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Abstract. Recommender systems (RSs) have emerged as an effective
way to deal with information overload and are very popular in e-
commerce. However, because of the open nature of collaborative charac-
teristics of the systems, RSs are susceptible to poisoning attacks, which
inject fake user profiles into RSs to increase or decrease the recommended
frequency of the target item. The traditional poisoning attack methods
(such as random attack and average attack) are easy to be detected and
lack of generality since they usually use global statistics, e.g., the number
of each user’s ratings and the average rating for filler items. Moreover,
as deep learning (DL) becomes more widely used in RSs, attackers are
likely to use related techniques to attack RSs. To explore the robustness
of DL-based RSs under the possible attacks, we propose a novel poison-
ing attack with triangle relations (PATR). The triangle relations refer
to the balance among a fake user and two real users, aiming to improve
attack performance. We also present a novel fake & real sampling strat-
egy, i.e., sampling a set of fake users from the real users, to decrease the
possibility of being detected. Comprehensive experiments on three public
datasets show that PATR outperforms traditional poisoning attacks on
attack effectiveness and anti-detection capability.

Keywords: Deep learning · Poisoning attack · Recommender system ·
Triangle relation

1 Introduction

Recommender systems (RSs) are prevalent in e-commerce since they provide
users with a critical discovery mode to mitigate the difficulties in finding items
that users are interested in [1,2]. The ability to solve information overload has
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driven RSs be widely used in industries (e.g., Amazon, Netflix, and Facebook) [3].
RSs assist users in finding items and help merchants promote new products and
increase retail sales. Unfortunately, due to the openness of the rating systems
in RSs, malicious users unscrupulously attack RSs to achieve nefarious goals
[4,5]. Since RSs have a profound impact on the e-commerce industry, researchers
should take the initiative to consider the possible damages to RSs to protect
customers’ rights and interests better.

There is much effort has been devoted to studying how to spoof RSs to
defend against malicious attacks. A variety of attacks such as sybil attack (i.e.,
illegally infer a user’s preference) [6], unorganized attack (i.e., different attackers
attack the RS without organization), and powerful user attack (i.e., select most
powerful users who can impact RSs) [7] have been studied. In this paper, we
focus on the poisoning attacks [8], which were initially referred to as shilling
attacks [10,11], where malicious users inject fake user profiles (i.e., carefully
crafted ratings) into RSs based on the statistical rating information during the
training time. For example, the average attack is one of the poisoning attacks
that assigns the highest rating to a target item to be promoted and assigns
an average rating to a randomly sampled group of items [11]. Furthermore, we
can divide the existing poisoning attacks into push attacks and nuke attacks
according to the purpose. The push attacks assign the highest rating on the
target item to improve the recommended frequency, and the nuke attacks do
the opposite [8,11–13]. The poisoning attacks can be beneficial to unscrupulous
merchants for increasing their retail sales and reducing their competitors’ retail
sales. Since the two types are similar, we only consider push attacks in this paper.
Researchers have experimented successfully with poisoning attacks on real-world
RSs, such as YouTube, Google search, Amazon, and Yelp [14]. Moreover, Large
companies such as Sony, Amazon, and eBay have been attacked in real life [11].
Although all of these existing approaches have proved effective in some cases,
they still have the following challenges:

(1) Easy to be detected: The generated user profiles lack personalized behav-
ior patterns of real users, which are easily detected [15,16].

(2) Low attack effectiveness: According to the way the statistics are cal-
culated, the traditional poisoning attacks are effective on some traditional
collaborative filtering (CF) methods but do not do well on deep learning
(DL) based RSs, which also means lack of generality [17,18].

(3) Lack of effective metrics: In the field of ranking-based recommender
algorithms, the hit ratio (HK) is generally used to calculate the number
of the target item recommended to real users, which cannot measure the
disorder of top-K recommendation lists [10,12].

