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Abstract. Due to the development of the Internet of Things, mobile
crowdsensing has emerged as a promising pervasive sensing paradigm for
online spatiotemporal data collection, by leveraging ubiquitous mobile
devices. However, privacy leakage of device users is a crucial problem,
especially when an untrusted central platform in mobile crowdsensing is
considered. Moreover, private information of users like trajectories con-
tained in both location tags and sensed values of their sensing data may
be unexpectedly revealed to the platform. In order to solve this problem,
we proposed a joint location-value privacy protection approach, which
consists of two privacy preserving mechanisms to perturb the locations
and sensed values of users, respectively. The approach can be performed
by each user locally and independently. The privacy of users can be well
preserved, as we theoretically prove that the two mechanisms satisfy local
differential privacy. In addition, extensive simulations are conducted, and
the results show that accurate estimated values can be derived based on
perturbed locations and sanitized sensed values, by adopting the truth
discovery method.

Keywords: Mobile crowdsensing · Privacy protection · Local
differential privacy · Truth discovery

1 Introduction

With the rapid development of the Internet of Things, mobile devices equipped
with diverse embedded sensors (e.g., camera, accelerometer, compass) are perva-
sive.Mobile crowdsensing (MCS) [4,13] has emerged recently as a promising perva-
sive sensing paradigm to enable the Internet of Things, which facilitates spatiotem-
poral data collection in large urban areas like transportation monitoring [28], air
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monitoring [12] and noise mapping [14]. A typical MCS system consists of a central
platform resided in cloud and plenty of distributed mobile device users. According
to the sensing requests of the platform, users collect location-based sensing data
continuously and submit them to the platform for extracting useful information.

A major concern in spatiotemporal data collection via MCS is privacy leak-
age [7,16], as spatiotemporal sensing data collected by users contain their private
information, such as their trajectories and preferences. Moreover, an untrusted
platform in the MCS system should be considered, and hence privacy protection
should be conducted by each user independently. Note that both location tags
and sensed values contained in the sensing data of users should be perturbed,
before they are submitted to the platform. On one hand, the trajectory privacy
of a user will be exposed to the untrusted platform, if sensing data with unper-
turbed location tags of the user are continuously submitted. On the other hand,
sensed values also leak location privacy of users unexpectedly, since the location
of a user may be inferred according to the values of collected data by adopt-
ing truth discovery methods. The intuition of inferring locations of users is that
sensing data collected in the same location always have close values, while the
values of sensing data collected in different locations may be discrepant. Thus,
the sensed values of sensing data collected by users should be sanitized before
they are submitted to the platform.

To solve the privacy concern in MCS, some privacy preserving approaches
[5,11,18,21,22,27] have been proposed based on differential privacy (DP)[2,15]
which is an effective tool to provide valid privacy protection and ensure the usabil-
ity of aggregated sensing data at the same time. These DP-based approaches
always assume that the platform is a trusted third party for users, which is respon-
sible to sanitize collected sensing data and limit the disclosure of private infor-
mation of users. However, the assumption is not true in reality, as the platform
may leak the privacy of users for commercial benefits or be attacked by adver-
saries. Some other approaches [9,10,17,19,20,23,25] are proposed based on local
differential privacy (LDP) [3,6], in which users perturb their sensing data locally
and independently before submitting sensing data to the platform. Hence, private
information of users are protected. Moreover, truth discovery methods [8] can be
adopted by the platform to extract true values from the perturbed data. However,
there are few works considering preserving the privacy contained in both locations
and sensed values of users at the same time.

In this work, we consider a MCS system with an untrusted platform, in
which location-based sensing data are collected from mobile users continuously.
Each datum submitted by a user consists of the identity of the user, the sensed
value of a monitored object, the location tag and the time stamp. With sensed
values collected by multiple users in an interested location, the platform applies
a truth discovery method to obtain the estimated value of the monitored object.
Obviously, the trajectory of the user can be released to the untrusted platform
over the time, which is a succession of the timestamped locations. Moreover,
even if the locations of users are perturbed, we consider that the platform can
also infer the trajectories of users from their sensed values in the submitted
data. Considering that there are few work considering the problem that sensing
data of users may lead to unexpected location privacy leakage, we try to design
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a privacy protection approach for online spatiotemporal data collection, which
protects the location privacy of participating users by perturbing both sensed
values and locations in their submitted data.

