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Abstract. Segmentation of tissue regions in the digital histopatholog-
ical images refers to the identification and segmentation of tissues such
as epithelium, glandular cavity, fibers, etc. Precise segmentation of tis-
sues is key to pre-determining the regions with the greatest diagnostic
value, which can support clinical diagnosis, particularly with regard to
etiology and severity. In view of the uneven quality of histopathologi-
cal images and the difficulty of manual segmentation. In this paper, an
approach based on weakly supervised learning and deep learning has
been proposed to build a semi-automatic segmentation model of tissue
regions. The model uses superpixel classification to pre-segment the tis-
sues, the tissue region boundary is preserved, and the automatic segmen-
tation of the tissues is finally achieved based on the deep convolutional
neural network. The effectiveness of the model is evaluated on 600 cer-
vical histopathology images provided by the hospital. The results show
that the proposed method achieves 82.52% mean IoU of epithelial seg-
mentation and 81.67% mean IoU of glandular lumen segmentation in
cervical histopathological images. The model is superior to traditional
manual feature representation methods and classical deep convolution
neural network methods in segmentation accuracy and efficiency.

Keywords: Digital histopathological image · Tissues segmentation ·
Superpixels · Deep convolutional neural network

1 Introduction

Digital histopathological images are obtained by making stained sections of
patients’ suspected lesion tissues and then photographing them in high resolution
using whole slide imaging (WSI) technology. They are analyzed and judged by
the pathologists, and this histopathological examination process has become the
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“gold standard” of cancer detection and diagnosis. Histopathological images can
be used by doctors to know about the status of tumor cells, which is of great sig-
nificance for the diagnosis, classification, and prognosis of tumors. These images
include many tissues such as stroma, epithelium, and glandular lumen, etc. Dif-
ferent tissues are closely related to the type and severity of the disease. For
example, the diagnosis of cervical squamous cell carcinoma is often based on the
proliferation and arrangement of cells in cervical epithelial tissue [1]. Therefore, it
is important for pathologists to focus on the tissue region with the greatest diag-
nostic value in histopathological images before judging the disease. However, the
traditional manual segmentation method is limited by time-consuming, unsta-
ble, strong subjectivity, and high error rate due to visual fatigue. Developing an
intelligent automated algorithm to efficiently segment different tissues is crucial
for the development of pathology-assisted diagnosis [2,3].

The field of histopathological image segmentation faces the following chal-
lenges: (1) Compared with natural images, histopathological images have unclear
semantic regions, unobvious boundaries and high similarity among tissues, and
the analysis of histopathological images is more challenging. (2) Histopathologi-
cal images are usually super-resolution images, which have greater computational
complexity. (3) Lack of large-scale annotated datasets [4], the lesion dataset
changes greatly and needs to be labeled by clinical experts. Therefore, classi-
cal segmentation algorithms for natural images, such as threshold segmentation,
region growth and edge detection, are not fully applicable to histopathological
images. In order to segment histopathological image tissue regions, this paper
starts with the accurate dividing of the tissue boundaries, superpixels [5] have
been shown to be able to efficiently and completely segment local regions. Convo-
lutional neural networks with excellent performance in image processing are used
to classify superpixel in an inexact supervised learning way. To simplify opera-
tions and further improve segmentation accuracy, the obtained tissue images are
used to make deep learning datasets, an automatic segmentation model is trained
end-to-end based on a deep convolutional neural network, so as to achieve faster
and more accurate segmentation of tissue regions. The innovation of this article
lies in:

1. Improve the accuracy and interpretability of the model through the key
human-computer interaction.

2. Superpixel-level labeling replaces the pixel-level labeling, which improves the
labeling efficiency and preserves tissue boundaries.

3. The semi-automatic segmentation model has strong universality and can be
applied to segmentation tasks of various tumor histopathological images.

