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Abstract. Mobile Crowdsensing (MCS) platforms often require workers to
provide their locations for task allocation, which may cause privacy leakage. To
protect workers’ location privacy, various methods based on location obfusca-
tion have been proposed. MCS over road networks is a practical scenario.
However, existing work on location protection and task allocation few considers
road networks and the negative effects of location obfuscation. To solve these
problems, we propose a Privacy Protection Task Allocation framework (PPTA)
over road networks. Firstly, we introduce Geo-Graph-Indistinguishability
(GeoGI) to protect workers’ location privacy. And then we model a weighted
directed graph according to the road network topology and formulate a linear
programming to generate an optimal privacy mechanism, which aims to mini-
mize the utility loss caused by location obfuscation under the constraint of
GeoGI. We also improve the time-efficiency of the privacy mechanism gener-
ation by using a d-spanner graph. Finally, we design an optimal task allocation
scheme based on obfuscated locations via integer programming, which aims to
minimize workers’ travel distance to task locations. Experimental results on
Roma taxi trajectory dataset show that PPTA can reduce average travel distance
of workers by up to 23.4% and increase privacy level by up to 21.5% compared
to the existing differential privacy methods.

Keywords: Mobile Crowdsensing � Location privacy � Task allocation � Road
network � Linear programming

1 Introduction

Mobile Crowdsensing (MCS) [1] is an emerging paradigm that combines of crowd-
sourcing and mobile devices, it engages workers to collect urban-scale sensing data
with sensor-equipped smartphones. MCS has the advantages of low sensing cost, wide
coverage, flexible deployment and strong computing capability, and enables a large
number of applications in real-life, such as air quality monitoring [2], traffic infor-
mation mapping [3], and feature description of interest points [4]. Task allocation [5] is
an important part in MCS that can significantly impact the efficiency of MCS. It can be
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distinguished into two scenarios: Worker Selected Task (WST) and Server Allocated
Task (SAT). In this paper, we focus on the SAT.

In the SAT, workers need to upload their locations to MCS platforms for task
allocation. When an adversary observes the location, he/she may infer worker’s reli-
gion, home/working address, interest preference [6], etc. Therefore, it is necessary to
protect worker’s location privacy in task allocation.

In recent years, lots of work has been proposed for location privacy protection, and
most of them focused on the obfuscation-based methods which allow workers to
upload obfuscated locations instead of actual locations to MCS platforms. However,
these solutions still have the following limitations.

(1) Most work on location protection and task allocation [7, 8] does not consider road
networks. They assume that the location can be obfuscated to any point in a 2-
dimensional distribution. As shown in Fig. 1(a), if the location is obfuscated to an
unreasonable place, such as on a lake, in a forest, or on a railroad. An adversary can
infer that this location is not true and use an attack model (such as Bayesian
inference attack) to predict the worker’s actual location, which may increase the
risk of privacy leakage. Moreover, these methods assume that the distance between
locations is measured by the Euclidean distance. When workers’ mobility (such as
driving) is restricted by road networks, this assumption may cause high utility loss.
As shown in Fig. 1(b), the locations u1 and u2 are obfuscated to the locations u

0
1

and u
0
2. The Euclidean distance from u

0
1 to t and from u

0
2 to t on 2D are 650 m and

620 m, respectively. For optimal task allocation, task t should be assigned to
worker u2. However, the shortest distance from u

0
1 to t and from u

0
2 to t are 940 m

and 1780 m (unavoidable detour) over road networks. The utility loss caused by u
0
2

reaches 1160 m, which is much higher than that of u
0
1 (290 m). Hence, the road

network is a factor that cannot be ignored in privacy protection and task allocation.

(2) Existing work based on obfuscated methods [7, 9] usually takes the obfuscated
locations provided by workers as the actual locations for task allocation. This
means that they did not consider the influence of location obfuscation on task
allocation efficiency, which is not reasonable and may cause high utility loss.

Fig. 1. Influence of road networks on privacy and task allocation
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Recently, Geo-Graph-Indistinguishability (GeoGI) [10] has been presented in
Location-Based Services (LBS) and an implementation method-Graph Exponential
Mechanism (GEM) is proposed to solve the problem of privacy protection over road
networks. However, task allocation is not considered in LBS. Therefore, GEM is not
suitable to solve the problems raised in this paper. To tackle the above problems, we
design a new privacy mechanism satisfying GeoGI and propose a Privacy Protection
Task Allocation framework (PPTA) over road networks. In a nutshell, our contribu-
tions can be summarized as follows.

