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Abstract. We consider a vaccination game that results with the intro-
duction of premature and possibly scarce vaccines introduced in a desper-
ate bid to combat the otherwise ravaging deadly pandemic. The response
of unsure agents amid many uncertainties makes this game completely
different from the previous studies. We construct a framework that com-
bines SIS epidemic model with a variety of dynamic behavioral vaccina-
tion responses and demographic aspects. The response of each agent is
influenced by the vaccination hesitancy and urgency, which arise due to
their personal belief about efficacy and side-effects of the vaccine, dis-
ease characteristics, and relevant reported information (e.g., side-effects,
disease statistics etc.). Based on such aspects, we identify the responses
that are stable against static mutations. By analysing the attractors of
the resulting ODEs, we observe interesting patterns in the limiting state
of the system under evolutionary stable (ES) strategies, as a function of
various defining parameters. There are responses for which the disease
is eradicated completely (at limiting state), but none are stable against
mutations. Also, vaccination abundance results in higher infected frac-
tions at ES limiting state, irrespective of the disease death rate.

Keywords: Vaccination games · ESS · Epidemic · Stochastic
approximation · ODEs

1 Introduction

The impact of pandemic in today’s world is unquestionable and so is the need
to analyse various related aspects. There have been many disease outbreaks in
the past and the most recent Covid-19 pandemic is still going on. Vaccination is
known to be of great help; however, the effectiveness depends on the responses
of the population ([1] and references therein). The vaccination process gets more
challenging when vaccines have to be introduced prematurely, without much
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information about their efficacy or side effects, to combat the ravaging on-going
pandemic. The scarcity of vaccines makes it all the more challenging.

There is a vast literature developed during the current pandemic that majorly
focuses on exhaustive experiments. Recently authors in [2] discuss the impor-
tance of game theoretic and social network models for better understanding the
pandemic. Our paper exactly aims to achieve this purpose. We aim to develop a
mathematical framework that mimics the ongoing pandemic as closely as possi-
ble. We consider vaccination insufficiency, hesitancy, impact of individual vac-
cination responses, possibility of excess deaths, lack of information (e.g., possible
end of the disease, vaccine details) etc. Our model brings together the well known
epidemic SIS model [3,4], evolutionary game theoretic framework [11], dynamic
behavioural patterns of the individuals and demographic aspects.

Majority of the literature on vaccination games assumes some knowledge
which aids in vaccination plans; either they consider seasonal variations, or the
time duration and or the time of occurrence of the disease is known etc. For exam-
ple, in [5,6] authors consider a replicator dynamics-based vaccination game; each
round occurs in two phases, vaccination and the disease phase. Our paper deals
with agents, that continually operate under two contrasting fears, vaccination
fear and the deadly pandemic fear. They choose between the two fears, by esti-
mating the perceived cost of the two aspects. In [7] authors consider perceived
vaccination costs as in our model and study the ‘wait and see’ equilibrium. Here
the agents choose one among 53 weeks to get vaccinated. In contrast, we do not
have any such information, and the aim is to eradicate the deadly disease.

In particular, we consider a population facing an epidemic with limited avail-
ability of vaccines. Any individual can either be infected, susceptible or vacci-
nated. It is evident nowadays (with respect to Covid-19) that recovery does not
always result in immunization. By drawing parallels, the recovered individuals
become susceptible again. We believe the individuals in this current pandemic
are divided in opinion due to vaccination hesitancy and vaccination urgency. A
vaccination urgency can be observed depending upon the reported information
about the sufferings and deaths due to disease, lack of hospital services etc. On
the other hand, the vaccination hesitancy could be due to individuals’ belief in
the efficacy and the emerging fears due to the reported side effects.

To capture above factors, we model a variety of possible vaccination
responses. We first consider the individuals who exhibit the follow-the-crowd
(FC) behavior, i.e., their confidence (and hence inclination) for vaccination
increases as more individuals get vaccinated. In other variant, the interest of an
individual in vaccination reduces as vaccinated proportion further grows. Basi-
cally such individuals attempt to enjoy the resultant benefits of not choosing
vaccination and still being prevented from the disease; we refer them as free-
riding (FR) agents. Lastly, we consider individuals who make more informed
decisions based also on the infected proportion; these agents exhibit increased
urge towards vaccination as the infected population grows. We name such agents
as vigilant agents.
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In the era of pre-mature vaccine introduction and minimal information, the
agents depend heavily on the perceived cost of the two contrasting (vaccina-
tion/infection cost) factors. The perceived cost of infection can be large leading
to a vaccination urgency, when there is vaccine scarcity. In case there is abun-
dance, one may perceive a smaller risk of infection and procrastinate the vac-
cination till the next available opportunity. Our results interestingly indicate a
larger infected proportion at ES equilibrium as vaccine availability improves.