The organizational structure of the paper is as follows: The second section
reviews the related work of tissue region segmentation in histopathological
images. The third section introduces preliminaries, including image preprocess-
ing and semi-automatic segmentation methods. In the fourth section, the exper-
imental results are discussed and analyzed, and the effectiveness of the method
is verified. The last section gives conclusion and future research contents.
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2 Related Work

In the past few decades, with the mature development of image scanning tech-
nology and the improvement of computing power, as well as the emergence of
automatic analysis algorithms, significant progress has been made in histopathol-
ogy image segmentation. To deeply explore the tissue segmentation methods of
histopathological images, this section sorts out and analyzes the effective tech-
niques which are used to segment different interest objects in histopathological
images. Research on these techniques can be broadly divided into two main cat-
egories: methods based on hand-crafted features and methods based on deep
learning.

2.1 Methods Based on Hand-Crafted Features

Support vector machine (SVM) model based on local binary patterns (LBP)
was used to automatically distinguish epithelial and stromal in digitized tumor
tissue microarrays (TMAs) of colorectal cancer [6], the image is narrowed and
divided into square blocks, and the blocks are then independently classified using
an SVM model. Also a bayesian model was used to automatically segment the
stromal tissue in the immunohistochemical (IHC) image based on color and tex-
ture features [7]. The patch was classified by the deep learning method [8], and
patch level statistics and morphological characteristics were input into the ran-
dom forest (RF) regression model to classify the whole slide image. All of the
above approaches are based on hand-crafted feature representation, the segmen-
tation precision is unsatisfactory due to high computation and limited feature
extraction. In recent years, artificial intelligence technologies such as deep learn-
ing have made breakthroughs in various fields. More and more researchers have
turned their attention to the application of deep learning in histopathological
images and achieved outstanding results.

2.2 Methods Based on Deep Learning

Convolutional Neural Networks (CNNs) perform well in histopathological image
processing [9]. The supervised classification of a CNN was combined with unsu-
pervised image segmentation to distinguish the epithelial and stromal tissues of
H&E images [10], the combination of deep learning and boundary localization
improved boundary segmentation accuracy, but the performance of this method
was limited for images with fuzzy boundaries. De [11] proposed a method for
segmenting renal tissue using CNN, experiments were conducted using three
different network architectures, with about 90% accuracy. Nirschl [12] provided
a deep learning framework for the segmentation of muscle cells and stroma in
H&E stained heart biopsy samples. The framework uses AlexNet architecture
to train pixel-level classifiers for segmentation. Compared with a random forest
classifier with 333 intensity and texture features, the framework is superior in
AUC and F-score.



Semi-automatic Segmentation of Tissue Regions 681

Fully Convolutional Networks (FCN) has made significant progress in image
semantic segmentation with the advantages of unlimited input size and end-to-
end training of the model [13]. Chen [14] segmented the colon glands based on
the Deep Contour-Aware Networks (DCAN). DCAN adopts an auxiliary super-
vision mechanism to overcome the problem of gradient disappearance when
training. This method ranked first in the 2015 MICCAI glandular segmenta-
tion challenge and 2015 MICCAI nuclear segmentation challenge. Lahiani [15]
used an end-to-end color deconvolution deep learning method to segment tissues
in multi-staining immunohistochemical images, digital histopathological images
with multiple staining effects can be automatically segmented into the tumor,
healthy tissue, necrotic region and background based on a FCN, however, the
scheme is difficult to judge when the image source is unknown or the imaging
quality is poor.

U-Net as the baseline of medical image processing methods [16], many schol-
ars have processed and analyzed medical images based on U-Net or its improved
version. A group of sparsely annotated histopathological images was used to
train U-Net and FCNs of different depths [17], and the pixel-based AUC score
was 0.97. However, this method has a large network scale, many parameters and
a long training time. Based on the U-Net architecture, a positive predictive value
of 0.89 ± 0.16 and a sensitivity of 0.92 ± 0.1 were obtained in the epidermal
or non-epidermal pixel classification task [18], but the entire epidermis region
cannot be divided.

