximize the sum of probabilities of Cases 1 and 2. Then the value of m̂ satisfies:

m̂ = arg max
m

[P1(m, β) + P2(m, β)] (1)

The P1(m, β) and P2(m, β) can be calculated as follows:

P1(m, β) =

(
m
1

)
βm−1

(1 − β) (2)

P2(m, β) =

(
m
2

)
βm−2

(1 − β)2 (3)

For the online fountain codes with limited feedback, the authors in [14] pro-
posed two strategies to select optimal feedback points in all the feedback points.
When the number of feedback times is determined, the heuristic table-lookup
algorithm based on effective probability (HTLEP) and the heuristic table-lookup
algorithm based on overhead (HLTO) are applied to select appropriate feedback
points to reduce the overhead. However, since a fixed value of degree is selected
between two feedback points, when the number of feedback times is small, the
optimal degree value skipped between the two feedback points is too much. So
the effective probability of the fixed value of degree will gradually decrease. This
will lead to a high overhead.

3 Growth Degree Encoding Scheme for Online Fountain
Codes

In this section, we will introduce the proposed growth degree encoding scheme
for online fountain codes with limited feedback. For convenience, we refer to
the limited feedback online fountain codes with fixed degree value between two
feedback points as conventional scheme. At the completion phase, the degree
value of the coded symbols sent by the conventional scheme is from the feedback,
which is fixed until the next feedback. However, in our proposed scheme, the
degree value between two feedback points is gradually growing. We use a set
V to store the number of coded symbols that need to be sent for each skipped
optimal degree, then the transmitter sends a fixed number of coded symbols
according to the set V until the next feedback point is reached. If all the symbols
in the set V are sent before the next feedback point is reached, the degree value
is randomly selected according to the degree distribution for transmission until
the next feedback is received. The specific design method is as follows.

We assume the ratio of decoded symbols to all source symbols as β. With the
increase of β, from Eq. (1), we can calculate the optimal degree m̂ corresponding
to each β that maximizes the useful probability. We call the β that changes the
value of m̂ each time as the degree transition points. Note that in the conventional
scheme, since there is no limit to the number of feedback times, the set of degree
transition points are the set of feedback points.
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In the proposed GDS scheme, the transmitter get the selected feedback points
from the set of degree transition points according to the HTLEP or HTLO algo-
rithm. We denote by B and M the set of selected feedback points and the corre-
sponding feedback degrees, respectively. When the number of feedback times is
determined to be N, we can get:

B = {β0, β1, . . . , βN, 1} (4)

M = {m0,m1, . . . ,mN,mmax} (5)

where βi and mi represents the ith feedback point and feedback degree, 1 ≤ i ≤ N,
m0 represents the corresponding optimal degree when β is β0. mmax represents
the maximum degree in the scheme.

It can be seen from the above description that the transmitter sends coded
symbols between every two adjacent feedback points. Some transition points
will be skipped between any two adjacent feedback points, and the optimal
degree value will change at these transition points. Without loss of generality,
we assume the transmitter receives the feedback and knows the decoded symbols
ratio β is βi. Between the feedback points (βi, βi+1), the skipped transition points
are denoted by {βi,1, βi,2, . . . , βi, j} and the corresponding transition degree are
denoted by {mi,1,mi,2, . . . ,mi, j}. By combining the set of feedback points and
transition points, we can get the following two sets:

Bi = {βi,0, βi,1, . . . , βi, j, βi+1,0} (6)

M i = {mi,0,mi,1, . . . ,mi, j,mi+1,0} (7)

where βi,0 and mi,0 are the βi and mi in the set of B and M, respectively. With
these two sets, we can derive the set N i. It is the set of coded symbols that
needs to be sent between the two feedback points. The dimension of N i is

��N i
�� =��Bi

��
− 1 = j + 1. We denote by N i

(x) the xth element in this set. Then N i
(x) can

be get by the following equation.

N i
(x) =

k[Bi
(x + 1) − Bi

(x)]

P(M i
(x), B

i
(x+1)
k )

(8)

where P(m, β) represents the sum of probabilities of the received coded symbol
with degree m belongs to Cases 1 and 2. So it can be calculated as follows.