We intend to investigate the resultant of the vaccination response of the
population and the nature of the disease. Basically, we want to understand if
the disease can be overpowered by given type of vaccination participants. Our
analysis is layered: firstly, we use stochastic approximation techniques to derive
time-asymptotic proportions and identify all possible equilibrium states, for any
given vaccination response and disease characteristics. Secondly, we derive the
vaccination responses that are stable against mutations. We slightly modify the
definition of classical evolutionary stable strategy, which we refer as evolution-
ary stable strategy against static mutations (ESS-AS)1. We study the equilib-
rium/limiting states reached by the system under ES vaccination responses.

Under various ES (evolutionary stable) vaccination responses, the dynamic
behaviour at the beginning could be different, but after reaching equilibrium,
individuals either vaccinate with probability one or zero. Some interesting pat-
terns are observed in ES limiting proportions as a function of important defining
parameters. For example, the ES limit infected proportions are concave functions
of birth rate . With increased excess deaths, we have smaller infected propor-
tions at ES limiting state. Further, there are many vaccination responses which
eradicate the disease completely at equilibrium; but none of them are evolution-
ary stable, unless the disease can be eradicated without vaccination. At last, we
corroborate our theoretical results by performing exhaustive Monte-Carlo simu-
lations.

2 Problem Description and Background

We consider a population facing an epidemic, where at time t, the state of the
system is (N(t), S(t), V (t), I(t)). These respectively represent total, susceptible,
vaccinated and infected population. Observe N(t) = S(t) + V (t) + I(t).

At any time t, any susceptible individual can contact anyone among
the infected population according to exponential distribution with parameter
λ/N(t), λ > 0 (as is usually done in epidemic models, e.g., [8]). In particular, a
contact between a susceptible and an infected individual may result in spread of
the disease, which is captured by λ. Any infected individual may recover after
an exponentially distributed time with parameter r to become susceptible again.
A susceptible individual can think of vaccination after exponentially distributed
time with parameter ν. At that epoch, the final decision (to get vaccinated)
depends on the information available to the individual. We refer to the prob-
ability of a typical individual getting vaccinated as q; more details will follow
1 Agents use dynamic policies, while mutants use static variants (refer Sect. 2).
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below. It is important to observe here that ν will also be governed by vaccina-
tion availability; the individual decision rate is upper bounded by availability rate.
Further, there can be a birth after exponentially distributed time with parameter
bN(t). A death is possible in any compartment after exponentially distributed
time with parameter d I(t) (or dS(t) or d V (t)), and excess death among infected
population with parameter de I(t). Furthermore, we assume b > d + de.

One of the objectives is to analyse the (time) asymptotic proportions of
the infected, vaccinated and susceptible population depending upon the disease
characteristics and vaccination responses. To this end, we consider the following
fractions:

θ(t) :=
I(t)
N(t)

, ψ(t) :=
V (t)
N(t)

, and φ(t) :=
S(t)
N(t)

. (1)

2.1 Responses Towards Vaccination

In reality, the response towards available vaccines depends upon the cost of vacci-
nation, the severity of infection and related recovery and death rates. However,
with lack of information, the vaccination decision of any susceptible depends
heavily on the available data, (θ(t), ψ(t)), the fractions of infected and vacci-
nated population at that time. Further, it could depend on the willingness of
the individuals towards vaccination. The final probability of getting vaccinated
at the decision/availability epoch is captured by probability q = q(θ, ψ, β); this
probability is also influenced by the parameter β which is a characteristic of
the given population. Now, we proceed to describe different possible behaviours
exhibited by agents/individuals in the population:

Follow the Crowd (FC) Agents: These type of agents make their decision to
get vaccinated by considering only the vaccinated proportion of the population;
they usually ignore other statistics. They believe vaccination in general is good,
but are hesitant because of the possible side effects. The hesitation reduces as
the proportion of vaccinated population increases, and thus accentuating the
likelihood of vaccination for any individual. In this case, the probability that
any individual will decide to vaccinate is given by q := βψ(t).