Other methods based on deep learning are also used in tissue segmentation
of histopathological images. In [19], HistoSegNet is proposed for the seman-
tic segmentation of tissues in the histopathological image. It is superior to the
more complex weakly supervised semantic segmentation method and can be
extended to other datasets without retraining. A general neural network method
is designed to segment disease-related regions in medical images [20], it requires
only two types of tags at the sample level. Using the labeled samples to train
a meta-network, which deduces a segmented neural network to segment the
disease-related regions in the image, and identify tumor regions or tumor-free
regions reliably. However, the diversity of training data needs to be improved.

It can be known from literature research that dataset, segmentation accu-
racy, and model portability are still the difficulties in tissue segmentation. There-
fore, we constructed a semi-automatic segmentation model suitable for various
tumor image tissues based on pathological knowledge and deep learning. Semi-
automatic refers to obtaining high-quality segmentation samples through the
interactive pre-segmentation model, which can be used to train the tissue auto-
matic segmentation model end to end.

3 Preliminaries

This section introduces the image preprocessing, and describes in detail the
semi-automatic segmentation methods, including pre-segmentation and auto-
matic segmentation.
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3.1 Methodology Overview

The semi-automatic segmentation model of tissues is divided into two stages:
pre-segmentation based on superpixel classification and automatic segmentation
based on deep CNNs. The pre-segmentation process yields a large number of
high-quality tissue segmentation results, providing a dataset quickly for auto-
matic segmentation model in the next stage. Automatic segmentation utilizes
the deep learning method to learn the segmented image dataset end-to-end and
ultimately achieves the automatic segmentation of tissues. The semi-automatic
segmentation model greatly reduces the burden of manual segmentation and
improves the accuracy of the automatic segmentation of tissue regions. The seg-
mentation process is shown in Fig. 1.

Fig. 1. Segmentation process of tissue region in histopathological image.

3.2 Histopathological Images Preprocessing: Staining Normalization

The imaging of histopathological images is influenced by factors such as staining
degree and scanning equipment. Deep learning algorithms are extremely sensitive
to the color structure of images, so it is necessary to normalize image to the
color distribution of the template image to reduce the variance. Based on the
representation derived from color deconvolution, the nonlinear mapping from
the source image to the template image is found, and the staining normalization
is realized [21]. It is a spectral normalization method that converts all images
into a spectral distribution of the template image (see Fig. 2).

3.3 Pre-segmentation of Tissue Regions

Multi-scale Superpixel Segmentation. Superpixel [5], first proposed by Ren
and Malik, is a clustering-based segmentation algorithm, which clusters a series
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Fig. 2. Stain normalization results of histopathological images.

of pixels that are adjacent to each other and have similar color, brightness,
texture into small regions. The simple linear iterative clustering (SLIC) method
proposed by Achanta [22] is simple, fast in running, and capable of generating
uniformly distributed and compact superpixels. SLIC method is used to segment
superpixels with different scales in this paper, the multi-scale facilitates the
model to reconcile the labeling cost and segmentation effect. The multi-scale
superpixel segmentation is shown in Fig. 3.

Rectangularization and Labeling of Superpixel. Superpixels are rectan-
gularized to be able to feed them into the CNN for classification. The external
rectangle of the superpixel is obtained by topologically analyzing the superpixel
mask. According to Table 1, the preset size of the superpixel blocks is cropped out
in the external rectangle, where SPnumber indicates the number of superpixels
segmented in an image (1430 × 712), SPsize indicates the size of the superpixels
after rectangularization.

Table 1. Predefined size for cropping superpixel rectangle.

SPnumber SPsize

250 64
180 86
130 100
50 128
40 156
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Fig. 3. Superpixel segmentation. The images are divided into 50(A), 130(B), 180(C)
and 250(D) superpixels.

