
Topology Self-optimization for
Anti-tracking Network via Nodes

Distributed Computing

Changbo Tian1,2, Yongzheng Zhang1,2, and Tao Yin1,2(B)

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

{tianchangbo,zhangyongzheng,yintao}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Anti-tracking network aims to protect the privacy of net-
work users’ identities and communication relationship. The research of
P2P-based anti-tracking network has attracted more and more atten-
tions because of its decentralization, scalability, and widespread distri-
bution. But, P2P-based anti-tracking network still faces the attacks on
network structure which can destroy the usability of anti-tracking net-
work effectively. So, a secure and resilient network structure is an impor-
tant prerequisite to maintain the stability and security of anti-tracking
network. In this paper, we propose a topology self-optimization method
for anti-tracking network via nodes distributed computing. Based on
convex-polytope topology (CPT), our proposal achieves topology self-
optimization by each node optimizing its local topology in optimum
structure. Through the collaboration of all nodes in network, the whole
network topology will evolve into the optimum structure. Our experi-
mental results show that the topology self-optimization method improves
the network robustness and resilience of anti-tracking network when con-
fronting to the dynamic network environment.

Keywords: Topology self-optimization · Distributed computing ·
Node collaboration · Network optimization · Anti-tracking network

1 Introduction

Anti-tracking network [1–4] provides secure, anonymous communication for net-
work users to protect the privacy of their network identities and communication
relationships. As a large, scalable and stable network system, the design and
implementation of anti-tracking network has faced huge challenges. On the one
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hand, anti-tracking network is an open network and allows each node join or
exit from network freely. Then, malicious nodes can infiltrate in the network
and measure network topology and network scale [5–8]. On the other hand, the
management and optimization of network topology is essential for the dynamic
changed topology. In general, the network optimization is implemented by the
network controller which has the global view of the network. But the frequent
communication between the controller and network can be easily monitored and
traced by the adversary [9–12]. So, a stable, resilient and self-optimizing net-
work structure is the foundation for anti-tracking network to provide secure and
reliable communication [13].

Recent researchers [14–17] have developed many approaches to improve the
robustness and security of anti-tracking network effectively. From the present
researches [18–20] it seems, the topology optimization methods have attracted
more and more attentions because an optimum network structure can bring
about a vast improvement in the performance of network communication and
anti-destroy ability. However, anti-tracking network is an P2P-based network
which allows each node joins or leaves the network freely. In general, network
optimization is achieved by network controller which is vulnerable to network
tracing and monitoring. Some approaches [21–25] have been proposed to achieve
network self-optimization, but most of them is focused on the resource allocation,
path selection optimization and so on. In the dynamic network environment,
network structure oriented self-optimization method is important to improve
the security and resilience of anti-tracking network.

To address this problem, we propose a topology self-optimization method
for anti-tracking network. Our proposal is based on convex-polytope topology
(CPT) [26] and network self-optimization algorithm to improve the security and
resilience of anti-tracking network. We make three key contributions in this paper
as follows:

– We apply convex-polytope topology in the construction of anti-tracking net-
work topology. Anti-tracking network based on CPT has better robustness.

– We define an optimal topology model based on CPT to achieve the topology
optimization of anti-trakcing network.

– We propose a topology self-optimization method based on CPT, which
improves the security and resilience of anti-tracking network.