Free-Riding (FR) Agents: These agents exhibit a more evolved behaviour
than FC individuals, in particular free-riding behaviour. In order to avoid any
risks related to vaccination or paying for its cost, they observe the crowd
behaviour more closely. Their willingness towards vaccination also improves with
ψ(t), however they tend to become free-riders beyond a limit. In other words, as
ψ(t) further grows, their tendency to vaccinate starts to diminish. We capture
such a behaviour by modelling the probability as q := βψ(t)(1 − ψ(t)).

Vigilant Agents: Many a times individuals are more vigilant, and might con-
sider vaccination only if the infected proportion is above a certain threshold, in
which case we set q = βψ(t)1{θ(t)>Γ} (Γ is an appropriate constant). This depen-
dency could also be continuous, we then model the probability as q = βθ(t)ψ(t).
We refer to them as Vigilant Follow-the-Crowd (VFC) agents.
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Vaccination Policies: We refer the vaccination responses of the agents as vac-
cination policy, which we represent by π(β). When the vaccination response
policy is π(β), the agents get vaccinated with probability qπ(β)(θ, ψ) at the vac-
cination decision epoch, based on the system state (θ, ψ) at that epoch. For ease
of notation, we avoid π and β while representing q.

As already explained, we consider the following vaccination policies: a) when
π(β) = FC(β), i.e., with follow-the-crowd policy, the agents choose to vaccinate
with probability q(θ, ψ) = min{1, q̃(θ, ψ)}, q̃(θ, ψ) = βψ at vaccination decision
epoch; b) when π(β) = FR(β), the free-riding policy, q̃(θ, ψ) = βψ(1 − ψ); and
(c) the policy π(β) = V 1

FC(β) represents vigilant (w.r.t. θ) follow the crowd
(w.r.t. ψ) policy and q̃(θ, ψ) = βθψ. We define Π := {FC , FR, V 1

FC} to be the
set of all these policies. We discuss the fourth type of policy V 2

FC with q̃(θ, ψ) =
βθ1{θ>Γ} separately, as the system responds very differently to these agents.
Other behaviour patterns are for future study.

2.2 Evolutionary Behaviour

The aim of this study is three fold: (i) to study the dynamics and understand
the equilibrium states (settling points) of the disease depending upon the agents’
behavior and the availability of the vaccine, (ii) to compare and understand
the differences in the equilibrium states depending on agents’ response towards
vaccine, and (iii) to investigate if these equilibrium states are stable against
mutations, using the well-known concepts of evolutionary game theory. Say a
mutant population of small size invades such a system in equilibrium. We are
interested to investigate if the agents using the original (vaccination response)
are still better than the mutants. Basically we use the concept of evolutionary
stable strategy (ESS), which in generality is defined as below (e.g., [11]):

By definition, for π(β) to be an ESS, it should satisfy two conditions, i)
π(β) ∈ arg minπ∈ ˜Π u(π;π(β)), where ˜Π is the set of the policies, u(π, π′) is the
utility/cost of the (can be mutant) user that adapts policy π, while the rest of
the population uses policy π′; and ii) it should be stable against mutations, i.e.
there exist an ε̄, such that for all ε ≤ ε̄(π),

u(π, πε(β, π)) > u(π(β), πε(β, π)) for any π �= π(β),

where πε(β, π) := επ + (1 − ε)π(β), represents the policy in which ε fraction of
agents (mutants) use strategy π and the other fraction uses π(β).

In the current paper, we restrict our definition of ESS to cater for mutants
that use static policies, ΠD. Under any static policy π ≡ q, the agent gets
vaccinated with constant probability q at any decision epoch, irrespective of the
system state. We now define the Evolutionary Stable Strategies, stable Against
Static mutations and the exact definition is given below.

Definition 1. [ESS-AS] A policy π(β) is said to be ESS-AS, i) if {q∗
π(β)} =

B(π(β)), where the static-best response set

B(π(β)) := arg min
q∈[0,1]

u(q, π(β)),
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and q∗
π(β) = q(θ∗, ψ∗) is the probability with which the agents get vaccinated after

the system reaches equilibrium under strategy π(β); and ii) there exists an ε̄ such
that {q∗

π(β)} = B(πε(β, q)), for any ε ≤ ε̄(q) and any q.