P(m, β) = P1(m, β) + P2(m, β)

=

(
m
1

)
βm−1

(1 − β) +

(
m
2

)
βm−2

(1 − β)2 (9)

The value of N i
(x) represents the theoretical upper bound of the number of

coded symbols with degree M i
(x) when the value of β is between the transition

points Bi
(x) and Bi

(x + 1).
After obtaining N i and M i, the transmitter first sends N i

(1) coded symbols
of degree M i

(1). Then it increases the value of degrees and sends N i
(2) coded
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symbol of degree M i
(2). Continue in this way until N i

( j + 1) coded symbols of
degree M i

( j + 1) have been sent or the feedback βi+1 is received.
If all symbols in the set N i are sent and still no feedback is received, the

calculated degree distribution is used to select the degree values to generate a
new coded symbol until the next feedback is reached. We denote by Ωi

(x) the
degree distribution between the feedback points βi and βi+1. The probability of
being selected for a degree value M i

(t) is the ratio of the number of symbols of
degree M i

(t) in N i to the number of all symbols in N i, i.e., N i
(t)

sum(N i
)

, where sum(N i
)

represents the sum of the numbers in the set N i. So the degree distribution can
be calculated as follows.

Ωi
(x) =

j+1∑
t=1

N i
(t)

sum(N i
)

xM
i
(t) (10)

4 Overhead Analysis

In this section, we provide analysis for the performance of conventional online
fountain codes with limited feedback and the proposed GDS scheme based on
the theoretical analysis framework in [5].

4.1 Performance Analysis of Online Fountain Codes with Limited
Feedback

In this subsection, we analyze the performance of online fountain codes with
limited feedback. First we introduce a lemma as follows.

Lemma 1 [5]. Denote by P(n) the probability that a received coded symbol
belongs to Case 1 or Case 2 when the degree of the symbol is optimal, where
n represents the number of recovered symbols. Then we can calculate the value
of P(n) as below.

P(n) = P1(m̂, β0 +
n
k
) + P2(m̂, β0 +

n
k
) (11)

where m̂, P1 and P2 satisfy the Eqs. (1), (2) and (3), respectively.

To give the relationship between the number of received coded symbols and
the number of recovered symbols, we introduce a new lemma.

Lemma 2 [5]. Denote T(s) as the number of coded symbols to transmit with
unlimited feedback when s source symbols have been recovered. Then the value of
T(s) can be evaluated as follows.

T(s) =
1
2
kc +

1
β0

+ (1 −

1
2
(1 − β0)c)

s−kβ0∑
i=1

1
P(i)

(12)

where kβ0 < s ≤ k. c is the average degree of the source symbols when the
build-up phase is over, which satisfies the following:

c =
ln(1 − β0)

−β0
(13)
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From Lemma 2, we can get the overhead performance analysis of the online
fountain codes with limited feedback as follows.

Corollary 1. Denote TN
(s) as the number of coded symbols to transmit with N

times of feedback when s source symbols have been recovered. The set of feedback
points and the corresponding feedback degrees are B and M. Then the value of
TN

(s) can be evaluated as follows.

TN
(s) =

1
2
kc +

1
β0

+ (1 −

1
2
(1 − β0)c)

s−kβ0∑
i=1

∑
m∈M

f (i,m)

P(m, β0 + i
k )

(14)

where P(m, β0 + i
k ) satisfies Eq. (9) and f (i,m) is a function that takes a value

of 1 when the value of β is between the feedback points and the degree value m
is the corresponding degree point at the same time. For convenience, we assume
the value of i and m that meet the conditions as the event E. Then we can get
the value of f (i,m) as follows.

f (i,m) =

{
1 (i,m) ∈ E
0 else

(15)

Proof. Since online fountain codes with limited feedback is designed for the
completion phase, the relationship between the number of coded symbols sent
by the transmitter at the build-up phase and the recovery rate is the same as
the conventional online fountain codes. From Lemma 2, we know at the end of
build-up phase, the transmitter needs to send 1

