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Abstract. This paper proposes a method for collaborative exploration
adopting multiple UAVs in an unknown GPS-denied indoor environ-
ment. The core of this method is to use the Tracking-D*Lite algorithm
to track moving targets in unknown terrain, combined with the Wall-
Around algorithm based on the Bug algorithm to navigate the UAV in
the unknown indoor environment. The method adopts the advantages
of the above two algorithms, where the UAV applies the Wall-Around
algorithm to fly around the wall and utilizes the Tracking-D*Lite algo-
rithm to achieve collaboration among UAVs. This method is simulated
and visualized by using Gazebo, and the results show that it can effec-
tively take the advantages of multiple UAVs to explore the unknown
indoor environments. Moreover, the method can also draw the boundary-
contour map of the entire environment at last. Once extended to the real
world, this method can be applied to dangerous buildings after earth-
quakes, hazardous gas factories, underground mines, or other search and
rescue scenarios.

Keywords: Multi-UAV collaboration · Target tracking · Path
planning

1 Introduction

In the past few years, unmanned aerial vehicles (UAVs) have been widely used
in military and civilian fields due to their high cost-effectiveness, flexibility, and

This work was supported by the National Key Research and Development Program of
China(2017YFB1001901) and the National Natural Science Foundation of China under
Grant No. 61906212.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

H. Gao and X. Wang (Eds.): CollaborateCom 2021, LNICST 406, pp. 191–209, 2021.

https://doi.org/10.1007/978-3-030-92635-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92635-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-92635-9_12


192 N. Li et al.

durability. Due to its flexibility and low risk, UAV has extensively developed in
exploring the indoor environments [1]. UAVs have great application scenarios
for the exploration of dangerous indoor spaces, such as factories with toxic gas
leaks, dangerous buildings after earthquakes, and areas with dangerous nuclear
radiation. However, it is very difficult for UAVs to navigate automatically in a
GPS-denied unknown indoor environment. Also, A single UAV can use Simul-
taneous Localization And Mapping(SLAM) method [2] to explore an unknown
environment, but it will take up a lot of computing time and storage perfor-
mance. Therefore, in order to reduce the computational cost of UAVs and the
time to search for unknown indoor environments, a collaborative exploration
strategy can be adopted through multiple UAVs. This strategy enables them
to quickly explore the entire unknown indoor environment at a relatively small
cost and provide timely and effective information for subsequent tasks, such as
exploration and rescue at accident or disaster sites, building and public facilities
inspection, etc.

The collaborative exploration between multi-UAVs needs to provide a flexi-
ble and robust exploration strategy since the absence of map information. In a
GPS-denied unknown indoor environment, the design of the exploration strategy
not only needs to coordinate many UAVs but also needs to be equipped with
automatic positioning, flight, and obstacle avoidance navigation algorithms for
each UAV. Also, the navigation strategy must ensure that each UAV should
search for unknown areas as efficiently as possible and cover the largest range.
Moreover, the navigation strategy should avoid repeated exploration between
UAVs during searching. Finally, the strategy ought to be robust, the failure of
a single UAV will not cause the failure of the whole search process, thereby
improving the stability of the entire strategy.

This paper proposes a collaborative exploration strategy for multi-UAVs in
unknown indoor environments based on dynamic target tracking. This method
uses two path-planning algorithms, one is the Wall-Around algorithm based on
Bug algorithms [3–5], which is used to fly around the boundary of environ-
ments autonomously; the other is an unknown terrain dynamic target tracking
algorithm(Tracking-D*Lite) based on D*Lite [6] and I-ARA* [7], which is used
for relay between UAVs.

In summary, the main contributions of this paper are as follows:

– Proposed the Wall-Around algorithm for flying around the boundary of envi-
ronments. The algorithm is based on the idea of Bug algorithm to cancel
the existence of the target point, so that the UAV will navigate around the
boundary of environments according to certain rules and finally return to the
starting point. The algorithm is mainly used to explore the boundaries of the
unknown spaces and provide location information and data for drawing the
boundary contour map.