However, the joint location-value privacy protection problem in MCS is par-
ticularly difficult due to the existence of the following challenges. Firstly, the
locations of users contained in sensing data submitted to the platform should be
perturbed to protect their privacy, which will lead to the platform mismatches
the collected sensing data to a wrong location. Furthermore, the accuracy of
values estimated based on sanitized sensing data with perturbed locations is
impacted. Secondly, considering there is no trusted third party, the joint location-
value privacy protection approach should be performed by each user locally and
independently. It makes the truth discovery conducted by the platform becomes
particularly difficult. Finally, there exists a natural intrinsic tradeoff between the
level of privacy protection and the utility of perturbed data. In other words, a
high-level privacy protection approach inevitably decreases the utility of sensing
data, i.e., the accuracy of estimated values.

In response to these challenges, we propose a privacy protection approach
for online spatiotemporal data collection via MCS, in which a location privacy
preserving mechanism and a value privacy preserving mechanism are provided
respectively. Specially, the location privacy preserving mechanism is designed
based on random response that each user can perturb their locations locally. In
the Gaussian-mechanism-based value privacy preserving mechanism, each user
sanitizes the collected sensed values by adding random Gaussian noise inde-
pendently. Spatiotemporal sensing data with perturbed locations and sanitized
sensed values are submitted to the platform continuously.

The main contributions of this work can be summarized as follows:

– We consider the privacy preserving problem in a MCS system to collect
location-based sensing data over time, in which we observe that not only
location tags but also sensed values submitted to an untrusted platform will
expose the private information of users.

– We propose a LDP-based privacy protection approach, which includes two
privacy preserving mechanisms to perturb location tags and sensed values
respectively. The approach can be performed by each user locally and inde-
pendently. We theoretically prove that the two mechanisms achieve certain
local differential privacy.

– Extensive simulations are conducted to validate the performance of our pro-
posed privacy protection approach. The simulation results show that the pri-
vacy of users is well preserved and the estimated values obtained by the truth
discovery method is relatively accurate.

This paper is organized as follows. We first discuss related works in Sect. 2,
and present the motivation of joint location-value privacy protection in Sect. 3.
Then, we present our system model and some preliminaries in Sect. 4. Section 5
and Sect. 6 elaborate our proposed privacy protection approach and the theo-
retical analysis, respectively. Finally, simulation results are presented in Sect. 7,
and the paper is concluded in Sect. 8.
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2 Related Work

Privacy protection has received a lot of attention in MCS, while differential
privacy is seen as a promising technology in recent studies [5,9–11,17–23,25,27].
These privacy protection approaches in MCS can be classified into two categories,
i.e., DP-based approaches and LDP-based approaches.

2.1 DP-Based Approaches in MCS

DP-based privacy preserving approaches assume there exists a trusted third
party(e.g., a platform or a central server) has been widely adopted and used
in many areas [1,26]. In the MCS system, there are some DP-based approaches
[5,11,18,21,22,27] which sanitize the sensing data collected from mobile users
for privacy protection.

To et al. [18] introduce a framework for protecting location privacy of
works participating spatial crowdsourcing tasks, which needs users’ cellular ser-
vice providers to take coordination role between users and MCS platforms.
Wang et al. [22] study the privacy protection problem in a crowd-sourced sys-
tem for continuous real-time spatiotemporal data publishing, and an online pri-
vacy preserving scheme is proposed to monitor population statistics over infinite
streams. Then, an enhanced RescueDP framework in [21] is proposed which lever-
ages neural networks to accurately predict the values of statistics and improve
the utility of released data. In [5,11,27], privacy preserving auction-based incen-
tive mechanisms are designed to preserve the users’ bid privacy. Specifically,
the mechanism designed by Jin et al. [5] approximately minimizes the platform’s
total payment with a guaranteed approximation ratio. Besides, Lin et al. [11]
propose two score functions to realize frameworks for privacy-preserving aution-
based incentive mechanisms which achieves approximate social cost minimiza-
tion. Differently, the joint effect of users privacy concerns and the positive net-
work effect are considered in [27].