2 Related Works

Network optimization is to improve the performance of anti-tracking network,
and the stable, reliable network structure is the prerequisite of efficient com-
munication. Aimed to self-optimization of network topology, Auvinen [27] pro-
poses a topology management algorithm based on neural network which does
not predetermine favorable values of the characteristics of the peers. The deci-
sion whether to connect to a certain peer is done by a neural network, which is
trained with an evolutionary algorithm. Tian [22] proposes smart topology con-
struction method (STon) to provide the self-management and self-optimization
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of topology for anti-tracking network. By deploying the neural network on each
node of the anti-tracking network, each node can collect its local network state
and calculate the network state parameters by the neural network to decide the
link state with other nodes. With the collaboration of all nodes in the network,
the network can achieve the self-management and self-optimization of its own
topology. Liu [21] proposes an adaptive overlay topology optimization (AOTO)
technique. AOTO is scalable and completely distributed in the sense that it does
not require global knowledge of the whole overlay network when each node is
optimizing the organization of its logical neighbors. Sun [23] presents THash, a
simple scheme that implements a distributed and effective network optimization
for DHT systems. THash uses standard DHT put/get semantics and utilizes a
triple hash method to guide the DHT clients to choose their sharing peers in
proper domains. Liang [24] presents the optimization formulations, and proposes
a set of heuristic algorithms for the construction and dynamic management of the
multiple sub-stream trees for practical implementation which can significantly
improve the delay performance of existing P2P streaming systems. Jelasity [25]
proposes a generic protocol for constructing and maintaining a large class of
topologies. In the proposed framework, a topology is defined with the help of a
ranking function. The nodes participating in the protocol can use this ranking
function to order any set of other nodes according to preference for choosing
them as a neighboring node. Liao [28] presents a trust-based topology manage-
ment protocol, which aims to promote the fairness and service quality of P2P
system by integrating a trust model into its topology management.

3 Introduction to Convex-Polytope Topology

3.1 Basic Properties

Convex-polytope Topology (CPT) [26] is a structured topology in which all
nodes are constructed into a logical structure of convex-polytope as illustrated
in Fig. 1. One of the advantages of CPT is the elimination of cutvertex because
any two nodes in CPT have at least two non-overlapping paths. In this case,
some nodes are removed from CPT, CPT can still keep the convex-polytope
structure except the nodes in ring connection.

(a) CPT in sparse struc-
ture.

(b) CPT in dense struc-
ture.

(c) CPT with central
point.

Fig. 1. CPT with different structures.
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As illustrated in Fig. 2(a), some nodes are removed from CPT, CPT still keep
the convex-polytope structure. But in Fig. 2(b), the nodes in ring connection are
removed, CPT is split into two parts. But in the practical application, it is
a small probability event that the removed nodes happened to be in the ring
connection. So, when some nodes are removed, the timely recovery of CPT will
keep the robustness and invulnerability of network.

(a) CPT keeps the convex-polytope
structure when some nodes are removed.

(b) CPT breaks into two parts when the
nodes in ring connection are removed.

Fig. 2. The influence of node removal on the structure of CPT.

However, the connection structure and connection density have a big influ-
ence on the performance of CPT. As illustrated in Fig. 1, CPT in sparse topology
is susceptible to the network churn, and the network structure is more vulnera-
ble to the disconnection of nodes. CPT in dense topology has better robustness,
but key nodes with high degree may appear to become the potential threats.
As illustrated in Fig. 1(c), CPT has a central node which has connections with
all other nodes. CPT with central node is unstable because the disconnection of
central node would cause big damage in the structure of CPT.

3.2 The Optimum Structure of CPT

We consider the optimum structure of CPT based on which network has better
robustness and invulnerability. Obviously, network density has a big influence
on network connectivity and communication efficiency. The dense topology per-
forms better than the sparse topology in network robustness. But in the extreme
case illustrated in Fig. 1(c), the uneven distribution of node degree results in the
unstable network structure in which some nodes have very high degree, but
other nodes have very low degree. Then, the nodes with high degree play the
very important roles in the network and the attack to such key nodes would
severely disrupt the network structure, even partition the network.

On the basis of above considerations, we define the optimum structure of
CPT as that CPT has the maximum network connectivity while conforming
to the convex-polytope structure, and the degree of each node is close to the
average of all nodes’ degrees. CPT with maximum connectivity(CPT M) has a
special property that each surface of CPT is triangle. If CPT M has n nodes,
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the number of edges is l = 3× (n−2). So, for CPT M with n nodes, the number
of edges is fixed. Then, we can calculate the average degree d of CPT M as
shown in Eq. 1. When N approaches infinity, d approximately equals to 6. So,
the average degree d can be set as the baseline for each node to measure and
adjust its local topology.

d = lim
N→∞

2 × L

N
= 6 − lim

N→∞
12
N

= 6 (1)

Formally, for CPT with n nodes, its optimum structure can be defined as
shown in Eq. 2, in which Nv denotes the number of nodes, Ne denotes the
number of edges, Degree(vi) denotes the degree of node vi.