– Proposed a dynamic target tracking algorithm(Tracking-D*Lite for short) for
relay between multiple UAVs in unknown terrain. This algorithm is mainly
based on the D*Lite algorithm and the I-ARA* algorithm. And the method
used for tracking moving target points in the I-ARA * algorithm is extended
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to D * Lite algorithm to reduce the search time and the number of expansions
in the re-planning process, so as to achieve fast search efficiency and planning
quality.

– Built a multi-UAVs exploration system that can navigate autonomously in an
unknown indoor environment. The system can coordinate multiple UAVs to
explore the unknown indoor environment autonomously. Moreover, the effec-
tiveness of the exploration system is verified by simulation experiments. It
shows that the proposed multi-UAVs exploration system can improve explo-
ration efficiency in an unknown indoor environment.

The rest of the paper is organized as follows: Sect. 2 first introduces some
methods of exploring the unknown indoor environments by UAVs, then intro-
duces the task scenario of this work. Section 3 will introduce the method used in
detail. The first method is the Wall-Around algorithm which used for surround-
ing the boundary of the unknown environment by UAVs. The second method is
the Tracking-D*Lite algorithm that is based on D*Lite and I-ARA* to realize
the relay between UAVs. In Sect. 4, we will introduce our experimental setup,
including a performance experiment of the Tracking-D*Lite by comparison with
repeated-D*Lite, simulation environment and results. Sect. 5 concludes the paper
and discusses future work.

2 Related Work and Scenario Description

2.1 Related Work

With the rapid development of UAV technology, more and more researchers have
paid attention to the exploration of GPS-denied unknown indoor environments
using UAVs. The following three main approaches can be used to solve the prob-
lem of autonomous exploration in GPS-denied unknown indoor environments:
SLAM, deep reinforcement learning and traditional path planning algorithm.

In exploring unknown indoor environments, SLAM is a comprehensive and
accurate method. SLAM enables precise positioning, obstacle avoidance, navi-
gation, and real-time visualization of the flight robot. [8] extended the method
suitable for ground robots navigation and mapping to UAVs. It manually built
a special drone with a processor and various radars for real-time processing of
the acquired spatial information and can build maps and navigate in unknown
environments in real-time. [9] equipped with laser radar and a depth camera on
the UAV. It uses lidar to sense surrounding obstacles, and the depth camera to
avoid obstacles. SLAM-based method is the most classic and accurate method in
the field of unknown indoor environments exploration. This method requires the
UAV to be equipped with high-performance processing units and storage devices
for accurate modeling of complex scenes and autonomous control of the UAV.
However, this method cannot be applied to the UAVs with weak computing
power and low storage performance, especially some micro UAVs.

The method based on deep reinforcement learning focuses on the learning of
positioning, navigation and obstacle avoidance strategies of UAVs in the GPS-
denied indoor environment. [10] used deep learning and reinforcement learning
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methods to recognize video images taken by drones, and designed an application
system for search and rescue in an indoor environment. [11] mainly used only on-
board sensors for localization within a GPS-denied environment with obstacles
through a Partially Observable Markov Decision Process (POMDP) on Robotic
Operating System (ROS). [12] proposed a method of using PID + Q-learning
algorithm to train a UAV to learn to navigate to a target point in an unknown
environment.[13] presented a framework for UAV to explore indoor environments
based on deep reinforcement learning methods. The framework is divided into
a Markov Decision Process (MDP) and a Partially Observable Markov Decision
Processes (POMDP). [14] propose a target discovery framework that combines
traditional POMDP-based planning with deep reinforcement learning. Different
from [13] is that [14] used multiple UAVs to explore the same indoor environment.
The method based on deep reinforcement learning can achieve certain results by
using UAVs to explore complex unknown environments, but this method often
fails to achieve ideal results in map construction, motion decision-making and
planning. In addition, most of the research work of this method is to control a
single UAV for exploration, so there is a lack of effective use of multiple UAVs.

There are also some works using traditional path planning algorithms to
explore unknown indoor environments. [15] proposed a minimizing navigation
method named swarm gradient bug algorithm(SGBA) for tiny flying robots to
explore the unknown environment. This work sends a swarm of tiny flying robots
to advance in different priority directions, navigates with the Bug algorithm and
finally all flying robots return starting position. However, this method has the
problem that multiple flying robots may search the same area repeatedly during
the exploration process, and due to the necessity to return, the search range of
each flying robot cannot be maximized.