However, the assumption of a trusted third party is unpractical sometimes,
as the platform may leak the privacy of users for commercial interests or be
attacked by adversaries.

2.2 LDP-Based Approaches in MCS

Recently, some LDP-based approaches toward data statistics and analysis in
MCS are widely adopted to alleviate the privacy concerns caused by untrusted
third party [24]. Mobile users can sanitize their private sensing data locally and
submitting the perturbed data to the platform.

There are some works [17,23] focus on studying the privacy preserving data
distribution estimation with LDP in MCS. Wang et al. [23] provide an optimal
LDP-based privacy preserving mechanism for distribution estimation over user-
contributed data, in which the private information of users contained in both
qualitative data and discrete quantitative data can be protected. Ren et al. [17]
develop LDP-based privacy-preserving algorithms for multi-dimensional data
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Fig. 1. An example of inferring the real location of a user based on sensed values, even
though the location is perturbed.

distribution estimation and data publication, which achieve high computation
efficiency and data utility.

[19,20,25] design privacy-preserving frameworks to satisfy the privacy
demands of users. In order to protect the location privacy of users, [20] design
a LDP-based privacy-preserving framework which consists of a data adjustment
function and an optimal location obfuscation, and they propose an inference algo-
rithm to improve the inference accuracy of obfuscated data. While [19] leverage
distortion privacy with differential privacy together to provide more comprehen-
sive protection for users’ location privacy. Differently, a privacy-preserving task
allocation framework in MCS is proposed in [25], in which provides personal-
ized location privacy protection to meet different demands of users. Moreover,
Lin et al. [10] propose a randomized response-based privacy-preserving crowd-
sensing data collection and analysis method to ensure users’ privacy, and Li et al.
[9] provide a privacy preserving truth discovery mechanism with theoretical guar-
antees of both utility and privacy.

Unfortunately, there are few works considering both location tags and sensed
values contained in sensing data may unexpectedly disclose the private informa-
tion of users and further proposing a joint location-value privacy protection
approach accordingly.

3 Motivation

In this section, we aim to emphasize that joint location-value privacy protection
is necessary for spatiotemporal data collection via MCS. Only perturbing the
locations contained in sensing data collected by a user is not enough, as the
platform can infer the real locations of users according to the sensed values.
Here, we give a simple example to illustrate how the platform infers the real
location of a user based on his/her sensed values, even though the location in
submitted sensing data is perturbed.

Example: Suppose there is a platform requiring users to collect ambient noise
from various interested locations. A location privacy preserving mechanism is
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provided to perturb their original locations to other possible locations with a
certain probability. Assume there is a mobile user who collects 20 dB, 35 dB,
30 dB, and 15 dB of ambient noise in location A, B, and C over four time slots,
where ambient noise is collected twice at location B. The location of the user
at the second time slot (i.e., location B) is perturbed to location F . The real
trajectory and perturbed trajectory of the user are A → B → B → C and
A → F → B → C, respectively. The sensing data of users submitted to the
platform are shown in Fig. 1. In addition, we assume the platform can obtain
relatively accurate estimations of the ambient noise in each location over time.

According to the estimated values in the second time slot, the platform can
easily find F is not the real location of the user. In addition, according to the
locations of the user in the first and third time slot, the platform can infer that
the possible location of the user in the second time slot can be D, B, or E. Then,
by comparing the estimated values of these three locations with the sensed values
collected by the user in the second time slot, the platform can successfully infer
that the real location of the user in the second time slot is B.

4 System Model and Preliminaries

In this section, we present the model of online spatiotemporal data collection
in MCS, and introduce some preliminaries including truth discovery and local
differential privacy.

4.1 System Model

In this work, we consider a typical crowdsensing system consists of a central
platform located in cloud and a set of registered users equipped with smart
devices. We denote the set of users by U = {u1, u2, · · · , un}. Users are mobile
and distributed in an urban area. The platform requires users to collect location-
based and time-sensitive sensing data around several interested locations con-
tinuously. The locations of interested points in the urban area are represented as
L = {L1, L2, · · · , Lm}, where m is the number of interested locations. For conve-
nience, we divide time into equal-interval time slots, i.e., T = {t1, t2, · · · , tτ , · · · }.
In each time slot tτ , the subset of users located around location Lj ∈ L is denoted
as Uτ

j ⊆ U .
Let ui denote a user located around interested point Lj in time slot tτ (i.e.,

ui ∈ Uτ
j ). We denote the location of user ui in tτ as lτi , and we use the location

of his/her nearby interested point to replace it, i.e., lτi = Lj . The sensed value of
sensing data collected by user ui in time slot tτ is represented by vτ

i . Each user
submits the identity, the sensed value, the location tag, and the time stamp to
the platform in real time.