To address the above challenges and explore the potential security problems
such as DL-based attacks of RSs, we propose a novel poisoning attack based
on triangle relations (PATR), which includes two parts, a pre-training module,
and a reconstruction module. For the pre-training module, we design triangle
relations to generate more informative user embeddings to improve the anti-
detection capability. As shown in Fig. 1, two cases are considered according to the
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Fig. 1. Triangle relations are designed for the balance of three users. Two cases are
considered according to the target item.

target item, where we focus on the balance of one fake user and two real users.
We use Graph Convolutional Matrix Commissions (GCMC) [19] designed for
recommendation scenarios to implement the pre-training module. We creatively
propose a fake & real sampling strategy for the reconstruction module to generate
the initial fake user representations. Then we use the convolutional auto-encoder
(CAE) [20], which is easy to train and has a lower time cost, to reconstruct the
enhanced fake user representations with the output of the pre-training module.
We consider these deep learning (DL) techniques can help our model attack
DL-based RSs. Our contributions are as follows:

(1) We propose a pre-training module based on triangle relations to assist in
attacking RSs. The pre-training module can generate user embeddings with
real user features, which reduce the probability of being detected; moreover,
we apply CAE to the reconstruction module and combine the outputs of the
pre-training module to reconstruct a set of enhanced fake users.

(2) According to heuristic learning, we present a novel fake & real sampling
strategy to initialize fake user profiles. In addition to directly injecting fake
users, we creatively sample a group of active users directly from real users.
The ablation experiment proves that our sampling strategy is helpful for
anti-detection capability.

(3) We present a new metric named top-K shift (TKS) to measure the dis-
order of the top-K recommendation lists affected. Our experimental results
show that PATR can effectively attack DL-based RSs, and the anti-detection
capability against two detectors is better.
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2 Related Work

Generally speaking, the traditional RSs mainly refers to the RSs based on collab-
orative filtering (CFRSs) [21], which has been successfully applied to practical
scenarios filter out unwanted resources. Among various CFRSs, matrix factor
factorization (MF) [2] is the most popular one. It utilizes potential feature vec-
tors to represent users and items and projects them into the shared potential
space. In recent years, DL develops rapidly, which has been applied to RSs. The
DL-based RSs have better performance than the traditional ones because the DL-
based models are more consistent with the user-item interaction to improve the
recommendation accuracy [17]. For example, adversarial networks (AN), CAE,
and deep reinforcement learning (DRL) have been applied to recommender sys-
tems to improve recommendation performance [17,18].

As far as we know, O’Mahony et al. [4] first research on poisoning attacks
(a.k.a shilling attacks). They define the robustness of RSs and demonstrate
several vulnerabilities of poisoning attacks against CFRSs to facilitate specific
advice [4,11]. Furthermore, Burke et al. [22] and Mobasher et al. [23] investigate
some low-knowledge attack methods for pushing and reducing items, such as
random, average, bandwagon, and segment attacks. They find that rating-based
and ranking-based CFRSs are vulnerable to attack. Given more knowledge and
budget, Wilson et al. [7] propose a powerful attack model that selects the most
influential users or items to attack RSs. Fang et al. [24] study the poisoning
attacks against graph-based RSs. Besides, Zhang et al. [25] utilize DRL to train
the attack agent, which can generate user profiles for data poisoning. Xing et
al. [14] conduct experiments on YouTube, Google, and Yelp. The experimental
results show that manipulating RSs is possible.

Influenced by the popularity of the generative model in the field of image,
some papers are using generative adversarial networks (GAN) [15,16]. Since the
GAN mainly define the mini-max problem without loss function, which cannot
fit well with the research of this paper, and the issues of long training time
and difficult adjustment of parameters [26,27], we choose another generative
model CAE [20]. As far as we know, we are the first to apply CAE to poisoning
attacks. With the triangle relations and fake & real sampling strategy, our model
has destructive attack effectiveness and good anti-detection capability.

3 Proposed Model

This section describes our proposed PATR, which includes a pre-training module
and a reconstruction module.