1) To protect workers’ location privacy while preserving high utility in task allo-
cation over road networks, we first propose to introduce Geo-Graph-
Indistinguishability (GeoGI) to MCS and model a weighted directed graph
according to the road network topology. Based on the graph, we formulate a linear
programming to generate an optimal privacy mechanism, which can minimize the
utility loss caused by location obfuscation under the constraints of GeoGI. We also
improve the time-efficiency of the privacy mechanism generation by using d-
spanner graph.
2) To reduce the impact of location confusion on task allocation, we take the
privacy mechanism proposed in PPTA as a key parameter to generate the task
allocation scheme. With this idea, we formulate the problem of the optimal task
allocation scheme generation as an integer programming, which aims to minimize
workers’ travel distance to task locations.
3) Experimental results on Roma taxi trajectory dataset show that PPTA can reduce
the average travel distance of workers by up to 23.4% and increase privacy level by
up to 21.5% compared to the existing differential privacy methods.

2 Preliminary

The MCS system consists of three parties, i.e., task requester, MCS platform and
worker. The MCS platform is usually honest-but-curious, i.e., the platform assigns
tasks to workers based on their obfuscated locations, but the platform is curious about
the actual locations of workers. Therefore, we should protect workers’ locations before
uploading to the MCS platform. Consider the workers’ mobility (such as driving) is
restricted by road networks, we can represent the road network by a set of roads. When
a road intersects, joins with other roads, or turns in a different direction, a connection is
created. These connections divide roads into multiple road segments, which only
connect with other road segments at their endpoints. Therefore, the road network of a
city can be represented by a weighted directed graph G ¼ V ;Eð Þ, where V is the vertex
set representing road intersections and E is the edge set representing road segments. All
vertices in V are on the road network, and for any pair of vertices vk; vl 2 V , the weight
of edge vk; vlð Þ is the shortest distance dg vk; vlð Þ. Next, we introduce the privacy model
and the adversary model.
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2.1 Privacy Model

Geo-Graph-Indistinguishability (GeoGI) [10] is a novel location differential privacy
model originally proposed for LBSs over road networks. It ensures that an adversary
could not infer users’ true locations from their released obfuscated locations. The
location obfuscation process is to input an actual location u and output an obfuscated
location u′ through the probability matrix P. The probability matrix P is the key to
realize GeoGI, which encodes the probability of obfuscating from a location to any
location. GeoGI provides a feasible way to solve the problem of privacy protection for
MCS over road networks.

The multiplicative distance between two distributions r1, r2 on some set S as

dpðr1, r2Þ = supS2Sjln r1ðSÞ
r2ðSÞ j, with the convention that jln r1ðSÞ

r2ðSÞ j = 0 if both r1, r2 are

zero and 1 if only one of them is zero. Then, given e 2 Rþ , Geo-Graph-
Indistinguishability is defined as follows:

Definition 1. (Geo-Graph-Indistinguishability) [10]. A probability matrix P on the
road network G ¼ ðV ;EÞ satisfies Geo-Graph-Indistinguishability iff 8u1; u2; u0

in V,

dp P u0ju1ð Þ;P u0ju2ð Þð Þ� edg u1; u2ð Þ ð1Þ

where P u
0 ju1

� �
is the probability of obfuscating u1 to u

0
, dg u1; u2ð Þ is the shortest

distance from u1 to u2 on the road network, and privacy budget e is a parameter of
GeoGI. The smaller e, the higher privacy.

The definition can be also formulated as 8u1; u2; u0 2 V,
P u

0 ju1ð Þ
P u0 ju2ð Þ � eedg u1;u2ð Þ: This

formulation implies that GeoGI is an instance of dx-privacy [11] proposed by
Chatzikokolakis et al. The authors showed that an instance of dx-privacy guaranteed
strong privacy. Intuitively, this definition guarantees that if the obfuscation location is
u

0
, for any two locations u1 and u2 in V , the obfuscating probability of them to u

0
is

approximate. Even though an adversary knows the obfuscated location u
0
and the

probability matrix P, he/she cannot distinguish which one is the actual location. It is
worth noting that GeoGI relies on a city’s road network topology, and this results in the
privacy protection level and utility varying depending on the road network even if the
privacy parameter remains the same.