2 kc +
1
β0

coded symbols. And it
can be seen from [5] that at the completion phase, n useful symbols, including
the build-up edges, Case 1 symbols and Case 2 symbols, can recover n source
symbols. Therefore, at the completion phase, we denote by Tca1,2(n) the number
of Case 1 and Case 2 symbols required to recover n source symbols. Then it can
be calculated as follows:

Tca1,2(n) = (1 −

1
2
(1 − β0)c)n (16)

In the online fountain codes with limited feedback, different from the con-
ventional online fountain codes, the decoder only feeds back the corresponding
degree value at a few fixed feedback points. The degree value between the two
feedback points is constant. Therefore, the number of Cases 1 and 2 symbols n
needs to be calculated separately between every two adjacent feedback points.
Without loss of generality, we assume that the value of s/k is between the feed-
back points βi and βi+1. Then we first calculate the number of Cases 1 and 2
symbols required between the feedback points β0 and β1. We represent the value
as n0. Same as the analysis in [5], we can get:

n0 =

k(β1−β0)−1∑
t=1

1
P(m0, β0 +

t
k )

(17)
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We denote by ni the number of Cases 1 and 2 symbols required between the
feedback points βi and βi+1. Based on the Eq. (17), we can get n1, n2, . . . , ni−1
according to the above analysis. In addition, the value of ni can be calculated by

ni =
s−kβ0∑

t=k(βi−β0)

1
P(mi, β0 +

t
k )

(18)

Therefore, the number of Cases 1 and 2 symbols needed to recover s symbols
is the sum of n0, n1, . . . , ni. From Eq. (16), at the completion phase, the number
of coded symbols required to recover s symbols is

TN
(s) =

1
2
kc +

1
β0

+ (1 −

1
2
(1 − β0)c)

i∑
t=0

nt (19)

Through derivation, it is obvious that Eq. (14) and Eq. (19) are equivalent. ��

4.2 Performance Analysis of the Proposed GDS Scheme

In this subsection, we analyze the theoretical performance of the proposed GDS
scheme over lossy channels. We denote by ε the channel erasure probability. Note
that when the channel is lossless channels, the value of ε is 0.

We present the performance analysis of our proposed GDS scheme through
the following corollary.

Corollary 2. Denote TN
p (s) as the number of coded symbols to transmit in the

GDS scheme with N times of feedback when s source symbols have been recovered.
The set of feedback points and the corresponding feedback degrees are B and M.
The set Bi, M i and N i, Ωi have been calculated when 0 ≤ i ≤ N. Then the value
of TN

p (s) can be evaluated as follows.

TN
p (s) =

kc
2(1 − ε)

+
1

β0(1 − ε)
+ (1 −

1
2
(1 − β0)c)

· [

B(b−1)∑
βi=B(1)

Gβi (kβi+1 − kβi) + GB(b)(s − kβB(b))] (20)

where B(b) represents that the value of s/k is between the value of B(b) and
B(b + 1) in B, i.e., s/k ∈ [B(b), B(b + 1)]. We assume Gβi (x) is a function that

satisfies the equation: Gβi (x) =
x∑

t=1
g(βi, t). And g(βi, t) is a function that satisfies

the following cases:

– The value is 1
P(M i

(1),βi+
t
k )
, when 0 ≤ Gβi (t − 1) ≤ N i

(1)(1 − ε).

– The value is 1
P(M i

(r),βi+
t
k )
, when

r∑
h=1

N i
(h)(1 − ε) < Gβi (t−1) ≤

r+1∑
h=1

N i
(h)(1 − ε)

∀r > 1.
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– The value is
j+1∑
h=1

Ωi
(h)

P(M i
(h),βi+

t
k )
, when Gβi (t − 1) > sum(N i

)(1 − ε).

Proof. Because the proposed GDS scheme is designed for the completion phase,
the performance analysis of the build-up phase is similar to the conventional
online fountain codes. And based on the Eq. (16) in the proof of Corollary 1, we
know n represents the number of Cases 1 and 2 symbols, which is the focus of
the analysis.