3.1 Problem Formulation

We use X ∈ RN×M to represent the user-item rating matrix, where N is the
number of all users, including real users and fake users, and M is the number
of items. The user sets and item sets are denoted as U and V, respectively. ui
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represents each user vector in U , and vj represents each item vector in V, where
i, j ∈ {1, 2, ..., N}, {1, 2, ...,M}, respectively. rij represents ui’s rating on vj , and
rmax is the highest rating. The fake user sets denote as F , and |F| is the number
of fake users. fi and f̂i denote each initial fake user vector and reconstructed fake
user vector, where i ∈ {1, 2, ..., |F|}. We use uiPre and vjPre to denote each fake
user embedding and each item embedding generated by the pre-training module,
where j ∈ {1, 2, ...,M}. uiE denotes each fake user embedding generated by the
reconstruction module.

Fig. 2. The overall framework of PATR (Color figure online)

3.2 Pre-training Module

Problem Hypothesis. The traditional poisoning attack methods are easily
detected and have a narrow application range due to simply using rating statis-
tics without special designs. To enhance fake users’ anti-detection capability
and destructiveness, we first propose a pre-training module based on our elab-
orately designed triangle relations according to heuristic learning. The three
nodes in the triangle relations represent three user embeddings of K dimen-
sions, which are denoted as u1 = [x11, x12, . . . , x1K ], u2 = [x21, x22, . . . , x2K ],
u3 = [x31, x32, . . . , x3K ], where xi represents the i-th dimensional data. Each
edge represents the similarity of two adjacent users, which is denoted as L1,

L2, L3, where L1 =
√∑K

i=1(x1i − x2i)2, L2 =
√∑K

i=1(x2i − x3i)2, and L3 =√∑K
i=1(x3i − x1i)2. As shown in Fig. 1, we consider the following two cases and

use euclidean distance to calculate the similarity.
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Case 1: If there are both positive ratings and negative ratings about the target
item, we assume that fake users should be similar to real users who purchased
the target item and rated it highly and stay away from users that rated it lowly.
Moreover, the similarity of the two types of real users should be small. In Fig. 1
(a), u1 is a real user embedding who rated high rating, and u2 is a real user
embedding who rated low rating, and u3 is a fake user embedding. Hence, the
corresponding optimization problem can be formulated as

min L = λ1L3 − λ2L2 − λ3L1 (1)

where λ1, λ2 and λ3 are hyperparameters, and λ1 + λ2 + λ3 = 1.

Case 2: If the target item is a cold item, we consider the second triangle relation.
In this case, we assume that fake users can learn the commonality of real users
and improve the anti-detection capability by minimizing L1, L2, and L3. As
shown in Fig. 1 (b), u1 and u2 are two real users selected randomly. Hence, the
optimization is minimizing the sum of three edges. The formula is

min L = λ4L1 + λ5L2 + λ6L3, (2)

where λ4, λ5 and λ6 are hyperparameters, and λ4 + λ5 + λ6 = 1.

Graph Convolutional Matrix Completion. We use GCMC, a special graph
neural network designed for recommendation scenarios, to generate user and item
embeddings. As shown in Fig. 2, the input of the pre-training module is a graph
structure generated by the user-item interaction matrix, which includes both
real users and sampled fake users. The sampling strategy for the fake users is
described in Sect. 3.3. In each iteration, we combine the triangle relations with
GCMC for training. Specifically, we consider the user-item interaction matrix
a weighted undirected graph G = (W, E ,R). The nodes consist of a collection
of user nodes ui ∈ U with i ∈ {1, . . . , N} and item nodes vj ∈ V with j ∈
{1, . . . , M}, and U ∪ V = W. The edges (ui, rij , vj) ∈ E tagged with labels
represent ratings, where rij ∈ {r1, . . . , rn} = R.