Submitting original sensed values and locations of users will expose their
private information (e.g., trajectories) to the platform and adversaries, since
an untrusted platform may leak privacy of users for commercial interests and
financial benefits or be attacked by adversaries. In this work, we consider users
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preserve their private information by submitting sanitized values of sensing data
and perturbed locations to the platform. Specially, the perturbed location and
the sanitized value of user ui in time slot tτ is denoted by l̃τi and ṽτ

i , respectively.
Note that we assume l̃τi ∈ L.

With receiving all sensing data collected in tτ , the platform aggregates the
sanitized value ṽτ

i of user ui according to perturbed location l̃τi . Specially, we
define the set of users whose perturbed location is Lj as Ũτ

j = {ui ∈ U|l̃τi = Lj}.
According to the sanitized values {ṽτ

i |ui ∈ Ũτ
j } collected in Lj , the platform can

obtain the estimated value V̄ τ
j in location Lj by employing truth estimation as

follows,

V̄ τ
j =

∑
ui∈Ũτ

j
w̃τ

i · ṽτ
i

∑
ui∈Ũτ

j
w̃τ

i

, (1)

where w̃τ
i is the weight of user ui, calculated based on sanitized value at time

slot tτ . Correspondingly, we denote wτ
i as the weight of user ui calculated based

on the original sensed value at time slot tτ .

4.2 Preliminaries

Truth Discovery [8]: Given an initialization of the weights of users, the truth
discovery method iteratively conducts the following steps until the estimated
value converges.

– Truth estimation: Given the weights of users and sanitized values collected
in location Lj at time slot tτ , the estimated value V̄ τ

j is calculated as (1).
– Weight update: According to difference between sanitized values submitted

to the platform and estimated value V̄ τ of the monitored object, the weight
of user ui can be updated as

w̃τ
i = log

(∑
ur∈Ũτ

j
(ṽτ

r − V̄ τ
j )2

(ṽτ
i − V̄ τ

j )2

)

. (2)

Local Differential Privacy [3]: LDP is a promising technology used to provide
privacy protection with a quantified guarantee, which is applied to the systems
without a trusted third party.

Let M(x) denote the perturbed output of a randomization mechanism M
given an input x. M achieves (ε, δ)-LDP if it satisfies the following definition.

Definition 1 ((ε, δ)-LDP). A randomization mechanism M with its output
domain range(M) achieves (ε, δ)-LDP, if for an arbitrary pair of inputs x, y
and any possible subset S ⊆ range(M), there exists

Pr{M(x) ∈ S} ≤ exp(ε) · Pr{M(y) ∈ S} + δ, (3)

where ε > 0 is privacy budget and δ ≥ 0 is relaxation variable.

Specially, randomization mechanism M is called ε-differential privacy when
δ = 0. Note that a lower value of privacy budget ε and δ indicates a stronger
privacy protection level can be achieved, vice versa.
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Fig. 2. An illustration of the MCS system and our proposed privacy protection app-
roach.

5 Methodology

In this section, we first introduce the overview of our proposed privacy protection
approach, which includes two mechanisms for preserving location privacy and
sensed value privacy of users, respectively. Then, we describe the detailed designs
of these two mechanisms in the next two subsections.

5.1 Overview

As shown in Fig. 2, our MCS system consists of a central platform resided in cloud
and a set of mobile smart device users distributed in an urban area. Sensing data
around interested locations are continuously collected by the users nearby and
submitted to the platform. In each time slot, the operations conducted by each
user and the platform are illustrated in the following.

Each user first collects the sensed value vτ
i of the monitored object in his/her

current location lτi . Then, each user performs the LPPM and VPPM locally and
independently, to perturb the location and sanitize the sensed value as l̃τi and ṽτ

i ,
respectively. Finally, the perturbed location and sanitized sensed value, as well
as the identity of the user and the time stamp, are submitted to the platform.