Based on Eqs. 1 and 2, the coordinates (x , y ) of the top-left point of the
rectangularized superpixel block are calculated. x, y are the top-left point coor-
dinates of the external rectangle, and W , H are the width and height of the
external rectangle. Starting from the top-left point, pixels are taken to the right
and down, and reverses when the boundary is encountered. The pseudocode is
shown in Table 2. The results are shown in Fig. 4.

x = x − �1/2(SPsize − W )� (1)

y = y − �1/2(SPsize − H)� (2)

Superpixel labeling is done by people trained in basic pathology, the proba-
bility that each superpixel rectangular belongs to a specific tissue is determined,
which is used for inexact supervised learning. As shown in Eq. 3, where K is the
number of superpixels.

pi ≈ area(target tissue)/area(superpixel)
pi ∈ [0, 1], i ∈ K

(3)

Pre-segmentation Architecture. CNN is constructed to train the superpixel
classification model in an inexact supervised learning way, the network structure
is shown in Fig. 5. The classification of superpixels is the initial segmentation of
tissues. The process is shown from 4 to 12.

a1 = Relu(X ∗ W 1 + b1) n kernel = 20, size kernel = 5 ∗ 5 (4)

a2 = pool(a1) size pool kernel = 2 ∗ 2, stride = 2 ∗ 2 (5)
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Table 2. Pseudocode for the method of superpixel rectangularization.

Input: A histopathological image img, the top-left point coordinates (x,y),
width W and height H of the superpixel external rectangle.

Output: Rectangularized superpixel roi.

x ← x − �SPsize − W )/2�
if x < 0:

x ← 0
elif x + SPsize > img.shape[0]:

x ← img.shape[0] − SPsize

y ← y − �(SPsize − H)/2�
if y < 0:

y ← 0
elif y + SPsize > img.shape[1]:

y ← img.shape[1] − SPsize

roi ← img[x : x + SPsize, y : y + SPsize]

Fig. 4. The results of superpixel rectangularization.

a3 = Relu(a2 ∗ W 3 + b3) n kernel = 40, size kernel = 4 ∗ 4 (6)

a4 = pool(a3) size pool kernel = 2 ∗ 2, stride = 2 ∗ 2 (7)
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a5 = flatten(a4) (8)

a6 = softmax(W 6 ∗ a5 + b6) (9)

a7 = dropout(a6) (10)

a8 = W 8 ∗ a7 + b7 (11)

ŷ = argmax(a8) (12)

Fig. 5. Convolutional neural network structure.

where the input X is a three-dimensional superpixel image, and a1,a3 are the
outputs of the convolutional layers, respectively. Relu is the activation function
of the convolutional layer, n kernel is the number of convolutional kernels, the
size of convolutional kernel is size kernel. flatten function makes the a4 matrix
into a one-dimensional vector a5 for input to the fully connected layer. a2, a4 is
the output of max-pooling layer, size pool kernel is the size of pooling kernel,
stride is the step size. a6 is the fully connected layer output after activation, the
activation function is the softmax function, a7 is the result of discard units from
the network with a certain probability to prevent overfitting. a8 is the output of
fully connected layer with no activation, finally, it returns the subscript ŷ of the
maximum value in a8, which is the output. The cross-entropy loss is minimized
to train superpixel classification model, which is defined as Eq. 13.

L = −
N∑

i=1

y(i) log ŷ(i) +
(
1 − y(i)

)
log

(
1 − ŷ(i)

)
(13)

where y(i) is the real category of the superpixel, ŷ(i) is the classification of super-
pixel by model, L represents the difference between the predicted output and
the real category.
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3.4 Automatic Segmentation of Tissue Regions

Obtaining Ground Truth for Automatic Segmentation. The mask
obtained by binarization of the pre-segmented result is taken as ground truth, the
tissue part of the RGB is 255. The input and label images are data enhanced.
Each image is cut to half size of the original image. The staining normalized
image is the input and the mask of the corresponding tissue is the label.

Automatic Segmentation Architecture. Both low-level and high-level fea-
tures of images are important for tissue segmentation. Skip-connection and
U-structure of the U-Net enable learning of both high-level and low-level features.
An improved U-Net architecture for replacing the VGG Net [16] with the first four
layers of the ResNet50 is used to avoid gradient disappearance for deep network
training, which is called U-Net+ResNet50 in this paper, U-Net+ResNet50 struc-
ture is shown in Fig. 6.