CPToptimum = {Nv = n,Ne = 3 × (n − 2),Degree(vi) → d}(1 ≤ i ≤ n) (2)

4 Topology Self-optimization

The goal of topology self-optimization is to maintain the network topology in
the optimum structure of CPT. Topology self-optimization is achieved by nodes’
distributed computing. At first, each node calculates the optimum local topology
(Toptimum) according to the situation of its current local topology and Toptimum is
an optimization objective for each node to adjust its local topology. But the final
optimization plan is decided by the collaboration between the current node and
its neighboring nodes and make sure the optimized local topology is beneficial
to both sides.

Before that, we put some notations used in the following discussion in Table 1
to help readers refer to them conveniently.

Table 1. Notations

Notation Description

CPT Convex-polytope topology

CPToptimum The optimum structure of CPT

Toptimum The optimum local topology of each node

Toriginal The original local topology of each node

O The criterion of local topology

d The average node degree of CPToptimum

di The node degree of node vi

Nl The node number of the local topology

rd The disconnection request between two nodes

rc The connection request between two nodes
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4.1 Calculation of Optimum Local Topology

As we have mentioned above, Toptimum is the optimization objective for each
node to optimize local topology, and Toptimum also needs to conform to the
property of CPToptimum. So, the evaluation standards of Toptimum can be con-
cluded as: (1) the distribution of nodes’ degree, and (2) the difference between
the degree of each node with the average degree d in CPToptimum.

Here, we define the local topology of node vi as the topology constructed
by node vi and its neighboring nodes. Then, the criterion of Toptimum can be
calculated as shown in Eq. 3, in which Nl denotes the node number of the local
topology, di denotes the node degree of node vi in the local topology and d
denotes the degree baseline which has been discussed in Sect. 3.2.

O =
∑n

i=1(di − d̄))2

Nl
(3)

Equation 3 computes the variance of all nodes’ degree in local topology with
the average node degree d. The deviation of nodes’ degree from d is lower, the
node degree is more close to the average node degree of network. So, Toptimum

has the minimum value of O. Each node changes its local connection status and
calculates O to assess the changed local topology until find the Toptimum.

In order to keep the network connectivity of CPToptimumunchanged, if one
node breaks the link with its neighboring node, it has to instruct the two relevant
neighboring nodes to build new connection. As illustrated in Fig. 3, for example,
node v0 breaks the link with node v4, because two surfaces share the same link
(v0, v4), the two neighboring nodes v1 and v6 need to build new connection with
each other. Likewise, node v0 breaks the link with v3, then its two relevant
neighboring nodes v2 and v5 build new connection with each other. In this way,
some nodes reduce their degree and the others increase their degree to achieve
the equilibrium of network connectivity.

Fig. 3. The adjustment of local topology of node v0.

The calculation of Toptimum is an optimum result search algorithm from all
the possibilities that each node adjusts its local topology. In the adjustment of
local topology, the parameters in Eq. 3, such as di(1 ≤ i ≤ m) and Nl, also need
to be adjusted according to the changed local topology. Algorithm 1 shows the
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pseudocode of the calculation of Toptimum which is implemented by recursive
algorithm, the detailed workflow of Algorithm 1 is concluded as follows:

(1) Node v0 first calculates the criterion O0 of its original local topology
Toriginal, and stores it in an array L.

(2) Node v0 successively disconnects with one of its neighboring nodes vi to
generate a new local topology Ti. Node v0 calculates the criterion Oi of each
new local topology Ti and stores them in the array L.

(3) Based on each Ti, node v0 recursively executes the step (2) to calculate the
criteria of all the new changed topology until node v0 has no neighboring
nodes. All the calculated criteria are stored in the array L.