GCMC assigns a specific transformation for each rating, resulting in edge-
type specific messages δj→i,r, from items j to users i of the following form:

δj→i,r =
1

ϕi,j
Wrx

v
j , (3)

where ϕi,j is a normalization constant. Wr is an edge-type specific parameter
matrix. xv

j is the initial feature vector of item node j. Messages δi→j,r from
users to items are processed analogously. After the message passing step, we
accumulate incoming messages at every node by summing over all neighbors
Ni(ui) connected by a specific edge-type r, and by accumulating the results for
each edge type into a single vector representation:
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hu
i = σ

⎡
⎣accum

⎛
⎝ ∑

j∈Ni(ui)

δj→i,1, . . . ,
∑

j∈NR(ui)

δj→i,R

⎞
⎠

⎤
⎦ , (4)

where accum() denotes an accumulation operation such as sum(), i.e., summa-
tion of all messages. σ() represents an activation function such as ReLU. To
arrive at the final embedding of user node i, we transform the intermediate
output hi as

zu
i = σ (Whu

i ) , (5)

where W is the same parameter matrix.
The outputs of GCMC are user embeddings and item embeddings. Because

only the fake user embeddings are required, we pick them out from all the user
embeddings according to the labels.

Algorithm 1. Pre-training Module
Input: The user-item interaction matrix (including fake users and real users) X̃.
Output: Powerful fake user embeddings uPre and item embeddings vPre.
1: Generate initialized user and item embeddings using Eq. (3) to Eq. (5).
2: for the number of training epochs do
3: for the number of iterations do
4: if the target item belongs to Case 1 then
5: Randomly select a fake user embedding uiPre ∈ F , a real user embedding

ujPre ∈ U1 and a real user embedding ukPre ∈ U2 from uPre.
6: Optimize the loss function according to Eq. (1).
7: end if
8: else
9: Randomly select a fake user embedding uPrei ∈ F and two real user embed-

dings.
10: Optimize the loss function according to Eq. (2).
11: end for
12: end for

3.3 Reconstruction Module

In this part, we mainly describe the fake & real sampling strategy and the
reconstruction module. With the outputs of the pre-training module, we apply
CAE to reconstruct enhanced fake users.

Fake & Real Sampling Strategy. Since our goal is to reconstruct enhanced
fake users, we first need to sample a batch of initial fake users. To improving the
anti-detection capability, we design a unique sampling strategy including two
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steps, as shown in Fig. 2. In the first step, we consider the existing sampling
strategies. In addition to the target item, a fake user needs ratings on other
items (the dark blue circles in Fig. 2) to disguise, and these items are called filler
items [10–12]. The sampling strategies are used for filler items. Among many
sampling strategies, popularity sampling (i.e., sample filler items based on their
popularity) performs well [12], so we consider generating a set of fake users F1

by popularity. In the second step, we directly sample a part of users F2 from real
active users to enhance the anti-detection capability, and the light blue circles
in Fig. 2 are the sampled real users’ original ratings. Therefore, the initial fake
users are denoted as F , where F = F1 ∪F2. We set the initial fake users’ ratings
on the target item (the red circles in Fig. 2) as rmax for attacking performance.
The number of F1 and F2 is explained in parameter sensitivity experiments in
Sect. 3.2.

Reconstructing Enhanced Fake Users. We use CAE to reconstruct the
enhanced fake users. CAE is a fusion of an encoder and a decoder composed of
convolutional networks and pooling layers. Convolution is a dot product between
the filter and input data, described as

yl+1
i (j) = Kl

i ∗ xl(j) + bl
i, (6)

where Kl
i and bl

i denote the weights and bias of the i-th layer, and xl(j) is the
j-th local region of the layer l.∗ denotes a dot product operation, and yl+1

i (j)
is the output of convolution operation, respectively. The activation function of
the hidden layer is ReLU, and the activation function of the output layer is
Sigmoid. Max pooling reduces the dimension of feature maps by taking the
maximum among every window. By reducing the number of parameters, the
feature dimension becomes smaller and manageable.

As shown in Fig. 2, the input is the sampled fake users vectors (i.e., the fake
user-item rating matrix), and the encoder ultimately reduces input data into
latent user embeddings uE . The user embeddings represent the lowest level space
in which the input is reduced, with essential information preserved with a strong
correlation between input features. To enhance the anti-detection capability of
the fake users, we consider uE generated by the encoder is similar to the fake user
embeddings uPre generated by the pre-training module. Further, to maintain the
destructiveness of fake users, we keep the ratings of fake users for the target item
as high as possible. The optimization is described as