Fig. 6. U-Net + ResNet50 structure.
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The ResNet50 downsampling process includes Conv Block and Identity
Block, the role of Conv Block is to change the dimensionality of the feature
vector. Identity Block with consistent input and output dimensions for identity
mapping. The bottom left Conv Block is used to handle mismatches between
input images and output dimensions, where the convolutional layers on the short-
cut connection is used to adjust the dimensionality of the input, ensuring that
inputs and outputs on the main path can be summed. The shortcut connection
in the bottom right Identity Block spans three hidden layers. In addition, the
U-Net+ResNet50 adopts the “same” mode for zero-padding filling at the edge of
the image. Batch normalization is performed between each convolutional oper-
ation and the activation function to prevent overfitting to some extent. Max-
pooling is used for the downsampling of pathological features and bilinear inter-
polation for upsampling.

Automatic segmentation model is trained based on the U-Net + ResNet50,
the input is staining normalized images, the output is tissue masks. The loss
function Bce Dice Loss for end-to-end training consists of two parts: Dice loss
and Binary crossentropy loss. Dice loss describes the similarity of two contour
regions, denoted by A and B as the set of pixels contained in two contour regions
of category y, ŷ. The Dice loss is derived from DSC(A,B), as shown in Eq. 14,
where p and r are defined as shown in Eqs. 15 and 16.

Dice loss = 1 − DSC(A,B)

= 1 −
∑N

n=1 pnrn + ε
∑N

n=1 pn + rn + ε
−

∑N
n=1(1 − pn)(1 − rn) + ε
∑N

n=1 2 − pn − rn + ε

(14)

p = TP/ (TP + FP ) (15)

r = TP/ (TP + FN) (16)

where TP, FP, FN are the number of true positives, false positives, and false
negatives, respectively, pn is the accuracy rate, rn is the recall rate, and ε is the
smoothing parameter. The Binary crossentropy loss is defined in Eq. 17.

Binary crossentropy loss = −
N∑

i=1

y(i) log ŷ(i) +
(
1 − y(i)

)
log

(
1 − ŷ(i)

)

(17)
The sum of the Dice loss and the Binary crossentropy loss is taken as loss

function, Bce Dice Loss is shown in Eq. 18.

Bce Dice Loss = Binary crossentropy loss + Dice loss (18)

4 Experiments and Results Analysis

4.1 Experimental Objective

1. Different hyperparameters are set to optimize pre-segmentation and auto-
matic segmentation models respectively.
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2. Four widely used methods are compared with our proposed method to mea-
sure the segmentation performance of our method.

4.2 Dataset

Pre-segmentation Dataset. Cervical histopathological image dataset pro-
vided and authorized by the hospital. All personal information is withheld
to protect patient privacy. Pre-process 600 cropped images, they are divided
into superpixels. Data enhancement of labeled superpixels by rotating, flipping,
adding noise. Finally, 22,032 superpixels are obtained as a superpixel classifica-
tion dataset (SCD).

Automatic Segmentation Dataset. The automatic segmentation dataset
(ASD) is constructed based on the pre-segmentation results. The ASD consists
of 1662 staining normalized images and corresponding tissue masks (ground
truth).

4.3 Experimental Setup

The experimental settings of pre-segmentation and automatic segmentation are
the same, and the positive and negative samples of the dataset are balanced, of
which 90% is taken as a training set, the remaining 10% is taken as a validation
set, real-time samples from the hospital as a test set. Each evaluation metric
is cross-validated by a 5-fold cross-validation and the final results averaged. All
experiments were performed on an Amax NVIDIA Titan V server with a 12G
GPU.

The methods widely used in image segmentation are selected for comparison
with our method, SVM-RBF [23] and Random Forest (RF) [24], as the most
commonly used and better performing segmentation methods based on manual
feature, are used to verify the limitations of classical traditional methods in
pathological image processing. FCN [13] and U-Net [16] are widely used deep
learning segmentation methods, and U-Net is also the baseline of the proposed
method.

4.4 Experimental Results and Analysis

Metrics of Pre-segmentation Model. Superpixel classification is evaluated
by Mean Cross-Entropy (MCE) Loss and Accuracy. MCE Loss and Accuracy
are defined as shown in Eqs. 19 and 20. MCE loss characterizes the difference
between the predicted output and the true label. TP, TN,FP, FN in Eq. 20
are elements of the confusion matrix. Accuracy can partly indicate whether the
classifier is effective.