(4) Find the minimum value Omin of criterion in array L, and the local topology
related with Omin is the optimum local topology for node v0.

Algorithm 1. Calculation Algorithm of Optimum Local Topology
Input: M: the original connection matrix, Cn: the neighboring nodes set, v0: current

node
Output: T: the connection matrix of Toptimum

1:
2: function Calculation(M, Cn, L) � Recursive algorithm to search all the

possibilities that node v0 changes its local topology
3: if Cn.size() > 0 then
4: for v in Cn do
5: v0 disconnects with v
6: vi, vj ← Surface(v0, v) � Get the two neighboring nodes in the same

surface of node v0 and v
7: vi connects with vj
8: M ′ ← Update(M) � Get the changed topology
9: ot

′ = O(M ′) � Calculate O of the changed topology
10: L.append(ot

′, M ′)
11: Cn

′ = Cn.remove(v)
12: Calculation(M ′, Cn

′, L)
13: end for
14: else
15: return
16: end if
17: end function
18:
19: function Main(M, Cn, L)
20: o = O(M) � Calculate O of the original topology of node v0
21: L.append(o, M)
22: Calculation(M, Cn, L)
23: (ot, Mt) = L.min() � Get the min O and its related local topology
24: return Mt

25: end function
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According to Algorithm 1, each node searches its Toptimum through breaking
links. So, the degree of each node in Toptimum will not exceed its degree in
Toriginal. Toptimum is just an optimization suggestion for each node to optimize
its local topology. The final adjustment of local topology may not completely
conform to the structure of Toptimum because any adjustment of topology should
be confirmed by the relevant nodes.

4.2 Topology Self-optimization via Nodes’ Collaboration

The optimum local topology provides the useful information for each node to
optimize its local topology. But the optimization of each node’s local topology
can not totally depend on the optimum local topology. The effect of topology
adjustment on other nodes also need to be taken into consideration. So, the
self-optimization of topology is achieved by nodes’ collaboration.

Each adjustment of topology involves four nodes, two nodes executing dis-
connection operation and the other two nodes executing connection operation.
So, each adjustment of topology should be confirmed by the relevant four nodes.

(a) The original topology of node
v0.

(b) The optimum topology of node
v0.

Fig. 4. The original topology of node v0 and its calculated optimum topology.

Assume the original topology of node v0 is as shown in Fig. 4(a), and it cal-
culates the optimum topology as shown in Fig. 4(b). To adjust its local topology
from Toriginal to Toptimum, node v0 needs the following operations: (1) the dis-
connection of v0 and v4, the connection of v1 and v6; (2) the disconnection of v0
and v1, the connection of v2 and v6; (3) the disconnection of v0 and v3, the con-
nection of v2 and v5. For convenience of discussion, we use rd and rc to denote
the disconnection request and connection request respectively.

Take the example of the collaboration of node v0, v3, v2 and v5, the detailed
process of these nodes’ collaboration in the adjustment of local toppology can
be described as follows:

(1) Node v0 sends rd to v3 for disconnection, and sends rc to v2 and v5 to instruct
them to build new connection. The criteria of Toriginal and Toptimum of node
v0 are denoted by O0 and O′

0 respectively.
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(2) After node v3, v2, v5 receive rc or rd, they respectively calculate their criteria
O′

3, O′
2 , O′

5 of their local topologies changed according to the request. The
criteria of the original topology of node v3, v2, v5 are denoted by O3, O2,
O5 respectively. If O′

3 ≤ O3, O′
2 ≤ O2, O′

5 ≤ O5, node v3, v2, v5 agree with
the topology adjustment requested by node v0. Otherwise, go to Step (3).

(3) For node vk(k ∈ {2, 3, 5}) and O′
k > Ok, vk calculates the difference Dk

between Ok and O′
k. Node v0 calculates the difference D0 between O0 and

O′
0. If Dk < D0, node vk agrees with the topology adjustment. Otherwise,

go to step (4).
(4) If at least three nodes satisfy the rules shown in step (2) and (3), the topology

adjustment has to be implemented. Otherwise, the local topology involes
these four nodes stays the same.