In order to explore and navigate UAVs in a GPS-denied unknown indoor
environment effectively, this paper proposes an exploration method to coordi-
nate multiple UAVs by combining the Wall-Around algorithm and the Tracking-
D*Lite algorithm. This method can be applied to some UAVs(especially micro-
UAVs) with weak computing power and small memory, and it is very practical
to explore the indoor environment with lower cost.

2.2 Scenario Description

In this paper, we consider using multiple UAVs to explore a GPS-denied
unknown indoor environment and draw a boundary map of the entire indoor
environment, as shown in the Fig. 1. In this scenario, each UAV starts from
the same starting position. The first UAV uses the Wall-Around algorithm to
fly around the boundary of environment, the red line indicates the first UAV’s
flight path. When the first UAV flies low on power or stops working due to
an unexpected situation, the second UAV will start to relay. In this process,
the Tracking-D*Lite algorithm will be used for tracking relay, as shown by the
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yellow line. When tracking is completed, the second UAV will continue to fly
around the boundary of environment using the Wall-Around algorithm until it
returns to the starting position. During the whole exploration process, the path
of UAVs around the boundary of environment is drawn in real-time, and the
boundary of the entire map is drawn when the exploration is completed.

Fig. 1. Schematic figure of two UAVs exploring a GPS-denied unknown indoor envi-
ronment. The red line represents the trajectory of the first UAV around the wall, the
yellow line represents the trajectory tracked by the first UAV during the relay, and the
blue dotted line represents the second UAV tracking the first. The two UAVs converge
at the pentagram, and the green trajectory indicates the trajectory of the second UAV
flying around the wall. (Color figure online)

3 Method

In response to the unknown indoor environment exploration problem described in
Fig. 1, we propose a multi-UAV collaborative exploration method for unknown
indoor environment based on dynamic target tracking. The method includes
three mechanisms: Wall-Around mechanism, relay pursuit mechanism and
boundary contour construction mechanism. The specific algorithm scheduling
framework of the three mechanisms is shown in Fig. 2, the framework mainly
includes four parts: Input, Wall-Around algorithm, Tracking-D*Lite algorithm
and Output. The input is the positions of UAVs in the initial state. After
inputting it, the Wall Around algorithm is directly called to fly around the
wall and draw the flying trajectory of the UAV in real time. The Wall-Around
algorithm mainly includes drawing trajectory and flying around the wall. These
two work are synchronized. When the UAV stops working (energy exhaustion or
unexpected situation), the system will trigger the relay of the next UAV and call
Tracking-D*Lite. Tracking-D*Lite mainly includes six parts. When catching up
with the last UAV, the Tracking-D*Lite algorithm will return to the Bug algo-
rithm. The output of this framework is the boundary map drawn after multiple
UAVs fly around the wall.
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Fig. 2. Diagram of system algorithm framework. It mainly includes two parts of Wall-
Around algorithm and Traking-D*Lite algorithm, as well as the conversion process and
scheduling process between the two algorithms.

3.1 Wall-Around Algorithm

The Wall-Around algorithm is designed to allow the UAV to fly along the bound-
ary of the indoor environment, namely along walls. For the traditional Bug algo-
rithms [3–5], the UAV constantly advances towards the target point based on
understanding the location of the target point. When encountering obstacles,
the UAV will keep approaching the target point by surrounding the obstacle to
avoid the obstacle. The difference between the Wall-Around algorithm and the
Bug algorithm is that it does not have a clear target point, the UAV only needs
to surround the boundary of the map and finally return to the starting point.
UAVs can navigate in a way similar to the TangenBug [16], sensing obstacles
within a certain distance around them through sensors such as vision or lidar,
so as to decide to move in a certain direction.