Anticipated Utility/Cost of a User: Once the population settles to an equi-
librium (call it θ̂, ψ̂) under a certain policy π(β̂), the users (assume to) incur a
cost that depends upon various factors. To be more specific, any user estimates2

its overall cost of vaccination considering the pros and cons as below to make a
judgement about vaccination.

The cost of infection (as perceived by the user) can be summarized by
pI(θ̂)(cI1 +cI2deθ̂), where pI(θ̂) equals the probability that the user gets infected
before its next decision epoch (which depends upon the fraction of infected pop-
ulation θ̂ and availability/decision rate ν), cI1 is the cost of infection without
death (accounts for the sufferings due to disease, can depend on r), while cI2deθ̂

is the perceived chance of death after infection. Observe here that deθ̂ is the frac-
tion of excess deaths among infected population which aids in this perception.

On the contrary, the cost of vaccination is summarized by cv1 +
min {c̄v2 , cv2/ψ̂}, where cv1 is the actual cost of vaccine. Depending upon the
fraction ψ̂ of the population vaccinated and their experiences, the users antic-
ipate additional cost of vaccination (caused due to side-effects) as captured by
the second term cv2/ψ̂. Inherently we assume here that the side effects are not
significant, and hence in a system with a bigger vaccinated fraction, the vac-
cination hesitancy is lesser. Here c̄v2 accounts for maximum hesitancy. In all,
the expected anticipated cost of vaccination by a user in a system at equilib-
rium (reached under π(β̂)) equals: the probability of vaccination (say q) times
the anticipated cost of vaccination, plus (1 − q) times the anticipated cost of
infection. Thus we define:

Definition 2. [User utility at equilibrium]
When the population is using policy π(β̂) and an agent attempts to get itself

vaccinated with probability q, then, the user utility function is given by:

u(q;π(β̂)) := q

(

cv1 + min
{

c̄v2 ,
cv2

ψ̂

})

+ (1 − q)pI(θ̂)(cI1 + cI2deθ̂)

= qh(π(β̂)) + pI(θ̂)(cI1 + cI2deθ̂), where (2)

h(π(β̂)) = h(θ̂, ψ̂) := cv1 + min
{

c̄v2 ,
cv2

ψ̂

}

− pI(θ̂)(cI1 + cI2deθ̂).

In the next section, we begin with ODE approximation of the system, which
facilitates in deriving the limiting behaviour of the system. Once the limiting
behaviour is understood, we proceed towards evolutionary stable strategies.

2 We assume mutants are more rational, estimate various rates using reported data.



Evolutionary Vaccination Games 191

3 Dynamics and ODE Approximation

Our aim in this section is to understand the limiting behaviour of the given
system. The system is transient with b > d+de; it is evident that the population
would not settle to a stable distribution (it would explode as time progresses with
high probability). However the fraction of people in various compartments (given
by (1)) can possibly reach some equilibrium and we look out for this equilibrium
or limiting proportions (as is usually considered in literature [9]).

To study the limit proportions, it is sufficient to analyse the process at tran-
sition epochs. Let τk be the kth transition epoch, and infected population imme-
diately after τk equals Ik := I(τ+

k ) = limt↓τk
I(t); similarly, define Nk, Sk and

Vk. Observe here that Tk+1 := τk+1 − τk is exponentially distributed with a
parameter that depends upon previous system state (Nk, Sk, Ik, Vk).

Transitions: Our aim is to derive the (time) asymptotic fractions of (1).
Towards this, we define the same fractions at transition epochs,

θk :=
Ik

Nk
, ψk :=

Vk

Nk
, and φk :=

Sk

Nk
.

Observe that θk + ψk + φk = 1. To facilitate our analysis, we also define a
slightly different fraction, ηk := Nk/k for k > 1 and η0 := N(0), η1 := N(1). As
described in previous section, the size of the infected population evolves between
two transition epochs according to:

Ik+1 = Ik + GI,k+1, with GI,k+1 := Ik+1 − Rk+1 − DI,k+1, (3)

where Ik+1 is the indicator that the current epoch is due to a new infection, Rk+1

is the indicator of a recovery and DI,k+1 is the indicator that the current epoch is
due to a death among the infected population. Let Fk := σ(Ij , Sj , Vj , Nj , j ≤ k)
represent the sigma algebra generated by the history until the observation epoch
k and let Ek[·] represent the corresponding conditional expectation. By condi-
tioning on Fk, using the memory-less property of exponential random variables,