LEncode = min
θ

|F |∑
i=1

(Dist(uiE , uiPre) + ‖rmax − uiE � vtPre‖), (7)

where u iE and u iPre represent the fake user u i’s embedding generated by the
encoder and pre-training module, respectively. |F | is the number of fake users.
Dist() is the euclidean metric, v tPre represents the target item embedding gen-
erated by the pre-training module, and u iE � v tPre is u i’s rating on the target
item. θ defines the parameters of the encoder.
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The decoder acts as the mirror image of the encoder. The number of nodes
in every layer increases and reconstructs the user embeddings to output as a
similar input via transposed convolution. The process is described as

LDecode = min
φ

|F |∑
i=1

Dist(f̂i, fi), (8)

where f̂i and fi are the reconstructed and initialized fake user ui’s vector, respec-
tively. φ represents the parameters of the decoder.

We combine two loss function as the final loss, which is

L = αLEncode + βLDecode, (9)

where α and β are the hyperparameters, and α + β = 1.

Algorithm 2. Reconstruction Module
Input: Initial fake users’ rating matrix XF (i.e., initial fake users’ vectors).
Output: Reconstructed fake users’ rating matrix X̂F , the parameter θ for the encoder.

E and the parameter φ for the decoder D.
1: for number of training epochs do
2: for number of iterations do
3: Uniformly sample a minibatch of fake users F ′.
4: for each fake user f ′

i ∈ F ′ do
5: Let the fake user embeddings u′

iE generated by the encoder be similar to
the fake user embeddings u′

iPre of the pre-training module using Eq. (7).
Set the rating of u′

iE for the target item to rmax using Eq. (7).

6: Let the reconstructed fake user vector f̂ ′
i generated by the decoder be similar

to the input f ′ using Eq. (8).
7: end for
8: end for
9: end for

4 Experiments and Analysis

In this section, Experiments are conducted to verify the effectiveness of our
model. We mainly focus on the following questions.

– Q1: Does our proposed model PATR have a significant attack effectiveness
on DL-based RSs?

– Q2: Is PATR more likely to evade detection?
– Q3: Are our hypothesis and designs (the pre-training module and sampling

strategy) conducive to PATR?
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4.1 Experimental Setup

We use three benchmark datasets in our experiments: FilmTrust,1 Ciao,2 and
ML-100K.3 Each dataset is randomly split by 9:1 as training set and test set,
respectively. Table 1 shows the details of the datasets. To avoid the cold start
problem, we filter out users with fewer than ten ratings (They are too sensitive
to attacks). Three layers of convolution with 512, 256, and 128 neurons are used
in GCMC and CAE. The number of injecting fake users account for 5% of the
number of real users, and the number of filler items for each fake user profile in
F1 accounts for 1% of the number of real users.

Table 1. Dataset statistics

Dataset Users Items Ratings Sparsity

FilmTrust 1,058 2,071 35,497 98.86%

ML-100K 934 1,682 100,000 93,70%

Ciao 7,375 105,114 284,086 99.96%

Attack Models. In this paper, we choose the following four traditional poison-
ing attack methods as baseline methods.

(1) Random Attack [11]: Random attack is a naive attack model. The set of
filler items are assigned to random ratings with a normal distribution around
the mean rating value across the whole dataset, and the target item is given
the maximum rating value rmax.

(2) Average Attack [11]: Average attack is a somewhat more sophisticated
attack than random attack and requires knowledge of each item’s average
rating in the system. Each introduced user rates items not in the target set
randomly on a normal distribution with a mean equal to the average rating
of the rated item. The target item is assigned rmax.

(3) Bandwagon Attack [10]: Bandwagon attack, also known as popular
attack, takes advantage of the items with high popularity in the dataset
and calls these items selected items. These selected items and the target
item are assigned the maximum rating value rmax. The ratings on the filler
items are determined randomly in a similar manner as in average attack.

(4) Unorganized Attack [9]: unorganized malicious attacks allow the concur-
rence of various attack strategies, and the number of rated items, the target
item, and the rating functions can be different. Each attacker produces a
small number of attack profiles with their own strategies and preference.