This algorithm divides the whole unknown space into four directions: front,
back, left, and right. These four directions are fixed. But in the case of the UAV, it
needs to keep choosing the correct direction to fly around the wall. Therefore, the
UAV itself has state quantities in four directions, including MD(Main Direction),
ND(Next Direction), PD(Previous Direction), and OD(Opposite Direction). MD
is the most important, indicating the direction of the current UAV pointing to the
wall. The other three directions are calculated by rotating clockwise according to
the MD. For example, when MD points to right, ND points to back, PD points
to front, and OD points to left. By analogy, four directions can be calculated at
any time.
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Algorithm 1. Wall Around
1: procedure Main()
2: Move towards the closest distance to the wall and set this direction to MD
3: while keep flying do
4: if MD is obstacles and ND is free then
5: Go to ND
6: else if MD is free then
7: Go to MD
8: MD = GetPreDirection(MD)
9: else if MD and ND are obstacles and OD is free then

10: Go to OD
11: MD = GetNextDirection(MD)
12: else if MD, ND and OD are obstacles then
13: Go to PD
14: MD = GetOppoDirection(MD)

15: Update ND, OD, PD according to MD

3.2 Tracking-D*Lite

In order to make the relay of UAVs smooth, it is necessary to design an algorithm
to track the target in unknown environments. For the grid map used by the
traditional path planning algorithms, mainstream path planning algorithms such
as A* [17] and JPS [18] are based on the global known map information for path
planning between two fixed points. For path planning in unknown spaces, such
as D* [19] and D*Lite [6] algorithms can only plan paths between fixed points.
As for tracking targets, I-ARA* [7] can quickly re-plan the path of the moving
target point, but it is based on the premise that the map information is fully
known. Therefore, for two constantly moving UAVs in an unknown environment,
under the premise that the position coordinates are known, it is necessary to
design a target tracking algorithm to complete the relay task between UAVs. The
unknown terrain dynamic target tracking (Tracking-D*Lite for short) algorithm
proposed in this paper is mainly modified based on the D*Lite. Since the D*Lite
is a path planning algorithm in unknown terrain and cannot be used directly
for tracking, the idea of combining the I-ARA* can be used for the purpose of
tracking unknown terrain targets.

Before introducing the Tracking-D*Lite, it is necessary to explain the symbols
used in the algorithm: S denotes the set of vertexes in the grid map. sstart ∈ S
and sgoal ∈ S denotes the start and goal vertex. Succ(s) ⊆ S denotes the set of
sub-vertexes of s ∈ S. Similarly, Pred(s) ⊆ S denotes the set of parent vertexes
of s ∈ S. 0 < c(s, s′) ≤ ∞ denotes the cost of moving vertex s to vertex s′.
Since the four-connection expansion method is used in this algorithm, the cost
of two neighbouring vertexes is 1. The heuristic function is Manhattan function,
denotes by h(sstart, s), satisfies h(sstart, s) = 0 and obeys the triangle inequality
h(sstart, s) ≤ c(s, s′) + h(sstart, s′) for all vertexes s ∈ S and s′ ∈ Succ(s).

Tracking-D*Lite is similar to D*Lite, it also starts from the goal and extends
to the start, and finally gives a path. The calculation of g-value and rhs-value is
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also involved in the algorithm, g(s) represents the shortest distance from sgoal to
the current vertex s ∈ S. rhs(s) is calculated based on g(s), the main function
of this variable is to find a path vertex with a smaller cost. If current vertex
s = sstart, rhs(s) = 0. Instead, if current vertex s is not sstart, set rhs(s) to
the minimum of the one-step cost plus g(s) among all parent vertexes, shown as
Eq.(1).

rhs(s) =

{
0 if s = sstart

mins′∈Pred(s)(g(s′) + c(s, s′)) otherwise
(1)

For the vertex s ∈ S, when g(s) = rhs(s), the vertex s is considered to be
in a locally consistent state, which means to be able to find the shortest path
from sgoal to the s. If all vertexes are locally consistent in the graph, the shortest
path can be found from sgoal to any reachable vertexes. When g(s) > rhs(s),
the vertex s is considered to be locally over consistent. It means that a shorter
path from sgoal to s can be found, which is mainly manifested in a certain area
from an obstacle area to a passable area. When g(s) < rhs(s), the vertex s is
considered to be locally under consistent. It means that the cost of the shortest
path found before from sgoal to s becomes larger, and the shortest path needs
to be recalculated, which is mainly manifested in a certain area from a passable
area to an obstacle area.