The platform first aggregates sanitized values according to the perturbed
locations of users after receiving all sanitized sensing data. Then, based on the
sanitized values {ṽτ

i |ui ∈ Ũτ
j } in each location, the platform conducts the truth

discovery method to estimate the true value of the monitored object V̄ τ
j in

location Lj at time slot tτ .
By conducting our privacy protection approach online in a MCS system, we

can guarantee that the private information of users can be preserved and the
value of the monitored object can be estimated accurately.
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5.2 Location Privacy Preserving Mechanism (LPPM)

Original location tags contained in sensing data collected by users over time will
disclose their trajectories to the platform or adversaries, which may pose severe
threats to their real life and public security. In order to protect the location
information of users, we provide a LPPM based on random response [3]. The
main idea of this mechanism is that the original location of a user is perturbed to
another interested location with a certain probability. The details are illustrated
in the following.

We represent our LPPM by a function A, whose both input domain and
output range are L. Given a predefined probability p ∈ (0, 1), we perturb the
original location lτi = Lj ∈ L of user ui in time slot tτ as follows,

l̃τi = A(lτi , p) =
{

Lj , with probability 1 − p,
Lr ∈ L \ {Lj}, with probability p

m−1 .

In Sect. 6, we prove that our location privacy preserving mechanism satisfies
LDP. Note that although the location tags of users are perturbed, the platform
can still extract accurate estimated values in different locations by applying the
truth discovery method. Because the sensed value with a mismatched location
will be assigned a low weight in truth discovery, and there could be less impact
on the accuracy of the estimated result.

5.3 Value Privacy Preserving Mechanism (VPPM)

The trajectory of a user can be still inferred by the platform or adversaries,
through comparing the sensed values collected by the user over time and the
estimated true values obtained by truth discovery. Thus, besides perturbing loca-
tions of users, their sensed values should be sanitized as well. In this subsection,
we propose a LDP-Gaussian-based VPPM to sanitize sensed values of users. The
main idea of this mechanism is adding noise on sensed values to obtain a san-
itized version of them, where the noise is sampled by users from their private
Gaussian distributions. The details of this mechanism are illustrated as follows.

In each time slot tτ , the platform first publishes a predefined parameter λ to
all users, where λ is determined by specific privacy demands (i.e., privacy budget
ε2 and δ). Then, each user ui generates a private Gaussian distribution N (0, σ2

i )
locally, where σ2

i is sampled from the exponential distribution E(λ), according to
the parameter published by the platform. Finally, user ui independently samples
noise ζτ

i from his/her private Gaussian distribution and adds the noise on the
sensed value. Summarily, letting function B denote the VPPM, the process can
be formulated as

ṽτ
i = B(vτ

i , σ2
i ) = vτ

i + ζτ
i , (4)

where ζτ
i ∼ N (0, σ2

i ) and σ2
i ∼ E(λ).

Intuitively, a larger value of parameter λ indicates a smaller expectation of σ2
i ,

which leads to a smaller expectation of noise added to sensed values and a lower
privacy protection level accordingly.
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Algorithm 1. Joint location-value privacy protection approach for spatiotem-
poral data collection
Input: Set of interested locations L, the locations {lτi }n

i=1 and sensed values {vτ
i }n

i=1

of all participating users at time slot tτ , predefined parameters p and λ
Output: Estimated values {V̄ τ

j }m
j=1 of all interested locations at time slot tτ

1: for each user ui, (i = 1, · · · , n) independently do
2: perturbs his/her location lτi as

l̃τi =

{
Lj , with probability 1 − p,
Lr ∈ L \ {Lj}, with probability p

m−1
.

3: generates a private Gaussian distribution N (0, σ2
i ), where σ2

i is sampled from
exponential distribution E(λ).

4: samples a noise ζτ
i from N (0, σ2

i ), and obtains the sanitized sensed value as

ṽτ
i = vτ

i + ζτ
i .

5: submits the perturbed location l̃τi and sanitized value ṽτ
i to the platform.