Ek[Ik+1] =
λIkSk

Nk

Nkb + Nkd + Ikde + λIkSk

Nk
+ Skν + Ikr

=
λθkφk

�k
, with,

�k := b + d + deθk + λθkφk + νφk + rθk,

Ek[Rk+1] =
rθk

�k
, and, Ek[DI,k+1] =

θk(d + de)
�k

. (4)

In similar lines the remaining types of the population evolve according to the
following, where Vk+1, Bk+1, DV,k+1 and DS,k+1 are respectively the indicators
of vaccination, birth and corresponding deaths,

Vk+1 = Vk + GV,k+1, GV,k+1 := Vk+1 − DV,k+1, (5)
Nk+1 = Nk + GN,k+1, GN,k+1 := Bk+1 − DI,k+1 − DV,k+1 − DS,k+1, and,
Sk+1 = Nk+1 − Ik+1 − Vk+1.
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As before,

Ek[Vk+1] =
νq(θk, ψk)φk

�k
, Ek[DV,k+1] =

ψkd

�k
,

Ek[DS,k+1] =
φkd

�k
, and, Ek[Bk+1] =

b

�k
. (6)

Let Υk := [θk, ψk, ηk]T . The evolution of Υk can be studied by a three dimensional
system, described in following paragraphs. To facilitate tractable mathematical
analysis we consider a slightly modified system that freezes once ηk reaches
below a fixed small constant δ > 0. The rationale and the justification behind
this modification is two fold: a) once the population reaches below a significantly
small threshold, it is very unlikely that it explodes and the limit proportions in
such paths are no more interesting; b) the initial population N(0) is usually
large, let δ = 2/(N(0) − 1) and then with b > d + de, it is easy to verify that the
probability, P

(
ηk < δ for some k

∣∣∣N(0)
)

→ 0 as N(0) → ∞. From (3),

Ik+1

Nk+1
=

Ik

Nk
+

Ik+1

Nk+1
− Ik

Nk
=

Ik

Nk
+

1

k + 1

k + 1

Nk+1

[
Ik+1 − IkNk+1

Nk

]
,

=
Ik

Nk
+

1

k + 1

k + 1

Nk+1

[
GI,k+1 − Nk+1 − Nk

Nk
Ik

]
, and thus including 1{ηk>δ},

θk+1 = θk + εk

1{ηk>δ}
ηk+1

[GI,k+1 − (Nk+1 − Nk)θk] , εk :=
1

k + 1
. (7)

We included the indicator 1{ηk>δ}, as none of the population types change (nor
there is any evolution) once the population gets almost extinct. Similarly, from
equation (5),

ψk+1 = ψk + εk

1{ηk>δ}
ηk+1

[GV,k+1 − (Nk+1 − Nk)ψk] , (8)

ηk+1 = ηk + 1{ηk>δ}εk [GN,k+1 − ηk] .

We analyse this system using the results and techniques of [10]. In particular,
we prove equicontinuity in extended sense for our non-smooth functions (e.g.,
q(θ, ψ) may only be measurable), and then use [10, Chapter 5, Theorem 2.2].
Define Lk+1 := [Lθ

k+1, L
ψ
k+1, L

η
k+1]

T , with

Lθ
k+1 =

1{ηk>δ}
ηk+1

[GI,k+1 − (Nk+1 − Nk)θk] , (9)

Lψ
k+1 =

1{ηk>δ}
ηk+1

[GV,k+1 − (Nk+1 − Nk)ψk] , and, Lη
k+1 = 1{ηk>δ}(GN,k+1 − ηk).

Thus (7)–(8) can be rewritten as, Υk+1 = Υk + εkLk+1. Conditioning as in (4):

Ek[Lθ
k+1] =

θk1{ηk>δ}
ηk�k

[φkλ − r − de − (b − deθk)] + αθ
k (10)

=: gθ(Υk) + αθ
k, where, αθ

k = Ek

[

Lθ
k+1 − ηk+1

ηk
Lθ

k+1

]

.
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In exactly similar lines, we define g(Υk) = [gθ(Υk), gψ(Υk), gη(Υk)]T (details just
below) and αψ

k such that Ek[Lψ
k+1] = gψ(Υk) + αψ

k and Ek[Lη
k+1] = gη(Υk). Our

claim is that the error terms would converge to zero (shown by Lemma 3 in
Appendix) and ODE Υ̇ = g(Υ ) approximates the system dynamics, where,

gθ(Υ ) =
θ1{η>δ}

η�
[φλ − r − de − (b − deθ)] , φ = 1 − θ − ψ

gψ(Υ ) =
1{η>δ}

η�
[q(θ, ψ)φν − (b − deθ)ψ] , and,

gη(Υ ) = 1{η>δ}

(

b − d − deθ

�
− η

)

, � = b + d + deθ + λθφ + νφ + rθ.