Tracking-D*Lite needs to maintain a Frontier priority queue to store vertexes
in local inconsistent. These vertexes need to be sorted by a certain rule before
selecting some vertexes for expansion and then transform these selected vertexes
into locally consistent. The sorting basis of the Frontier priority queue is shown
in the key-value k(s) provided by Eq.(2). There are two-part in k(s): k1(s) =
min(g(s), rhs(s)) + h(s, sgoal) + km and k2(s) = min(g(s), rhs(s)). And km
represents the heuristic compensation value after the start of each move, in order
to maintain the strict ascending order of the key values in subsequent searches.
The Frontier queue uses the key-value k(s) for sorting. The sorting rules of k(s)
are dictionary sorting, which means that the smaller the value of k1, the higher
the priority; if the value of k1 is the same, the lower the value of k2, the higher
the priority.

k(s) =

{
min(g(s), rhs(s)) + h(s, sgoal) + km

min(g(s), rhs(s))
(2)

Tracking-D*Lite adds the idea of Delete queue in I-ARA* based on D*Lite.
Delete queue is used to store the search tree that does not belong to the root
vertex of the current search during the current search, and the vertex will be
reused for the next search. The execution process of Tracking-D*Lite is shown
in Fig. 3.
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Fig. 3. Flowchart of the Tracking-D*Lite algorithm.

Algorithm 2. Tracking-D*Lite
1: procedure Main()
2: slast start = sstart
3: slast goal = sgoal
4: Initialize()
5: ComputeShortestPath()
6: while sstart �= sgoal do
7: sstart =argmins′Succ(sstart)(c(sstart, s

′) + g(s′))
8: Move to sstart
9: km = km + h(slast start, sstart)

10: slast start = sstart
11: sgoal = GetNextGoal()
12: slast goal = sgoal
13: parent(sgoal) = ∅

14: Scan graph for changed edge cost
15: if any edge costs changed or sgoal �= slast goal then
16: if sgoal �= slast goal then
17: for all vertex s in the search tree rooted at slast start but not rooted

at sstart do
18: Frontier.remove(s)
19: rhs(s) = g(s) = ∞
20: parent(s) = ∅

21: Delete.insert(s)

22: ReuseDeletedNodes()
23: for all directed edges (u, v) with changed edge costs do
24: Update the edge cost (u, v)
25: UpdateNode(u)

26: ComputeShortestPath()
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The steps of the Tracking-D*Lite algorithm are as follows:

1. Initialization. Initializing the moving goal and start position.
2. Calculate the shortest path. Detecting the environmental information within

the visual range of the start(i.e., the robot), and calculating the shortest path
from start to goal for the first time.

3. Update positions and judgment. Updating start and goal positions. If the
start catches up with the goal, the algorithm ends; otherwise, updating envi-
ronment information.

4. Construct Delete queue. Deleting the vertexes in the search tree that do not
belong to this root vertex as the start, and put them into the Delete queue.

5. Reuse and update the search tree. For all Delete vertexes, if their neighbor
vertexes belong to the current search tree (not the vertexes in Frontier), then
the vertex will be re-expanded and added to Frontier. At last, clear the Delete
queue after the above steps.

6. Repeat steps 2 to 5 above until start catch up with the goal.

The pseudocode of Tracking-D*Lite algorithm is mainly shown below. On
lines 2–3 of Algorithm 2, the algorithm records the positions of start and goal
for subsequent calculations. Then, the Main() calls Initialize() to initialize
the search problem on line 4. In this progress, the g-value and rhs-value of all
vertexes are set according to Eq. (1) and the parent vertex of each vertex is set
to empty in the search tree. In the last step in Initialize(), only the vertex of
the goal is locally inconsistent, so it is added to the Frontier.