6: end for
7: The platform aggregates sanitized values based on perturbed locations submitted

by users.
8: for each interested location Lj ∈ L do
9: conducts truth discovery to obtain the estimated value of location Lj .

10: end for
11: return Estimated values {V̄ τ

j }m
j=1 of all interested locations at time slot tτ

So far, the locations and sensed values of users submitted to the platform
are perturbed. Then, the platform can use the aforementioned truth discovery
method to estimate the true values in different locations. Our privacy protection
approach is summarized in Algorithm 1.

6 Theoretical Analysis

In the following, we theoretically analyze that both the location and value privacy
preserving mechanisms satisfy LDP.

Theorem 1. Given a set of locations whose size is m, the LPPM with perturbation
probability p satisfies ε1-local differential privacy, where ε1 = ln((1 − p)(m − 1)/p).

Proof. According to Eq. (3), for any two possible locations Lj and Lr, the
LPPM satisfies LDP if we could calculate the probability ratio Pr{A(Lj) =
l̃τi }/Pr{A(Lr) = l̃τi } and find its maximum. Accordingly, the ratio is maxi-
mized when function A outputs perturbed location l̃τi which is identical to one
of the input locations. Mathematically, when Lj �= Lr and l̃τi = Lj , the ratio
reaches its maximum. Then we have,
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Pr{A(Lj) = l̃τi }
Pr{A(Lr) = l̃τi }

≤ Pr{A(Lj) = Lj}
Pr{A(Lr) = Lj}

=
1 − p

p
m−1

Thus, the LPPM satisfies ε1-LDP with ε1 = ln((1 − p)(m − 1)/p).

From Theorem 1, we can observe that when perturbation probability becomes
larger or the size of location set becomes smaller, the value of ε1 will become
smaller, which indicates low level of privacy protection, vice versa.

In what follows, we present the theoretical analysis on the VPPM in each
location at each time slot. We first introduce some parameters just for theoretical
analysis. Generally, value vτ

i of sensing data collected by user ui in location Lj

follows Gaussian distribution N (V τ
jtruth

, ρτ
j
2) [29], where V τ

jtruth
and ρτ

j
2 represent

the ground truth and the error variance at Lj , respectively. Then, we give the
definition of L1-Sensitivity as follows.

Definition 2 (L1-Sensitivity). L1-Sensitivity Δτ
j of a user in Lj at time slot

tτ is defined as
Δτ

j = max
vτ

i ,v̀τ
i ∈Dτ

j

|vτ
i − v̀τ

i |,

where Dτ
j is the range of values that may be sensed by users in Lj at tτ , and vτ

i

and v̀τ
i are two possible values of sensing data collected by ui.

Obviously, Δτ
j depends on ρτ

j . We present the relation between the ρτ
j and

Δτ
j in the following lemma.

Lemma 1. The value of sensitive information Δτ
j is smaller than a

√
2ρτ

j with

probability at least 1 − 1
ae

−a2
2 , where a ≥ 0 and decided by the sensed values

collected by the users.

Proof. According to the description mentioned, the error between sensed value
vτ

i and V τ
jtruth

follows Gaussian distribution N (0, ρτ
j
2), and vτ

i ∼ N (V τ
jtruth

, ρτ
j
2).

Hence, for any two possible values vτ
i and v̀τ

i may sensed by ui, the difference
between vτ

i and v̀τ
i follows Gaussian distribution N (0, 2ρτ

j
2). Based on the Gaus-

sian tail bounds, we have,

Pr{|vτ
i − v̀τ

i | > a
√

2ρτ
j } ≤ 1

a
e

−a2
2 , (5)

where a ≥ 0 and a is decided by values of sensing data collected by users. Thus,
the lemma is proved.

Next, we take Δτ
j = a

√
2ρτ

j to analyze the LDP property achieved by the
VPPM.