In each adjustment of local topology, the relevant nodes can arrive at con-
sensus or not that is decided by effect of changed topology on each node. If the
topology adjustment evolves the local topology of relevant nodes to better struc-
ture, of course they should agree with the topology adjustment. If some nodes
get worse topology structure, they compare the effect of topology adjustment
and the node with bigger effect has the decision to adjust topology or not. At
last, the local topology has to be adjusted when at least three nodes arrive at
consensus.

According to the above adjustment process, each node adjusts its local topol-
ogy according to its Toptimum only when the relevant nodes arrive at consensus.
So, the final optimized local topology of each node may not completely accord
with its Toptimum because some neighboring nodes may not arrive at consensus
in topology adjustment.

All nodes adjust their local topology according to their Toptimum, then the
network topology gradually evolves to optimum structure. In case that each
node frequently requests for the topology adjustment to affect the performance
of network communication, we set the topology stability parameter S as shown
in Eq. 4, in which n denotes the node number in the local topology, and Oi

denotes the criterion of node vi’ local topology.

S =
∑n

1 (Or)
n

(1 ≤ r ≤ n) (4)

The topology stability parameter S is the average value of the topology crite-
rion O of all nodes in the local topology. Each node vi calculates the parameter
Si in its local topology. Then, the topology stability condition of node vi can be
set as Si ≤ smax, in which smax is the upper limit parameter for each node to
adjust the sensitivity of the local topology optimization. The parameter smax is
smaller, the node implements the local topology optimization more frequently.

5 Performance Evaluation

In this section, the performance of anti-tracking network based on our proposal is
evaluated through computer simulations. The simulation computer has a 12-Core
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4 GHz CPU and 64 GB RAM. We first evaluate the effectiveness of our proposal
(Topology Self-optimization, TS). Then, we compare TS with other two net-
work topology optimization methods: neural network based network optimiza-
tion method (NN) [22] and distributed hash table based network optimization
method (DHT) [23] in network resilience.

5.1 Evaluation of Network Optimization

To evaluate the effectiveness of our proposal, we use ring topology and centralized
topology seperately illustrated in Fig. 5(a) and Fig. 5(b) to construct a network
with 1000 nodes, and deploy the self-optimization algorithm on this network.
We use dmin, dmax and davg to denote the minimum node degree, maximum
node degree and average node degree of all nodes respectively. We define one
round of network self-optimization as that all nodes finish the optimization of
its local topology. Then we calculate the above criteria in each round of network
self-optimization to analyze the effectiveness of our proposal.

(a) Ring topology. (b) Centralized topology.

Fig. 5. Two topologies for performance evaluation of network self-optimization.

As shown in Fig. 6(a), the network is constructed in ring topology originally.
The node degree of each node is 2. Before each node begins to optimize its
local topology, it has to maintain its local topology in maximum connectivity.
So, dmax increases sharply because the network needs to reach the maximum
connectivity at first. Inevitably, the degree of some nodes will get bigger. After
all nodes reach the maximum connectivity of their local topology, they begin to
optimize their local topology. Then, dmax decreases until the network reaches
the optimal structure. At last, dmax keeps nearly 10, dmin keeps nearly 4, and
davg keeps nearly 6 which accords with the property of CPT shown in Eq. 1.

As shown in Fig. 6(b), the network is constructed in centralized topology
in which one node has connections with all other nodes. So, the center node
has a very high degree. At first, each node needs to maintain its local topology
in maximum connectivity, dmax keeps unchanged for a few rounds. After the
network reaches the maximum connectivity, dmax decreases sharply and keeps
nearly 9 at last. The change of dmax shows the effectiveness of network self-
optimization.
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(a) The change of node degree in the
self-optimization process of network
based on ring topology.

(b) The change of node degree in the self-
optimization process of network based on cen-
tralized topology.

Fig. 6. The change of β values of CPTs, NN, THash in random-p removal and top-p
removal.