Algorithm 3. Compute Shortest Path
1: procedure ComputeShortestPath()
2: while Frontier.TopKey()<CalcKey(sstart) or g(sstart) �= rhs(sstart) do
3: kold = Frontier.TopKey()
4: n = Frontier.pop()
5: if kold <CalcKey(n) then
6: Frontier.insert(n,CalcKey(n))
7: else if g(n) > rhs(n) then
8: g(n) = rhs(n)
9: for all s ∈ Pred(n) do

10: UpdateNode(s)

11: else
12: g(n) = ∞
13: for all s ∈ Pred(n) ∪ Frontier do
14: UpdateNode(s)

After Initialize() is executed, Main() calls the ComputeShortestPath()
(see Algorithm 3) to search for the shortest path from goal to start. In the pro-
cess of expanding the search tree’s vertexes, for the vertex that is locally over
consistent(line 5 of Algorithm 3), set its g-value equal to rhs-value and expand
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the neighboring vertexes around it. For the vertex that is locally under consis-
tent(line 7 of Algorithm 3), set its g-value to infinity and re-add it to the priority
queue Frontier. This step is equivalent to setting it to local over consistent.

Algorithm 4. Reuse Deleted Nodes
1: procedure ReuseDeletedNodes()
2: for all dn ∈ Delete do
3: for all nn ∈ Neighors(nn) do
4: if g(nn) �= ∞ and rhs(dn) > c(nn, dn) + g(nn) then
5: rhs(dn) = c(nn, dn) + g(nn)
6: parent(dn) = nn
7: if dn ∈ Frontier then
8: Frontier.remove(dn)

9: if g(dn) �= rhs(dn) then
10: Frontier.insert(dn,CalcKey(dn))

11: Delete = ∅
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Fig. 4. An example of Tracking-D*Lite (Part 1). As shown in the figure on the left, the
robot is located at B1 as the start, and the goal at D3 is the target. In the figure on the
right, the robot can only sense the surrounding environment information of one unit
distance, so B2 and B3 are obstacles. The h-value in the figure on the right represents
the heuristic value, which uses the Manhattan distance from each node on the way to
the start.

In the next step, Main() updates start and goal’s position(line 7–11 of Algo-
rithm 2) and sets goal’s parents to null value (line 13 of Algorithm 2). And spe-
cial attention is needed to calculate the heuristic difference km between different
start positions (line 9 of Algorithm 2) to ensure the consistency of Frontier’s key
values. When the goal’s position changes, Main()(line 16–22 of Algorithm 2)
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Fig. 5. An example of Tracking-D*Lite (Part 2). Step1 to Step7 represent the process
of Tracking-D*Lite in the first expansion process, and finally get the path pointed to
by First path. (Color figure online)

deletes the members whose root vertex is not the current start of this search in
the search tree and put them into the Delete queue, and then reuse some of
the deleted vertexes(see Algorithm 4). On lines 23–25 of Algorithm 2, Main()
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Fig. 6. An example of Tracking-D*Lite (Part 3). When Robot moves one unit distance
to C1 according to the path obtained from the first search, Goal also randomly moves
to C3. At this time, Robot senses a new obstacle D2, and recalculates the heuristic
values of each node in the entire map.

updates the edge cost of the vertexes changed in the grid map and updates
Frontier and each vertex’s g-value.

The following is an example of Tracking-D*Lite. There is a 5*3 grid map in
Fig. 4. The position of the robot (start) at B1 and goal at D3. In Fig. 4, Map
is the real environment of the entire map. The robot can sense a map of a unit
distance around. Heuristics in Fig. 4 is the heuristic value of the robot at the
reachable grid point, and the heuristic function is the Manhattan function.

Figure 5 shows the first time the ComputeShortestPath() function is exe-
cuted by Tracking-D*Lite. The initial search iteration steps of this algorithm are
the same as the D*Lite algorithm, which is to search and expand from goal posi-
tion.

As shown in Fig. 5, the yellow grid represents the vertex in the priority queue,
the red box vertex represents the vertex to be expanded next time, the arrow
between the vertexes indicates that the parent vertex points to the child vertex.
And every vertex has a g-value(in the upper left corner of the grid), rhs-value(in
the upper right corner of the grid), and key-value(below in the grid if exist).