1 https://www.librec.net/datasets/filmtrust.zip.
2 https://guoguibing.github.io/librec/datasets/CiaoDVD.zip.
3 https://grouplens.org/datasets/movielens/100k/.

https://www.librec.net/datasets/filmtrust.zip
https://guoguibing.github.io/librec/datasets/CiaoDVD.zip
https://grouplens.org/datasets/movielens/100k/
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Recommender Algorithms. In this paper, we focus on two DL-based RSs,
i.e., neural matrix factorization (NeuMF) [28] and deep matrix factorization
model (DMF) [29]. NeuMF is a fusion of MF and multilayer perceptron (MLP),
allowing two models to learn individual embeddings and combine them by con-
necting their final hidden layers. DMF takes the user-item interaction matrix as
input and extracts the features of the users and items into a low-dimensional
space through the novel loss function based on binary cross-entropy.

Table 2. Attack effectiveness against NeuMF.

RS NeuMF

Metric TKS@10 HR@10

Dataset FilmTrust Ciao ML-100K FilmTrust Ciao ML-100K

PATR 0.542 0.708 0.627 0.0362 0.0823 0.0513

Random 0.334 0.571 0.443 0.0072 0.0326 0.0027

Average 0.337 0.643 0.357 0.0064 0.0637 0.0025

Bandwagon 0.425 0.750 0.425 0.0141 0.0248 0.0033

Unorganized 0.375 0.689 0.378 0.0076 0.0523 0.0025

PATRt 0.418 0.530 0.569 0.0232 0.0635 0.0183

PATRs 0.501 0.665 0.424 0.0137 0.0687 0.0258

Table 3. Attack effectiveness against and DMF.

RS DMF

Metric TKS@10 HR@10

Dataset FilmTrust Ciao ML-100K FilmTrust Ciao ML-100K

PATR 0.574 0.682 0.776 0.164 0.054 0.0479

Random 0.457 0.486 0.329 0.0071 0.0025 0.0024

Average 0.407 0.535 0.305 0.0069 0.0025 0.0019

Bandwagon 0.519 0.682 0.563 0.0875 0.0208 0.0037

Unorganized 0.530 0.498 0.489 0.191 0.0231 0.0035

PATRt 0.389 0.635 0.403 0.087 0.042 0.0094

PATRs 0.530 0.678 0.730 0.073 0.0512 0.0154

Metrics. We propose a new metrics top-K shift (TKS) to measure how much
the top-K recommendation lists affected after the attack. We assume that
each user recommendation list without the attack is L, and the recommen-
dation list after the attack is L̃. TKS calculates the number of items not in
L after the attack. For example, if the top-K recommendation list of u1 is
L1 = {23, 1, 5, 7, 34} before attack and L̃1 = {5, 1, 18, 22, 34} after the attack,
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then the item 23 and item 7 that should have been recommended to user u1

are missing in L̃1. The bigger TKS indicates better attack effectiveness. Because
there are some differences in the order of items among the top-K recommenda-
tion lists generated by the same RS, we do not consider the specific order bias
for each item. TKS is defined as:

TKS =
∑N

i=1 |Nabsent|i
K ∗ N

(10)

Where K is the length of each user’s recommendation list, N is the number
of the recommendation lists, Nabsent is the number of items not in L after the
attack.

Another metric is HR [10–12]. Let Ru be the set of top-K recommendations
for user u and Hu,i denotes whether the target item i is in the recommendation
list of user u. For each target item i, Hu,i is assigned to 1, where i ∈ Ru, otherwise
Hu,i is assigned to 0. As with TKS, the bigger HR indicates the better attack
effectiveness. The metric is defined as:

HR =

∑
u,i Hu,i

|U | ∗ N
(11)

In this work, the K in the top-K recommendation lists is set to 10, which
means the metrics are TKS@10 and HR@10.