(11)

We now state our first main result (with proof in Appendix A).

A. Let the set A be locally asymptotically stable in the sense of Liapunov for
the ODE (11). Assume that {Υn} visits a compact set, SA, in the domain of
attraction, DA, of A infinitely often (i.o.) with probability ρ > 0.

Theorem 1. Under assumption A., i) the sequence converges, Υn → A as n →
∞ with probability at least ρ; and ii) for every T > 0, almost surely there exists
a sub-sequence (km) such that: (tk :=

∑k
i=1 εi)

sup
k:tk∈[tkm ,tkm+T ]

d(Υk, Υ∗(tk − tkm
)) → 0, as m → ∞, where,

Υ∗(·) is the solution of ODE (11) with initial condition Υ∗(0) = limkm
Υkm

. �

Using above Theorem, one can derive the limiting state of the system using
that of the ODE (in non-extinction sample paths, i.e., when ηk > δ for all k).
Further, for any finite time window, there exists a sub-sequence along which
the disease dynamics are approximated by the solution of the ODE. The ODE
should initiate at the limit of the system along such sub-sequence.

4 Limit Proportions and ODE Attractors

So far, we have proved that the embedded process of the system can be approxi-
mated by the solutions of the ODEs (11) (see Theorem (1)). We will now analyse
the ODEs and look for equilibrium states for a given vaccination policy π(β̂). The
following notations are used throughout: we represent the parameter by β̂ and
the corresponding equilibrium states by (θ̂, ψ̂). Let q̂ := q(θ̂, ψ̂) and �̂ := �(θ̂, ψ̂).
In the next section, we identify the evolutionary stable (ES) equilibrium states
(θ∗, ψ∗), among these equilibrium states, and the corresponding vaccination poli-
cies π(β∗).

We now identify the attractors of the ODEs (11) that are locally asymp-
totically stable in the sense of Lyapunov (referred to as attractors), which is a
requirement of the assumption A. However, we are yet to identify the domains
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of attraction, which will be attempted in future. Not all infectious diseases lead
to deaths. One can either have: (i) non-deadly disease, where only natural deaths
occur, de = 0, or (ii) deadly disease where in addition, we have excess deaths
due to disease, de > 0. We begin with the non-deadly case and FC agents.

The equilibrium states for FC agents (β̂ ≥ 0) are (proof in Appendix B):

Theorem 2. [FC agents] Define ρ := λ/(r + b + de), μ := b/ν. When de = 0
and q̃(θ, ψ) = β̂ψ, at the attractor we have η̂ = (b−d)/̂. The remaining details of
the attractors are in Table 1. The interior attractors (when (θ̂, ψ̂) ∈ (0, 1)×(0, 1))
are the zeros of the right hand side (RHS) of ODE (11). �

Table 1. Attractors for FC agents, (θE , ψE) :=
(
1 − 1

ρ
− 1

μρ
, 1

μρ

)

Nature Parameters (θ̂, ψ̂)

Endemic, ρ > 1

β̂ < μρ
(
1− 1

ρ
, 0

)

β̂ > μρ , q̃(0, 1− μ

β̂
) < 1 implies β̂ < μ + 1*

(
0, 1− μ

β̂

)

β̂ > μρ , q̃(0, 1− μ

β̂
) > 1 implies β̂ > μ + 1 μρ < μ + 1

(
0, 1

μ+1

)

μρ > μ + 1 (θE , ψE)

SE, ρ < 1 μ > β̂ (0, 0)

In all the tables of this section, the ∗ entries are also valid when ρ < 1. When
β̂ = μρ, the ODE (and hence the system) is not stable; such notions are well
understood in the literature and we avoid such marginal cases. We now consider
the FR agents (proof again in Appendix B):

Theorem 3. [FR agents] When q̃(θ, ψ) = β̂ψ(1 − ψ) and de = 0, then the
attractors for ODE (11) are (θ̂, ψ̂, (b−d)/̂), which are provided in Table 2. The
interior attractors are the zeros of the RHS of ODE (11). �

Table 2. Attractors for FR agents, (θE , ψE) :=
(
1 − 1

ρ
− 1

μρ
, 1

μρ

)

Nature Parameters (θ̂, ψ̂)

Endemic, ρ > 1

β̂ < μρ
(

1 − 1
ρ , 0

)

β̂ > μρ , q̃(θ̂, ψ̂) < 1 β̂ > ρ2μ∗
(

0, 1 −
√

μ

β̂

)

β̂ < ρ2μ
(

μρ

β̂
− 1

ρ , 1 − μρ

β̂

)

β̂ > ρ2μ, q̃

(

0, 1 −
√

μ

β̂

)

> 1 μ + 1 > μρ
(

0, 1
μ+1

)

μ + 1 < μρ (θE , ψE)

μρ < β̂ < ρ2μ, q̃
(

μρ

β̂
− 1

ρ , 1 − μρ

β̂

)

> 1

=⇒ μρ > (μ + 1)
(θE , ψE)

SE, ρ < 1 μ > β̂ (0, 0)
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As seen from the two theorems, we have two types of attractors: (i) interior
attractors (for e.g., third row in Tables 1 and 2) in which (θ̂, ψ̂) ∈ (0, 1) × (0, 1),
and (ii) boundary attractors, where at least one of the components is 0. In the
latter case, either the disease is eradicated with the help of vaccination (θ̂ = 0,
ψ̂ > 0) or the disease gets cured without the help of vaccination (θ̂ = ψ̂ = 0)
or no one gets vaccinated (ψ̂ = 0). In the last case, the fraction of infected
population reaches maximum possible level for the given system, which we refer
to as non-vaccinated disease fraction (NVDF), (θ̂N = 1−1/ρ) (first row in Tables
1 and 2). Further, η̂ is always in (0, 1). Furthermore, important characteristics of
the attractors depend upon quantitative parameters describing the nature and
the spread of the disease, and the vaccination responses:

– Endemic disease: The disease is not self-controllable with ρ > 1 and the
eventual impact of the disease is governed by the attitude of agents towards
vaccination (all rows other than the last in Tables 1 and 2).

– Self-eradicating (SE) Disease: The disease is not highly infectious (ρ < 1)
and can be eradicated without exogenous aid (vaccine).

The above characterisation interestingly draws parallels from queuing theory.
One can view λ as the arrival of infection and r + b + de as its departure. Then
ρ = λ/(r+b+de), resembles the load factor. It is well known that queuing systems
are stable when ρ < 1, similarly in our case, the disease gets self-eradicating
with ρ < 1. The attractors for VFC1 agents (proof in Appendix B):

Theorem 4. [VFC1 agents] When β̂ ≤ 2μρ2 or when q̂ = 1 with q̃(θ̂, ψ̂) �= 1,
the attractors for ODE (11) are (θ̂, ψ̂, (b−d)/̂), and are provided in Table 3. The
interior attractors are the zeroes of the RHS of ODE (11). �

Table 3. Attractors for VFC1 agents: Disease never gets eradicated with ρ > 1

Nature Parameters (θ̂, ψ̂)

Endemic, ρ > 1 β̂ < μ

(

ρ2
ρ−1

)

(

1 − 1
ρ

, 0
)

β̂ > μ

(

ρ2
ρ−1

)

, q̃(θ̂, ψ̂) < 1

(

μρ

β̂
, 1 − 1

ρ
− μρ

β̂

)

q̃

(

μρ

β̂
, 1 − 1

ρ
− μρ

β̂

)

> 1 =⇒ ρμ > μ + 1 and β̂ >
(ρμ)2

ρμ−μ−1 (θE , ψE)

SE, ρ < 1 (0, 0)

Key observations and comparisons of the various equilibrium states:

• When the disease is self-eradicating, agents need not get vaccinated to erad-
icate the disease. For all the type of agents, θ̂ = 0 (and so is ψ̂ = 0) for all
β̂ < μ.
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• With endemic disease, it is possible to eradicate the disease only if the agents
get vaccinated aggressively. The FC agents with β̂ > ρμ and FR agents with
a bigger β̂ > ρ2μ can completely eradicate the disease; this is possible only
when μρ < μ + 1. However interestingly, these parameters can’t drive the
system to an equilibrium that is stable against mutations, as will be seen in
the next section.

• With a lot more aggressive FR/FC agents, the system reaches disease free
state (θ̂ = 0 for all bigger β̂), however with bigger vaccinated fractions (≤
1/(μ+1)).