The first search is expanded from the goal in the initialization phase. The
rhs value of the goal is set to infinity and zero according to Eq. (1), and the
priority key value of the vertex is calculated according to Eq. (2). In the example
of this algorithm, the four-connection expansion method is used. By selecting
the vertex with the highest priority in the priority queue (i.e., the vertex with
the smallest Key value), the neighbors of the vertex are expanded and put into
Frontier. Then delete the expanded vertexes from the Frontier queue, and finally
set the g-value of these vertexes to rhs-value. The path after executing the
ComputeShortestPath() function for the first time is shown in the First
path in Fig. 5.
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Fig. 7. An example of Tracking-D*Lite (Part 4). This part represents the specific
process of reusing part of the Delete node in the re-planning process. Figure of Delete
means to delete the search tree that does not take the starting point of the second
search (C3) as the root node and store it in the Delete queue (gray grids). Figure of
Reuse DeleteNode represents the expansion of the node (D3) in the Delete queue that is
close to the new search tree and has not been placed in the priority queue before. Step1
to Step6 represent the process of Tracking-D*Lite in the second expansion process, and
finally get the path pointed to by Second path.
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After searching for the first path, as shown in Fig. 6, the robot moves one
unit distance to reach C1 according to the planned path, and the goal randomly
reaches C3 by one unit distance. The robot senses the surrounding environment
information and finds that vertex D2 is a new obstacle, so the algorithm updates
the map information and set a new heuristic value, and set km to 1 at the same
time.

In the second search, it is necessary to delete vertexes that are not related
to this search. Therefore, Tracking-D*lite starts from the last goal vertex, uses
depth-first search to delete members whose root vertex is not the current goal
vertex in the search tree, and puts them into the Delete queue.

In order to use the information effectively after each search. Step 7 in Fig. 5
is the last state after the first search, which contains a search tree with D3 as
the root vertex (because D3 is the goal in the first search). And C3 is the goal
position in the second search, so we need to cut the search tree. As shown in the
Delete graph in Fig. 7, the gray grid represents the vertexes that have been put
into the Delete queue. These vertexes are composed of child vertexes with D3
as the root vertex in the first search. We can find that in the Delete graph, the
subtree with C3 as the root vertex is retained, so part of the state information
of the last search result is retained during the process of deleting vertexes. Then
we need to reuse some of the vertexes in the Delete queue.

For all vertexes in Delete queue, if their neighbor vertexes belong to the
current search tree (not the vertexes in the priority queue), then the vertexes will
be re-expanded and added to Frontier. As shown in Fig. 7 (Reuse DeleteNode),
the vertex D3 is added to Frontier.

As shown in steps 1–6 in Fig. 7, the second search process is similar to the
first search process. The ComputeShortestPath() is called to search for the
second path.

The Tracking-D*Lite algorithm proposed in this paper can track moving
targets in unknown terrain. The main idea of the algorithm is to re-plan the
path of the target after each move. During the re-planning process, part of the
vertexes information of the last search results will be reused. The main process is
to delete the vertexes that do not belong to the current search tree and keep the
subtree with the root vertex in the current search. Then, part of the vertexes in
the Delete are reused to reduce the number of vertex expansions in each search
process, thereby speeding up the search speed and efficiency and achieving the
effect of tracking moving targets.

4 Experiments

4.1 Tracking-D*Lite Algorithm Experiment

The purpose of this experiment is to verify the performance of the Tracking-
D*Lite algorithm, which mainly compares the four indicators of the tracking
time, the tracking moving distances, the number of expansion and the success
rating(when the target is not stopped). This experiment compares the Tracking-
D*Lite algorithm with the repeated-D*Lite algorithm (repeated call of D*lite).
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The operation platform is Windows 10, and the experiment is developed using
the C++ language.