4.2 Experimental Results and Analysis

Attack Effectiveness. The researchers prefer to deliberately choose the long
tail items in previous literature because the long tail items are more sensitive to
attack methods, and reflect better attack effectiveness. To accurately reflect the
effectiveness of our attack, we do not especially choose the long tail items and
randomly select ten items that do not exist in top-K recommendation lists when
RSs are not attacked. To verify the contribution of our proposed pre-training
module and sampling strategy, we remove these two parts respectively for com-
parison. The way without the pre-training module (triangle relations) is denoted
as PATRt, and the method without fake & real sampling strategy (only use reg-
ular widespread sampling) is denoted as PATRs. Table 2 and Table 3 show the
average performance of attacking NeuMF algorithm and DMF algorithm, respec-
tively, and we bold the data with the best performance. It can be seen PATR
can achieve the best performance in most cases and the second-best occasionally.
The average increases(compared to the second-best attack method and a nega-
tive growth if PATR is the second-best) of TKS@10 in NeuMF and DMF are
4.26% and 5.06%, respectively, proving that PATR can make recommendation
lists more disordered. Meanwhile, the average increases of HR@10 are 98.84%
and 67.46%, which means PATR pushes the target item to more real users. Nei-
ther PATRt nor PATRs performs as well as PATR, which proves that the triangle
relations and fake & real sampling strategy are helpful to attack effectiveness.
The experiments of attack effectiveness can answer the Q1 and Q3.
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Fig. 3. Anti-detection capability against DLDRA and DegreeSAD. (a) and (b) are the
results of DLDRA on the FilmTrust dataset. (c) and (d) are the results of DegreeSAD
on the ML-100K dataset.

Anti-detection Capability. We apply two detectors, i.e., a state-of-the-
art recommendation attack detector based on deep learning (DLDRA) [30]
and a classic detector in recommender systems via selecting patterns analy-
sis (DegreeSAD) [31] to verify the anti-detection capability of our attack. The
metrics are precision and F1. The datasets are FilmTrust and ML-100K. The
baseline attack models and the selection method of target items are the same as
the attack effectiveness experiments. As shown in Fig. 3, we can observe clearly
that the traditional poisoning attacks perform poorly, which means these attacks
result in mission failure. The anti-detection capability of PATR is better than
other methods. Specifically, both the precision and F1 are the smallest in the two
datasets. Moreover, PATR makes the detector be the most unstable. Therefore,
PATR has better anti-detection capability than baseline methods (answer the
Q2). In ablation experiments, PATRt and PATRs are also better than the tradi-
tional poisoning attacks but less than PATR, which indicates that our proposed
triangle relations and fake & real sampling strategy are conducive (answer the
Q3).

Sensitivity Analysis. In this paper, we use some hyper-parameters and con-
duct experiments to determine the value of these hyper-parameters. We set λ1

through λ6 mentioned in Sect. 3.2 to 0.45, 0.45, 0.1, 0.35, 0.35, 0.3, respectively.
In the sensitivity analysis, we focus on the encoder loss α, the decoder loss β,
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Fig. 4. Sensitivity analysis for β and γ. HR@10 measures the attack effectiveness, and
precision measures the anti-detection capability.

and the ratio of user groups F1 and F2 in the sampling strategy for balancing
our model’s attack effectiveness and anti-detection capability. We use the Ciao
dataset, and the metrics are HR@10 and precision, respectively. The higher the
value of HR@10, the better the attack effectiveness. The smaller value of pre-
cision means the better anti-detection capability. We denote the ratio of F1 as
γ. As shown in Fig. 4 (a) and (b), they are the sensitivity analysis of α. When
α is 0.2, HR@10 is the best, while the anti-detection is poor. When α is 0.3,
the attack effectiveness is the second best, and the anti-detection is the best.
Therefore, we compromise by setting α to 0.3, while β is 0.7. Similarly, we set γ
to 0.5, i.e., the number of F1 and F2 is the same.

5 Conclusion

In this paper, we focus on poisoning attacks. To reduce the probability of being
detected, we optimize the sampling strategy for fake users by directly sampling
a set of users from the real users. Furthermore, we adopt triangle relations and
design a pre-training module. Finally, we propose a reconstruction module that
combines CAE with the pre-training module’s outputs to generate enhanced fake
users. Our experiments on three real-world datasets show that our proposed
model PATR outperforms baselines in attack effectiveness and anti-detection
capability.
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