Specifically, in contrast to consider individual people’s location [12] in LBS, task
allocation efficiency in MCS depends on all the workers’ locations. As shown in Fig. 2
(a), we assume a scenario with one worker u1 and four tasks t1, t2, t3, t4. Due to task
t1; t2 are closer to worker u1, task t1; t2 will be allocated to worker u1: When a new
worker u2 is added, as shown in Fig. 2(b), where dg u1; t3ð Þþ dg u2; t2ð Þ\
dg u1; t2ð Þþ dg u2; t3ð Þ: For optimal task allocation, MCS platform will select worker u1
perform task t1; t3 and worker u2 perform task t2; t4. Therefore, the workers’ location
distribution must be considered in the generation of the probability matrix.
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2.2 Adversary Model

We assume that workers’ locations in MCS may suffer from Bayesian inference attack
[6], i.e., if an adversary knows probability matrix P, worker’s obfuscated location u

0

and location distribution p uð Þ, he/she can estimate the posterior distribution r buju0ð Þ of
the actual location u by resorting to the Bayes’ Equation [13]. It is defined as follows:

r bu u0jð Þ ¼ P u0jbuð Þ � p buð ÞP
u�2V P u0ju�ð Þ � p u�ð Þ ð2Þ

where u
0
is the obfuscated location, bu is the location inferred by an adversary when

observing the location u
0
, u� is any location in V , and P u

0 jbu� �
is the probability of

obfuscating bu to u0.
We use the inference error (IE) proposed by Shokri et al. [14] to quantify the

privacy level of a mechanism. The researchers translated location privacy into IE by
measuring how accurately an adversary could infer the worker’s actual location. For-
mally, IE can be formulated as follows:

IE pa;P; r; dg
� � ¼ X

u2V

X
u02V

X
bu2V

paðuÞPðu0juÞrðbuju0Þdgðu; u0Þ ð3Þ

where pa uð Þ is the prior knowledge of workers’ location distribution by an adversary,
P u

0 ju� �
is the probability of obfuscating u to u

0
, r buju0ð Þ is the posterior distribution of

the actual location u, and dg u; buð Þ is the shortest distance from u to bu on the road
network.

Due to a probability matrix P satisfies GeoGI, it can limit the promotion of an
adversary’s posterior knowledge rðuju0Þ about workers’ distribution over the prior
knowledge pa, i.e., rðuju0Þ=pa � eeD Rð Þ where DðRÞ is the maximum distance of any
two locations in region R. Please refer to [15] for the theoretical proof.

Consider an extreme situation, if an adversary knows the exact location of the
worker through some ways in advance, then IE will always be zero. Therefore, we
assume that the prior knowledge of the adversary pa uð Þ is equivalent to the public
knowledge of workers’ location distribution pðuÞ (e.g., leaked by public check-ins
[16]).

Fig. 2. Influence of workers distribution in task allocation
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3 PPTA Framework

In this section, we introduce the PPTA framework. Figure 3 shows the overview of
PPTA which consists of two modules: Location Obfuscation and Task Allocation
Based on Obfuscated Locations. In the first module, the MCS platform needs to obtain
workers’ location distribution based on the historical sensing data and uses it as a
parameter to generate a probability matrix via linear programming. After the platform
generates the matrix, workers can download it into their smartphones, and then
obfuscate their actual locations according to the probabilities encoded in the matrix.
The obfuscated locations are uploaded to the platform for task allocation. In the second
module, after receiving workers’ obfuscated locations, the platform will assign tasks to
proper workers, attempting to minimize the total traveling distance to the task loca-
tions. Since workers’ uploaded locations are obfuscated, directly seeing them as actual
locations for task allocation is not reasonable. Therefore, the probability matrix should
be considered in the generation of a task allocation scheme for better allocation
efficiency.