MCE Loss = −(1/N)
N∑

i=1

y(i) log ŷ(i) +
(
1 − y(i)

)
log

(
1 − ŷ(i)

)
(19)
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Accuracy = (TP + TN) / (TP + FP + TN + FN) (20)

Pathology-trained personnel performs a rapid evaluation of the superpixel
classification results, and makes continuous improvements in the input super-
pixel size and network hyperparameters until an optimal classification model is
obtained. Finally, the superpixel classification results are reorganized into tissue
segmentation results according to the division rules and categories.

Pre-segmentation includes superpixel segmentation and rectangularization.
In addition, a histopathological image is divided into superpixels for independent
classification, ignoring the correlation between the superpixels in close positions.
In view of this, the contents of the image are directly learned based on deep
learning to avoid superpixel segmentation. It simplifies the production of the
dataset and improves the accuracy of tissue segmentation by learning the overall
features.

Pre-segmentation Results of Tissue Region. The classification of the
superpixels based on the CNN is shown in Table 3, where Epochs is the number
of training rounds and Batch Size (BS) is the batch size of each input data dur-
ing training. It is clear that at Epochs of 24 and Batch Size of 20, Mean Loss
and Accuracy are iterated to optimal, achieving 85% classification accuracy.

Table 3. Classification results of superpixels with size 128 * 128.

Epochs = 30 Epochs = 24 Epochs = 23 Epochs = 19
BS = 23 BS = 20 BS = 10 BS = 25 BS = 30

Mean loss 0.2404 0.2350 0.3200 0.2620 0.2683
Accuracy 0.8472 0.8489 0.8358 0.8466 0.8471

Experiments also verify the effect of different sizes of superpixels. If a super-
pixel is too small, and contains too little contextual information, which will lead
to poor classification accuracy. While it is too large to properly segment tissue
boundaries. As shown in Table 4, the classification model achieved more accurate
results when the superpixel size is 128 × 128, that is, each pathological image is
divided into 50 superpixels.

Table 4. Classification results of superpixels with different sizes.

Size = 64 × 64 Size = 86 × 86 Size = 100 × 100 Size = 128× 128 Size = 156 × 156

Mean loss 0.2855 0.2820 0.2649 0.2350 0.2417

Accuracy 0.8213 0.8275 0.8311 0.8489 0.8401

The superpixels are recombined base on categories to obtain the segmentation
result of the tissue, which is visually shown in Fig. 7. Pre-segmentation provides
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a better segmentation of images with clear borders. However, for images with
more complex staining distribution and more disordered cell arrangement, the
pre-segmentation model has a greater error.

Fig. 7. Pre-segmentation results of tissue regions in histopathological images.

Metrics of Automatic Segmentation Model. Accuracy and the Mean IoU
as evaluation metrics of models. They are defined as shown in Eqs. 21 and 22,
respectively. The Intersection-over-Union (IoU) refers to the ratio of intersection
and union between the target region generated by the model and the originally
marked region. In Eq. 22, P and G represent the predicted and ground truth,
and N is the number of samples.

Accuracy = (TP + TN)/((TP + FP ) + (TN + FN)) (21)

Mean IoU = (1/N) ∗ (area(P ) ∩ area(G))/((area(P ) ∪ area(G))
= (1/N) ∗ TP/(FN + TP + FP )

(22)
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Automatic Segmentation Results of Tissue Region. Table 5 shows the
Accuracy and Mean IoU of the five models for segmenting the tissues. For
such massive and dense data as histopathological images, SVM-RBF and RF
are not comparable in terms of time and accuracy with the deep CNN model
due to limitations in non-linear mapping capabilities and parameter estimation,
achieving only about 86% but taking up to 15 h or more. FCN is able to utilize
information from multiple layers simultaneously, but it is not sensitive to details
and lacks spatial consistency, achieving only 89% accuracy and the Mean IoU
of 0.6341. The baseline network U-Net achieves 94% segmentation accuracy and
0.7866 Mean IoU, which is more accurate than the above methods. However,
U-Net usually needs random initialization and has many parameters. The
improved U-net +ResNet50 in this paper achieves 95% accuracy and 0.8252
Mean IoU, compared to other deep learning models, it achieved better segmen-
tation results, and each image can be segmented in less than one second, which
satisfies the need for fast segmentation. The intuitive segmentation of each model
is shown in Fig. 8.