This experiment uses a 60*60 complex grid map to conduct 100 sets of exper-
iments. Each set of experiments is randomly assigned a pair of chaser and target
with different positions. The target moving path of each set of experiments is
also different. In the comparison test of Tracking-D*Lite and Repeated-D*Lite,
the moving speed and path of the target are the same. As shown in Table.1,
the experiment has tested the two algorithms when the agent’s view ranger is
2, 4, and 6. From the perspective of average tracking time, Tracking-D*Lite can
track a target in less time than Repeated-D*Lite, and as the view ranger of
the agent increases, the time consumed by both algorithms will increase. How-
ever, Tracking-D*Lite takes much less time than Repeated-D*Lite and has a
less increase in time. For the average moving distances, the results of different
view rangers under the same algorithm are not much different, but Tracking-
D*Lite moves shorter than Repeated-D*Lite, which is also the advantage of
Tracking-D*Lite. Similar to the result of the average moving distances, the aver-
age number of vertexes expansion results of Tracking-D*Lite is much less than
that of Repeated-D*Lite. And the number of vertexes expansion under differ-
ent view rangers is not much different. Finally, for the success rate of the agent
tracking the unstopped target. The success rating of the tracking of the two
algorithms increases with the increase of the view ranger, but Tracking-D*Lite
is much better than Repeated-D*Lite.

Table 1. Comparison of Tracking-D*Lite and Repeated-D*Lite.

Algorithm View range Average
tracking
time per
case(ms)

Average
moving
distances
per case

Average
number of
expansion
per case

Success
rating

Tracking- D*Lite 2 2863.727 61.250 29596.735 83%

4 2997.994 64.530 27582.955 85%

6 3370.850 66.440 26755.190 93%

Repeated- D*Lite 2 6864.102 88.797 78877.591 19%

4 11421.131 81.950 85398.840 37%

6 16354.322 84.850 80229.755 40%

4.2 Simulation Experiment

The purpose of simulation experiment is to verify the rationality of method of
cooperative exploring for multi-UAV in an unknown indoor environment based
on dynamic target tracking. The content of the experiment is to build a simulated
indoor environment. Six quadrotor UAV models use the method proposed in this
paper to explore the entire environment and draw a boundary contour map.
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Fig. 8. Simulation experiment scene. 6 UAVs are used to explore an unknown indoor
environment in this scene. The unknown indoor environment includes obstacles, small
rooms, etc.

The simulation verification experiment is based on the ROS, Gazebo, and
Rviz platforms under the Ubuntu16.04 for simulation and development using
C++ language, mainly using the hector quadrotor [20] model toolkit. The spe-
cific experimental scene is shown in Fig. 8.

Fig. 9. Track trajectory in real time. The green trajectory is the boundary contour
map drawn in real time, and the yellow trajectory is the trajectory of the latter UAV
to relay the previous UAV. (Color figure online)

The simulation experiment first integrates the Wall-Around algorithm. To
allow UAVs to fly around the boundaries of the map, each UAV can sense envi-
ronmental information about 1 m around. Then the experiment integrates the
Tracking-D*Lite algorithm into the simulation environment. When the power of
the last UAV is insufficient, the next UAV will be sent to use Tracking-D*Lite
to track the last UAV in the unknown terrain to relay. When the relay is suc-
cessful, the next UAV continues to use the Wall-Around algorithm to fly around
the wall. Finally, in the experiment, the real-time trajectory of each UAV will
be drawn and the boundary contour map will be obtained.
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Fig. 10. Boundary contour map. The green trajectory is the final contour map of the
entire indoor environment. (Color figure online)

In this experiment, RVIZ is used to draw the trajectory of each UAV in
real-time, including the boundary contour map and the path planned during
the tracking process. As shown in Fig. 9, the green trajectory is the trajectory
of all UAVs flying around the wall, and the yellow trajectory is the trajectory
of tracking during the relay. Figure 10 is a boundary contour map drawn after
exploring the entire unknown indoor space.

5 Conclusion

In order to improve the efficiency of indoor exploration in a GPS-denied envi-
ronment, this paper proposes a multi-UAV collaborative exploration method
based on dynamic target tracking. This method takes advantages of the Wall-
Around algorithm and the Tracking-D*Lite algorithm, using the Wall-Around
algorithm to explore the boundary of the unknown indoor environment, and uses
the Tracking-D*Lite algorithm to collaborate among UAVs. Finally, completing
the task of exploring the entire unknown indoor environment. The method pro-
posed in this paper can effectively track the moving target in unknown terrain
and can achieve good results in simulation experiments.
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