3.1 Location Obfuscation

In PPTA, each worker obfuscates his/her location through the probability matrix and
uploads the obfuscated location to the MCS platform. Figure 4 shows an example of
probability matrix, where workers’ possible location is discrete into five vertices
fv1; v2; v3; v4; v5g. In this case, the probability matrix generated by the MCS platform is
a 5 � 5 matrix. If the worker’s actual location is v2, according to the matrix, the
probabilities that the worker outputs v1; v2; v3; v4; v5 as the obfuscated location are 0.1,
0.3, 0.1, 0.1 and 0.4, respectively. Because the generation of probability matrix satisfies
GeoGI, even if an adversary knows the obfuscated location and probability matrix,
he/she cannot infer the actual location of the worker.

Fig. 3. PPTA framework
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Although traditional privacy mechanisms provide a simple way to achieve privacy
protection, these methods are independent of the prior knowledge of workers’ location
distribution which may cause high utility loss. To reduce this loss, we take the workers’
distribution as a key parameter to generate the probability matrix P, which can be
calculated from the workers’ historical sensing data.

According to [17], the definition of utility loss (UL) is given:

UL ¼
X
v2V

X
v02V

p vð ÞP v0jvð Þdg v; v0ð Þ ð4Þ

where p vð Þ is the workers’ distribution, P v0jvð Þ is the probability of obfuscating v to v′,
and dg(v, v′) is the shortest distance from v to v′ over road networks.

Given a group of locations fv1; v2; . . .; vng in region, a distance measure dg, overall
location distribution of workers p vð Þ and privacy budget e, the process of finding an
optimal privacy mechanism P to minimize the utility loss is defined as follows:

Definition 2 [17]. Given a prior location distribution p, a distance measure dg and a
privacy budget e, a privacy mechanism P is GeoGI-OptUL ( p, dg) iff:

1. P is geo-graph-indistinguishability and
2. for all mechanisms P′, if P′ is geo-graph-indistinguishability then

UL P; p; dg
� ��UL P0; p; dg

� �
:

Note that GeoGI-OptUL (p, dg) optimizes UL given a privacy constraint of GeoGI.
Now, we can formulate the problem of privacy mechanism generation (PMG) as a
linear programming, which can minimize the utility loss:

min
P

X
v2V

X
v02V

pðvÞPðv0jvÞdgðv; v0Þ ð5Þ

subject to : Pðv0jv1Þ� eedgðv1;v2ÞPðv0jv2Þ; v1; v2; v
0 2 V ð6Þ

X
v02V

Pðv0jvÞ ¼ 1; v 2 V ð7Þ

Fig. 4. Example of probability matrix
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Pðv0jvÞ� 0; v; v0 2 V ð8Þ

where constraint (6) is the definition of GeoGI, the shortest distance dg from workers to
tasks is calculated by Dijkstra’s algorithm on the road network and updated by the
MCS platform before each round of task allocation. Therefore, the road network is
considered in PMG. Constraints (7–8) are the basic requirements of probability.
Obviously, PMG satisfies GeoGI.

It should be noted that PPTA does not need workers to upload locations frequently,
only once in PPTA. The location obfuscation runs completely in the worker’s smart-
phone, so no one else knows the worker’s actual location.

3.2 Task Allocation Based on Obfuscated Locations

We consider a scenario whereM tasks need to be allocated to N workers (N\M). After
the locations of N workers have been obfuscated and uploaded to the MCS platform,
the task allocation scheme designs by the MCS platform can be represented by an
indicator matrix X ¼ fxi;jgN�M , where the matrix element xi;j indicates whether task j is
allocated to worker i, i.e., xi;j= 1 if task j is assigned to worker i; otherwise, xi;j = 0. The
matrix X needs to satisfy the constraints: (1)

P
ixi;j � p; 8j j ¼ 1; . . .;Mð Þ, i.e., at least p

workers are required to perform a task. (2)
P

jxi;j � q; 8i i ¼ 1; . . .;Nð Þ, i.e., each
worker needs to perform at least q tasks. For the MCS platform, considering the
phenomenon of malicious uploading data by workers, constraint (1) is to improve the
quality of data. For workers, constraint (2) is to accept more tasks in a single task
allocation without uploading location multiple times can not only improve the revenue,
but also reduce the risk of privacy leakage.