Table 5. Results of automatic segmentation of tissue regions in histopathological
images.

Methods Accuracy Mean IoU Training time (min)

SVM-RBF 0.8603 0.5269 839

RF 0.8578 0.5537 924

FCN 0.8944 0.6341 56

U-Net 0.9416 0.7866 53

U-Net+ResNet50 0.9542 0.8252 70

The results of pre-segmentation and automatic segmentation of epithelial
tissue are visually compared, as shown in Fig. 9. The automatic segmentation
model based on deep learning learns the unique cell arrangement patterns and
specific pathological features of the epithelial tissue and thus performs well even
on cervical pathology images with disordered cell alignment and uneven staining.

The semi-automatic segmentation model consists of a pre-segmentation
model and an automatic segmentation model. To further validate the gener-
ality of the model, it is also used to segment glandular cavity tissues in cervical
pathology images. 620 histopathological images are taken as datasets, each of
which contains one or more glandular cavity tissues. The visual display of the
segmentation results is shown in Fig. 10, which achieves medically acceptable
results. This further demonstrates that the semi-automatic segmentation model
has a strong generalization ability and provides a versatile solution to segment
lesion regions in various tumor images.
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Fig. 8. Automatic segmentation results of tissue regions. Orginal (A), SVM-RBF (B),
RF (C), FCN (D), U-Net (E), U-Net+ResNet50 (F). In the original image, the red
outline is the epithelial tissue, the white region is the background, and the rest is
fibrous tissue. (Color figure online)

Fig. 9. Comparison of pre-segmentation results and automatic segmentation results.
Original (A) and pre-segmentation results (B), automatic segmentation results (C).
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Fig. 10. Segmentation results of glandular cavity.

5 Conclusion and Future Work

In this study, a semi-automatic segmentation model for tissue regions is con-
structed to accurately segment tissues in small datasets. The model starts with
the superpixel classification of histopathological images, traditional pixel-level
labeling is replaced by superpixel-level labeling. Superpixels preserve the bound-
ary of tissues, and can be labeled quickly. This inexact supervised learning app-
roach greatly reduces physician burden and improves labeling efficiency. The
guidance of pathological knowledge makes the results of tissue segmentation
more accurate and improves the interpretability of the model. A high-quality
training dataset for the deep learning model is constructed based on tissue pre-
segmentation results, and it is learned end-to-end to segment tissues more quickly
and accurately. The model provides a versatile solution for rapid and accurate
segmentation of various tissue regions, and the techniques for constructing deep
model datasets greatly reduce the reliance of medical research on public datasets.
Individual physicians or small teams can also follow the method to annotate the
data in their field, so that they can start research and contribute to the devel-
opment of the medical field.

Accurate segmentation of tissues like epithelium in histopathological images
can provide more precise regions of interest for intelligent diagnosis, thus improv-
ing the accuracy of diagnosis. Another member of our team learns pathological
features in the segmented epithelial tissue, such as color, texture and cell den-
sity characteristics, and then uses deep learning techniques for lesion grading,
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demonstrating that focusing on the tissue regions yields more accurate results
than diagnosing on the whole image.

Moreover, there are still some issues to be resolved in this paper. First, the
rewards and penalties of reinforcement learning can be used for superpixel clas-
sification in order to obtain an optimal model. Second, immunohistochemical
images such as ki67 and p16 can be combined to provide richer pathological fea-
tures, thus improving the accuracy of tissue segmentation and disease diagnosis.
Finally, our research cannot be limited to the segmentation of tissues, micro-
scopic cell segmentation and morphological analysis, and macroscopic studies of
tissue structure and location can further aid computerized diagnosis.
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