In order to present the effectiveness of network self-optimization intuitively,
we calculate the node degree distribution after network self-optimization in ring
topology and centralized topology respectively. Dr denotes the node degree dis-
tribution generated in ring topology, Dc denotes the node degree distribution
generated in centralized topology. As illustrated in Fig. 7, the output topology
of network self-optimization in both ring topology and centralized topology is
almost the same. More than 80% of the nodes have the degree in the interval
[5, 8] which proves that the distribution of node degree is approximately close to
uniform distribution. So, our proposal is effective to optimize the network into
optimal structure.

Fig. 7. The node degree distribution after network self-optimization in different topolo-
gies.
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5.2 Evaluation of Network Resilience

To evaluate the resilience of anti-tracking network based on our proposal, we
compare our proposal (CPTs) with neural network based network (NN) [22]
and distributed hash tables based network (THash) [23] in the same scenario.
NN achieves the self-optimization of network topology by the neural network
algorithm depolyed in each node. THash implements a distributed and effective
network optimization for DHT systems.

We seperately simulate three networks with 2000 nodes according to CPTs,
NN and THash. Through removing p percent of nodes from the three networks
each time, we use the node number of maximum connected graph to measure the
network resilience when confronted to dynamic network scenario. We use Eq. 5 to
quantify the performance of network resilience. G(p) denotes the subgraph after
p percent of nodes is removed from the original network, MCS(G(p)) denotes
the maximum connected subgraph of G(p), Num(g) denotes the node number of
a graph g, NG denotes the node number of the graph G. The metric β measures
the maximum connectivity of the network after some nodes are removed from
the network. The β is higher, the network resilience is better.

β =
Num(MCS(G(p)))

NG
(5)

In the experiments, we use two different ways to remove nodes from network:

– Random-p Removal: In each round of nodes removal, we remove p percent
of nodes from the network randomly.

– Top-p Removal: In each round of nodes removal, we remove p percent of
nodes with the highest degree.

As shown in Fig. 8(a), β of CPTs decreases slowly which means CPTs has
better network resilience in random-p removal than NN and THash. For top-p
removal shown in Fig. 8(b), β of CPTs still decreases slowly, but β of NN and
THash decreases sharply because top-p removal has bigger damage to network
structure. But in both node removal methods, CPTs keeps good performance in
network resilience. As we have mentioned above, the optimal structure of CPT
has the maximum network connectivity conforming to the convex-polytope struc-
ture, and uniform distribution of node degree. So, it is not too much difference
between top-p removal and random-p removal in the network with balanced
distribution of node degree. Consider the ideal situation, if the node degree
of all nodes in the network with TS is close to 6 (the average node degree of
CPToptimum), the removal of any nodes has the same effect on the topology
structure.
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(a) Random-p Removal. (b) Top-p Removal.

Fig. 8. The change of β values of CPTs, NN, THash in random-p removal and top-p
removal.

6 Conclusion

In this paper, we propose a topology self-optimization method for anti-tracking
network via nodes distributed computing. Our proposal applies convex-polytope
topology (CPT) in the construction of anit-tracking network. Based on CPT,
we achieve the topology self-optimization for anti-tracking network. We also
define an optimum structure of CPT in which network has maximum network
connectivity and balanced distribution of node degree. Each node optimizes its
local topology, then the whole network evolves into optimum structure of CPT
through the collaboration of all nodes. Each node first calculates its optimum
local topology according to its local topology situation. Then, each node nego-
tiates with its neighboring nodes to adjust its local topology according to the
calculated optimum local topology. When the relevant nodes arrive at consensus,
the local topology will be adjusted according to the optimum local topology. Or,
they will keep the local topology unchanged to make sure each adjustment of
local topology is beneficial to all the relevant nodes.

In the experiments, we evaluate the network optimization and network
resilience of our proposal. The experimental results show that our proposal has a
good performance in network optimization. The network based on our proposal
can achieve topology self-optimization effectively. Compared with the current
network optimization methods, our proposal has better network resilience when
confronting to dynamic network environment.
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