The goal of task allocation is to ensure each task should be assigned to workers and
the total travel distance of workers is minimized, which is also known as a common
metric to measure the task allocation efficiency. Hence, we formulate the optimal task
allocation scheme as follows, and solve it with an integer programming.

min
x

X
u02V

X
t2V

d
0
gðu0; tÞxðu0; tÞ ð8Þ

subject to : x u0; tð Þ 2 0; 1f g; 8u0; t 2 V ð9Þ
X
t2V

xðu0; tÞ� q; 8u0 2 V ð10Þ

X
u02V

xðu0; tÞ� p; 8t 2 V ð11Þ

where d
0
g u

0
; t

� �
represents the travel distance from the obfuscated location u

0
to the task

t over road networks. x is the task allocation scheme generated by the MCS platform
according to the obfuscated locations.

Due to the MCS platform receives the obfuscated locations, it is unreasonable to
directly regard them as the actual locations for task allocation. Although the privacy
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mechanism designed in this paper has taken it into account, it still brings high utility
loss. According to the definition of probability matrix P, any two locations are
obfuscated to the same location is approximate. That means, for an obfuscated location,
all locations in region may be its actual location. Therefore, we combine the probability
matrix into the generation of task allocation scheme and use the distance from all
possible locations to the task instead of the distance from the obfuscated location to the
task. The mathematical relationship is as follows:

d
0
g u0; tð Þ ¼

P
u2V p uð ÞP u0juð Þdg u; tð ÞP

u2V p uð ÞP u0juð Þ ð12Þ

From the above formulation, we can find that the higher the obfuscated probability
of a location, the more likely it is to be the actual location, and the larger its distance
weight, the lower the effect of location obfuscation on task allocation. Finally, by
plugging Eq. (12) into Eq. (8), we can get a final objective function:

min
x

X
u02V

X
t2V

P
u2V p uð ÞP u0juð Þdg u; tð ÞP

u2V p uð ÞP u0juð Þ x u0; tð Þ ð13Þ

The value range of the variable x in the model is limited to integer, thus this is an
integer programming. The above two mathematical models can be solved by standard
LP approaches, such as the simplex methods, or the advanced program solver (e.g.,
CPLEX, Lingo).

3.3 Speed-Up with d-Spanner Graph

In the process of PMG, the number of constraints (6) is O(|V|3), which makes the
method proposed in this paper difficult to extend to large-scale regions in real-life.
Considering the total number of constraints to generate the task allocation scheme is O
(|N||M|), which is far less than O(|V|3). Thus, we only need to optimize PMG, which is
the most time-consuming part in PPTA. Some common approaches, such as the dual
form of linear programming, can be used to speed up PMG. However, although there
are fewer constraints, the constraints in the dual problem will become more complex,
so it is not practical.

We speed up PPTA by using d-spanner graph. It ensures that for a given obfuscated
location, it compares whether the obfuscating probability of adjacent locations in
region satisfies GeoGI, rather than any two locations. According to [17], we construct a
d-spanner graph, which contains all the vertices in a weighted directed graph but
reduces the number of edges. Stretch factor d is an important parameter of d-spanner
graph, which represents the maximum ratio of the distance between any two vertices in
two graphs. The definition is as follows:

Definition 3. (Dilation) [17]. Let Gd ¼ V ; Ed be a spanner graph. The dilation of Gd

is calculated as:
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d ¼ max
v2V ;v02V ;v6¼v0

dgd v; v0ð Þ
dg v; v0ð Þ ð14Þ

A spanner with dilation d is called a d-spanner graph.
Now, to speed up PPTA, we introduce d-spanner graph to GeoGI and the following

theorem holds:

Theorem 1 [18]. If GdðV ;EdÞ is a d-spanner graph, and a probability matrix P
satisfies:

Pðv0jv1Þ� e
e
ddgdðv1;v2ÞPðv0jv2Þ; ðv1; v2Þ 2 Ed; v

0 2 V ð15Þ

Then, P satisfies Geo-Graph-Indistinguishability.
Proof. According to Eq. (14), we can obtain

dgd v; v0ð Þ=d� dg v; v0ð Þ; 8v; v0 2 V ð16Þ

By using Eq. (6) and Eq. (16), we can derive

P v0jv1ð Þ� e
e
ddgd v1;v2ð ÞP v0jv2ð Þ� eedg v1;v2ð ÞP v0jv2ð Þ; 8 v1; v2ð Þ 2 Ed; v