In the proposed GDS scheme, we need to analyze the number of Cases 1 and
2 symbols for every two adjacent feedback points. Without loss of generality,
we analyze the number for βi and βi+1. The value of N i can be calculated by
(8). The transmitter sends N i

(1)(1 − ε) coded symbols with degree M i
(1), the

probability of being Cases 1 and 2 symbols is 1
P(M i

(1),βi+
t
k )

. So we can prove the
first condition of g(βi, t). In the same way, we can prove the second condition.

For the third condition, when the symbols in set N i have been sent, the
transmitter sends symbols according to the degree distribution Ωi. For every
degree value, we get the product of the number of symbols with the degree value
becomes Cases 1 and 2 symbols and the probability that the degree value is
selected. Then we sum all the products to get the expected value. So we prove
the third condition. ��

5 Simulation Results

In this section, we first verify the proposed analysis by comparing with the
simulation results. We assume the k = 1000 and β0 = 0.5. We compare the
performance for the three feedback points selection strategies, HTLEP, HTLO
and EVEN. The EVEN strategy is a simple feedback point selection strategy
that equals the number of degrees skipped between every two feedback points.

Figure 2 shows the overhead performance of the OFC with limited feedback
and the proposed GDS scheme. For the feedback points selection strategies,
HTLEP, HTLO and EVEN, we perform analysis and simulations over the lossless
channels when the number of feedback times is 1 to 5. As shown in Fig. 2, the
theoretical analysis matches with the simulation results, which demonstrate the
accuracy of our proposed analysis. When the channel is lossless channels, we also
observe that compared with the conventional encoding scheme, the GDS scheme
can effectively reduce the overhead, especially when the number of feedback
times is extremely small.

In Tables 1 and 2, we compare the overhead performance of conventional
scheme and GDS scheme over the lossy channel. We set the channel erasure
ε = 0.1 and ε = 0.2. As can been seen from the tables, the proposed GDS scheme
still has good overhead performance over lossy channel. Even with the simple
EVEN feedback selection strategy, online fountain codes with limited feedback
can achieve very low overhead by using the GDS scheme.
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Fig. 2. Analysis and simulation results of the conventional OFC with limited feedback
and the proposed GDS scheme. We set k = 1000, β0 = 0.5 and ε = 0. We simulate
the three feedback strategies HTLEP, HTLO and EVEN when the number of feedback
times is 1 to 5.

Table 1. Overhead performance of the conventional OFC with limited feedback and
the GDS scheme when ε = 0.1.

N = 1 N = 2 N = 3 N = 4 N = 5

HTLEP 1754.34 1507.09 1433.26 1391.31 1379.14

HTLO 1651.6 1458.16 1398.66 1370.12 1353.07

EVEN 1720.37 1587.89 1516.88 1475.83 1451.15

HTLEP-GDS 1409.42 1369 1349.03 1343.61 1338.21

HTLO-GDS 1391.22 1352.81 1337.48 1336.77 1334.86

EVEN-GDS 1400.67 1384.88 1376.45 1365.33 1355.98
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Table 2. Overhead performance of the conventional OFC with limited feedback and
the GDS scheme when ε = 0.2.

N = 1 N = 2 N = 3 N = 4 N = 5

HTLEP 1955.83 1701.6 1613.87 1570.31 1551.93

HTLO 1859.36 1634.92 1576.42 1548.86 1524.73

EVEN 1930.94 1793.89 1722.36 1664.51 1635.85

HTLEP-GDS 1555.27 1525.12 1517.77 1506.44 1502.45

HTLO-GDS 1545.87 1516.67 1503.21 1500.56 1499.83

EVEN-GDS 1557.6 1529.9 1527.61 1521.84 1517.53

6 Conclusions

In this paper, we proposed growth degree encoding scheme for online fountain
codes with limited feedback to achieve a low overhead. Between the two feed-
back points, the transmitter initially sends a fixed number of coded symbols
with growth degree values. When all the coded symbols are transmitted, if no
feedback is received at this time, the coded symbols are generated according to
the calculated degree distribution until the feedback information is received. We
also analyzed the overhead performance of the conventional OFC with limited
feedback and the proposed scheme. Both the theoretical analysis and the simula-
tion results showed that the proposed scheme can achieve a significant overhead
reduction when the number of feedback times is small.
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