Theorem 2. Given L1-Sensitivity Δτ
j and an exponential distribution with

parameter with λ, the VPPM is (ε2, δ)-local differential private, where ε2 ≥ Δτ
j
2

2σ2
i

and δ > 1 − e
−λΔτ

j
2

2ε2 .
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Proof. According to Eq. (4), user ui adopts VPPM to add noise sampled from
Gaussian distribution N (0, σ2

i ) on vτ
i to obtain sanitized value ṽτ

i . Besides, noise
variance σ2

i is sampled from an exponential distribution with parameter λ. For
any two possible sensed values vτ

i and v̀τ
i , we have,

Pr{B(vτ
i , σ2

i ) = ṽτ
i }

Pr{B(v̀τ
i , σ2

i ) = ṽτ
i } =

1√
2πσi

e
− (ṽτ

i −vτ
i )2

2σ2
i

1√
2πσi

e
− (ṽτ

i
−v̀τ

i
)2

2σ2
i

(6)

= e
(ṽτ

i −v̀τ
i )2−(ṽτ

i −vτ
i )2

2σ2
i ≤ e

(vτ
i −v̀τ

i )2

2σ2
i ≤ e

Δτ
j
2

2σ2
i ≤ eε2

According to Eq. (6), when σ2
i ≥ Δτ

j
2

2ε2
, mechanism B meets ε2-local differen-

tial privacy. As σ2
i follows the exponential distribution with parameter λ, and

we constrain the probability of event {σ2
i : σ2

i ≥ Δτ
j
2

2ε2
} happens with at least

1 − δ. Thus, Pr{σ2
i ≥ Δτ

j
2

2ε2
} = e− λΔτ

j
2

2ε2 ≥ 1 − δ. Therefore, λ ≤ 2ε2ln( 1
1−δ )

Δτ
j
2 .

Next we partition R
+, the domain of noise variance, as R

+ = R1 ∪ R2,

where R1 =
{

σ2
i ∈ R

+ : σ2
i ≥ Δτ

j
2

2ε2

}
and R2 =

{
σ2

i ∈ R
+ : σ2

i ≤ Δτ
j
2

2ε2

}
. For

subset S1 ∈ S and S2 ∈ S, where S is the range of B(vτ
i , σ2

i ), we define
S1 =

{
B(vτ

i , σ2
i )|σ2

i ∈ R1

}
and S2 =

{
B(vτ

i , σ2
i )|σ2

i ∈ R2

}
. Then we have,

Pr
σ2

i ∈R+
{B(vτ

i , σ2
i ) ∈ S}

= Pr
σ2

i ∈R1

{B(vτ
i , σ2

i ) ∈ S1} + Pr
σ2

i ∈R2

{B(vτ
i , σ2

i ) ∈ S2}

≤ Pr
σ2

i ∈R1

{B(vτ
i , σ2

i ) ∈ S1} + δ

≤ eε2( Pr
σ2

i ∈R1

{B(v̀τ
i , σ2

i ) ∈ S1}) + δ

≤ eε2( Pr
σ2

i ∈R+

{
B(v̀τ

i , σ2
i ) ∈ S

}
) + δ,

Thus, mechanism B yields (ε2, δ)-local differential privacy, where ε2 ≥ Δτ
j
2

2σ2
i

and δ > 1 − e
−λΔτ

j
2

2ε2 .

From Theorem 2, we can find that when σ2
i becomes larger, the lower bound

of ε2 becomes smaller. In addition, the lower bound of δ will be smaller when
the value of λ is smaller. When ε2 and δ have smaller values, higher privacy
protection can be achieved.

7 Performance Evaluation

7.1 Simulation Setup

The default settings in our simulations are set as follows. We consider there is an
urban area consists of 10 interested locations that need to monitor ambient noise,
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and the total number of users is 400. The sensed values of users are simulated by
a Gaussian distribution N (V τ

jtruth
, 3), where V τ

jtruth
represents the ground truth

and is uniformly distributed in [20, 100]dB. We set perturbation probability p as
0.3 (i.e., ε1 = 3.004), privacy budget ε2 as 0.7, and relaxation variable δ = 0.3.
Besides, the weight of each user are equally initialized to 1 at the beginning of
each time slot.

We compare our proposed approach with two baselines:

– No Privacy Protection(NPP): Each user submits the original sensing data.
Then the estimated values obtained by truth discovery.

– Original Location with Sanitized Value (OLSV): Each user submits the origi-
nal locations and sanitized values obtained by value privacy preserving mech-
anism to the platform. Then the estimated values obtained by truth discovery.