0 2 V ð17Þ

This concludes the proof.
According to Definition 3 and Theorem 1, the mathematical model of PMG is

updated:

min
P

X
v2V

X
v02V

p vð ÞP v0jvð Þdgd v; v0ð Þ ð18Þ

subject to : P v0jv1ð Þ� e
e
ddgd v1;v2ð ÞP v0jv2ð Þ; 8 v1; v2ð Þ 2 Ed; v

0 2 V ð19Þ
X
v02V

Pðv0jvÞ ¼ 1; v 2 V ð20Þ

Pðv0jvÞ� 0; v; v0 2 V ð21Þ

The number of constraints (19) is O(| Ed||V|) by using d-spanner graph. For a d-

spanner graph [17], |Ed| =
Vj j

d�1, thus the number of constraints in PMG can be reduced
from O(|V|3) to O(|V|2) approximately. Following previous work [17], when d equal to
1.08, the experimental effect is the best.

4 Evaluation

In this section, we first evaluate the performance of the proposed PPTA framework in
terms of privacy and utility with a real-world dataset. Then, we evaluate the time-
efficiency of PMG before and after the optimization of d-spanner graph.
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4.1 Experiment Configurations

Evaluation Scenario
We conduct experiments by using a publicly real-world taxi trajectory dataset in Roma
[23]. The dataset contains GPS coordinates of approximately 320 taxis collected over
30 days and some of them are selected for the experiments. The longitude range of the
selected dataset is (12.418, 12.574) and the latitude range is (41.859, 41.947). Most of
the data is in the central of Roma and a small percentage in the suburbs. We select to
use a taxi dataset since taxi services can be regarded as a MCS application type (taxi
driver can be considered as a worker, passenger can be considered as a task).

To evaluate the PPTA, we set up the experiments with different parameters. The
privacy budget e ranges from ln (2) to ln (8). e is usually chosen by workers, for
simplicity, we set the same e for each worker in the experiment. In each round of task
allocation (a round is set to 1 h), the number of workers (N) ranges from 15 to 40, and
the number of tasks (M) ranges from 45 to 120. Note that before each round of task
allocation, we learn workers’ location distribution p uð Þ according to workers’ historical
sensing data. We also conduct experiments for different task distributions (Fig. 5),
which are compact, scattered and hybrid. Finally, we change the size of the region to
evaluate the time-efficiency of PMG before and after the optimization of d-spanner
graph.

In this paper, we use Lingo to solve two linear programming problems, and python
is used for experiments. All experiments are conducted on inter (R) core (TM) i7-
4710 hq CPU@2.5 GHz, 8 GB RAM, win10 OS.

Evaluation Metrics
ATD (Average Travel Distance). Lots of work [7, 9] considers workers’ travel distance
to task locations as an important factor in task allocation. Following previous work, we
use ATD as the utility metric, which can be calculated as:

ATD ¼
X

ðu;tÞ2X
dgðu; tÞ= xj j ð22Þ

where jxj is the total number of tasks allocated to workers. The smaller the ATD, the
lower the utility loss is.

Fig. 5. Three types of task distribution
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IE (Inference Error). An adversary can infer worker’s actual location by resorting to
the Bayes’ Equation, if he/she knows the worker’s upload location, workers’ location
distribution and probability matrix. We use IE (Eq. (3)), i.e., the expected distortion
from the inferenced location (by adversary) to the actual location, to quantify the
privacy level of PPTA. If IE is smaller, the privacy level of the mechanism is lower.

Baselines
Laplace Mechanism (LAP) [7]. Laplace is a traditional differential privacy mechanism
and tends to obfuscate a location to its nearby location with high probability. Its
probability distribution is derived from a two-dimensional version of the Laplace
distribution as follows.

Plap u0juð Þ / e�e
de u;u0ð Þ
D Rð Þ ð23Þ

where de is the Euclidean distance. DðRÞ is the maximum distance between any two
locations in the region R.

Exponential Mechanism (EXP) [19]. Exponential mechanism is also widely used to
achieve differential privacy. In the design of Exponential mechanism, a scoring func-
tion needs to be modeled to obtain high utility. Given a location, a better obfuscation
should be assigned a higher score. In MCS, a higher score is preferred for the location
obfuscation that leads to lower utility loss. With this idea, we design the following
Exponential mechanism.

Pexpðu0juÞ / e
e
2�ð1�

dgðu;u0Þ
maxu�2R dgðu;u�ÞÞ ð24Þ

Graph Exponential Mechanism (GEM) [10]. Graph exponential mechanism employs
the idea of exponential mechanism. This mechanism considers road networks so that
high utility can be expected. Moreover, since this mechanism satisfies GeoGI, strong
privacy based on differential privacy is guaranteed. The obfuscated probability is as
follows.

Pgemðu0juÞ / e�
e
2dgðu;u0Þ ð25Þ

No Privacy Protection. No privacy protection means that the MCS platform knows all
workers’ actual locations, which can be regarded as the lower bound of ATD for task
allocation based on obfuscated locations.

4.2 Experimental Results

Utility
In the experiment, we first evaluate PPTA in term of utility (task allocation efficiency).
If ATD is closer to No Privacy, the utility loss is lower. It can be seen from Fig. 6(a)
that all the methods (except No Privacy) will lead to the continuous decrease of ATD,
as the privacy budget e increases. According to the definition of differential privacy, a
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larger e denotes the lower privacy level, which leads to a location will be obfuscated to
its nearby location with a high probability. Thus, ATD shows a downward trend. In
addition, privacy budget e cannot influence on the No Privacy, so the ATD of No
Privacy stays the same. In comparison of the four privacy mechanisms, the ATD
generated by Laplace mechanism is the largest. This is because Laplace mechanism
does not consider the characteristics of road networks and use Euclidean distance,
resulting in traditional differential privacy mechanisms are not suitable to provide
location protection over road networks. Graph exponential mechanism and Exponential
mechanism add road network constraints in the design process, so their utility loss is
lower than Laplace mechanism. For the Exponential mechanism, we redesign its
scoring function so that a location will be obfuscated with a higher probability to a
location with smaller utility loss. As for Graph exponential mechanism, it is a privacy
mechanism proposed in LBS, which does not consider task allocation. Therefore,
compared with the Exponential mechanism, the application of Graph exponential
mechanism to MCS will result in a larger utility loss. From the experimental results, we
can find that these methods still have a certain gap with PPTA in term of utility. The
main reason for this situation is that PPTA considers the influence of location obfus-
cation on task allocation and reduces the influence in the optimization model.

Figure 6(b) describes the relationship between the number of tasks and ATD. It can
be seen from Fig. 6(b) that with the increase of number of tasks, ATD shows an
upward trend. This is because when the number of tasks increases, each worker needs
to perform more tasks to complete the task requirements of each round. From the
experimental results, we can find that ATD generated by PPTA is always smaller than
the other three privacy mechanisms. Figure 6(c) describes the relationship between the
number of workers and ATD. As the number of workers increases, ATD shows a
downward trend. This is because workers who upload their locations will be assigned
tasks (otherwise privacy will be sacrificed in vain) and there are more choices to assign
tasks for the platform. Compare with other privacy mechanisms, PPTA generates the
smallest ATD regardless of the number of workers or tasks and has a stable
performance.

We also evaluate the effect of different task distributions on utility: compact dis-
tribution, scattered distribution, and hybrid distribution. From previous experiments,
we can find that Exponential mechanism performed better than Laplace mechanism and

Fig. 6. Varying privacy budget, task number, and worker number
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Graph exponential mechanism in term of utility, so we only compare Exponential
mechanism and PPTA. As shown in Fig. 7, we can find that the scattered distribution
generates the largest ATD of three task distributions, and the compact distribution has
the smallest ATD. This is because the distance between tasks under the scattered
distribution is longer than other two task distributions, and workers need to travel a
longer distance to accomplish all tasks. From the experimental results, we can also find
that no matter compact, scattered or hybrid, PPTA generates much smaller ATD than
Exponential mechanism. This means that our proposed method can achieve stable
performance across different distributions. Noted that compared with the scattered and
hybrid distribution, ATD generated by PPTA and Exponential mechanism under the
compact distribution is the closest to no privacy, which indicates that the compact
distribution has the lowest influence on utility. On the contrary, the scattered distri-
bution has the greatest influence on utility.