– Perturbed Location with Original Value (PLOV): Each user submits the per-
turbed locations obtained by location privacy preserving mechanism and orig-
inal sensed values to the platform. Then the estimated values obtained by
truth discovery.

– Privacy Protection with Mean (PPM): Each user submits the perturbed loca-
tions and sanitized values obtained by our privacy preserving mechanisms to
the platform. Then the estimated values obtained by taking the average of
the sanitized values submitted by the user in each interested location.

In order to measure the performance achieved by different approaches, we
first adopt the commonly used Mean Absolute Error (MAE) as our metric, which
calculates the differences between ground truth and estimated values as

MAE =
1
m

m∑

j=1

∣
∣V τ

jtruth
− V̄ τ

j

∣
∣ .

The smaller values of MAE indicate that the perturbation and sanitization have
little impact on the accuracy of estimated results for the monitored object in all
interested locations.

Besides, we compare the average accuracy of estimated values under different
settings, which is calculated as

Accuracy =
1
m

m∑

j=1

(

1 −
|V τ

jtruth
− V̄ τ

j |
V τ

jtruth

)

.

7.2 Performance Evaluation

In the following, we take different numbers of interested locations into con-
sideration to compare the MAE achieved by our privacy preserving approach
and other baselines first. We plot the MAE and the accuracy achieved by five
approaches when the number of locations varies from 5 to 25 in Fig. 3 and Fig. 6.
It can be found that the MAE and the accuracy of our approach remain stable,
which indicates that our approach is scalable to the amount of interested points.
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Specially, when our approach can achieve about 94.61% accuracy of estimated
values, which is only 8.13%, 7.26% and 1.94% lower than NPP, OLSV and PLOV
but 4.67% higher than PMM, respectively.

Fig. 3. MAE vs. num-
ber of locations.

Fig. 4. MAE vs. num-
ber of users.

Fig. 5. MAE vs. sample
range of ground truth.

Fig. 6. MAE vs. num-
ber of locations.

Fig. 7. MAE vs. num-
ber of users.

Fig. 8. MAE vs. sample
range of ground truth.

As shown in Fig. 4 and Fig. 7, we evaluate the performance of five approaches,
by varying the total number of users from 200 to 1000. It can be observed that
the MAE and the accuracy achieved by our approach keeps stable regardless
of the number of users, which indicates that our approach applies to a large-
scale MCS system with plenty of users. Specially, when there are 600 users, our
approach achieves 91.68% accuracy, which is only 7.51%, 6.36% and 3.41% lower
than NPP, OLSV and PLOV, respectively.

For further studying the performance of our privacy preserving mechanisms
on estimation quality, we change the range of user sensed values, i.e., adjust-
ing the range of V τ

jtruth
. The sampling interval of V τ

jtruth
is [20, x] and we vary

x from 30dB to 110dB. In Fig. 5 and Fig. 8, the MAE increases but the accu-
racy decreases, when x becomes larger. This is because as the sample range of
V τ

jtruth
increasing, sensed values of users becomes more diverse. Specifically, our

approach can achieve about 92.39% average accuracy of estimated values when
varies the sample range of V τ

jtruth
, which is only 6.38%, 4.82% and 1.02% lower

than NPP, OLSV and PLOV but 2.97% higher than PMM, respectively.
To summarize, although the performance of our approach is inevitably worse

than NPP, OLSV and PLOV, our approach still achieves relatively high accu-
racy of estimated values and provides joint location-value privacy protection
for users. Moreover, our approach always outperforms PMM, since we adopt a
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more reliable truth discovery method to eliminate the influence of unreliable or
protected sensing data on the truth estimation.

8 Conclusion

In this work, we consider the joint location-value privacy protection problem in
a MCS system with an untrusted platform, since not only location tags but also
sensed values of users contained in their spatiotemporal sensing data will expose
the privacy. Therefore, we propose a privacy protection approach, comprising of
two privacy preserving mechanisms to perturb the locations and sensed values of
users respectively. Specially, the LPPM is designed based on random response,
and the VPPM is designed based on Gaussian mechanism. Both of the two
mechanisms are proved to satisfy local differential privacy. Moreover, we conduct
extensive simulations to show that the true values in interested locations can be
accurately estimated based on perturbed locations and sanitized sensed values,
by adopting the truth discovery method.
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