Privacy
We next evaluate PPTA in term of privacy. If IE is smaller, the privacy level of
mechanism is lower. As shown in Fig. 8, as e increases, all methods lead to the
continuous decrease of IE. According to Eq. (3), we can find that a larger e means the
adversary’s inferenced location is closer to the actual location. Thus, IE shows a
downward trend. With the comparison of other three mechanisms (LAP, GEM, EXP),
the IE generated by PPTA is the largest which indicates PPTA provides the best
privacy protection under the same privacy budget e. From the experimental results,
when e is ln (5), the largest difference in IE between PPTA and other privacy mech-
anisms. It means that when consider both privacy and utility in MCS, the privacy
budget e set as ln (5) has a best effect. As shown in Fig. 6(a) and Fig. 8, when the
privacy budget e is constantly increasing, ATD of PPTA is closer to No Privacy and the
task allocation efficiency is improved. However, IE is constantly decreasing and the
privacy level will be lower.

Fig. 7. Varying task distribution (e = ln (4), N = 15, M = 45)
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Time-Efficiency
In Sect. 3.3, we have theoretically proved that the number of constraints in PMG is
reduced to O(|V|2) by using d-spanner graph, where jV j denotes the number of vertices
in the graph. We repeat the experiments many times and record the mean time, which
takes about 1 min 45 s (19 s after the optimization) and 3 s to generate probability
matrix and task allocation scheme, which is totally acceptable in real-life MCS
applications.

As shown in Fig. 9(a) (b), after optimization, the number of iterations and the
corresponding computation time of PMG have been significantly reduced when the
location number equals 25, 49, 81. From the experimental results, we can find that the
larger the location number, the more significant the optimization effect. When the
locations’ number reaches 81, the computation time is shortened by five times and the
number of iterations is reduced by nearly half after optimization.

Fig. 8. Varying privacy budget (N = 15, M = 45, hybrid)

Fig. 9. Varying region size (e = ln (4), N = 15, M = 45, hybrid)
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5 Related Work

In recent years, a variety of location privacy protection approaches have been proposed,
such as anonymity [20], encryption [21], etc. However, these works have the drawback
of dependence on trustful platforms and high cost. To address these problems, we focus
on obfuscation-based methods, and differential privacy has been applied to address
location privacy issues in MCS.

In the context of sparse MCS, Wang et al. [18, 22] propose a privacy protection
framework, which takes into account the level of privacy, the prior knowledge about
workers’ location distribution, and the data quality loss due to location obfuscation.
Particularly, the framework can provide a guaranteed level of differential and distortion
privacy with reduced data quality loss in Sparse MCS applications. However, they only
evaluate the data quality loss and do not consider the privacy level of the proposed
framework. Yang et al. [7] analyzes the shortcomings of existing works and propose a
mixed integer nonlinear programming model which aims at minimizing workers’ travel
distance. It uses differential geo-obfuscation to protect workers’ location privacy
regardless of adversaries’ prior knowledge, without the involvement of any trustful
third-party. However, it does not consider the adversary attack and use Euclidean
distance as a metric, which still has some defects in privacy and utility. Liu et al. [8]
consider two kinds of task allocation scenarios, multi-task with few workers and few
tasks with multi workers. They design the multi-objective optimization model and
propose the W-ILP and C-ILP algorithms to select workers with the minimum total
incentive payments and minimum total travel distance. However, they did not consider
the road networks, which may cause insufficiencies in terms of privacy and utility.

6 Conclusion

In this paper, we have proposed a Privacy Protection Task Allocation framework
(PPTA) to protect workers’ location privacy for MCS over road networks. We intro-
duce GeoGI and model a weighted directed graph according to the road network
topology. Then, we formulate a linear programming to generate an optimal privacy
mechanism. It considers the level of privacy protection, the prior knowledge about
workers’ location distribution and the utility loss due to location obfuscation. We also
improve the time-efficiency of the privacy mechanism generation by using d-spanner
graph. Finally, we design an optimal task allocation scheme based on obfuscated
locations by using an integer programming, which aims to minimize workers’ travel
distance to task locations. Experimental results on Roma taxi trajectory dataset show
that PPTA can reduce average travel distance of workers by up to 23.4% and increase
privacy level by up to 21.5% compared to the existing differential privacy methods.

In this paper, we assume that the workers are not related to each other. However,
this assumption may not be reasonable. Adversary may learn about workers’ correla-
tion from their check-in records, which may cause unexcepted privacy leakage. In the
future, we will aim at researching this correlation attack and will propose a corre-
sponding solution.
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