• Interestingly such an eradicating equilibrium state is not observed with vigilant
agents (Table 3). This is probably analogous to the well known fact that the
rational agents often pay high price of anarchy.

• For certain behavioural parameters, system reaches an equilibrium state at
which vaccinated and infected population co-exist. Interestingly for all three
types of agents some of the co-existing equilibrium are exactly the same (e.g.,
(θE , ψE) in Tables and left plot of Fig. 1). In fact, such equilibrium are stable
against mutations, as will be seen in the next section.

Fig. 1. Attractors for FC, FR, VFC1 agents versus β

A numerical example is presented in Fig. 1 that depicts many of the above
observations. The parameters in respective plots are (r = 1.188, ν = 0.904,
λ = 8.549) and (r = 1.0002, ν = 0.404, λ = 1.749), with b = 0.322. From the left
plot, it can be seen that for all agents, (θ̂, ψ̂) equals NVDF for smaller values of
β̂. As β̂ increases, proportions for FC agents directly reach (θE , ψE). However,
with FR and VFC1 agents, the proportions gradually shift from another interior
attractor to finally settle at (θE , ψE). Further, for the right plot (μρ < μ+1) the
disease is eradicated with FC (when β̂ > ρμ), FR (when β̂ > ρ2μ), i.e., (θ̂, ψ̂)
settles to (0, 1/μ+1), which is not a possibility in VFC1 agents. For the latter
type, the proportions traverse through an array of co-existence equilibrium, and
would approach (0, 1 − 1/ρ) as β̂ increases (see row 2 in Table 3).



Evolutionary Vaccination Games 197

Table 4. Attractors for FC agents (deadly disease)

Nature Parameters (θ̂, ψ̂)

Endemic, ρ > 1 β̂ > ρμ *
(
0, 1 − μ

β̂

)

β̂ < ρμ ρeμe > 1 or β̂ν < b − de

(
1 − 1

ρe
, 0

)

ρeμe < 1, β̂ν > b − de

(
θ∗, 1 − θ∗ (

1 − de
λ

) − 1
ρ

)
,

θ∗ =
β̂ν

(

μ

β̂
− 1

ρe

)

de

(

1− β̂ν
λ

)

SE, ρ < 1 β̂ < μ (0, 0)

Deadly Disease: We now consider the deadly disease scenario (de > 0) with
FC and FR agents. Let ρe := λ−de

r+b
, μe := b−de

β̂ν−de
. We conjecture the attractors

with β̂ ≤ 1 in Tables 4, 5 respectively, with A := deβ̂ν, B := −[(r + b + de)β̂ν +
deλ], and C := bλ+de(r+de). Further, the candidate attractors with q̃(θ̂, β̂) > 1
are provided in the next section, which is of interest to ESS-AS. We expect that
the proofs can be extended analogously and will be a part of future work, along
with identifying and proving the attractors for other cases.

Table 5. Attractors for FR agents (deadly disease)

Nature Parameters (θ̂, ψ̂)

Endemic, ρ > 1 β̂ > ρμ β̂ > ρ2μ ∗
(

0, 1 −
√

μ

β̂

)

β̂ < ρ2μ

(
1 − 1

ρe
− λψ̂

λ−de
, ψ̂

)
,

ψ̂ = 1 − −B−
√

B2−4AC

2A

β̂ < ρμ ρeμe > 1 or β̂ν < b − de

(
1 − 1

ρe
, 0

)

ρeμe < 1, β̂ν > b − de

(
1 − 1

ρe
− λψ̂

λ−de
, ψ̂

)
,

ψ̂ = 1 − −B−
√

B2−4AC

2A

SE, ρ < 1 β̂ < μ (0, 0)

5 Evolutionary Stable Vaccination Responses

Previously, for a given user behaviour, we showed that the system reaches an
equilibrium state, and identified the corresponding equilibrium states in terms
of limit proportions. If such a system is invaded by mutants that use a different
vaccination response, the system can get perturbed, and there is a possibility
that the system drifts away. We now identify those equilibrium states, which are
evolutionary stable against static mutations. Using standard tools of evolution-
ary game theory, we will show that the mutants do not benefit from deviating
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under certain subset of policies. That is, we identify the ESS-AS policies defined
at the end of Sect. 2.

We begin our analysis with de = 0, the case with no excess deaths (due to
disease). From Tables 1, 2 and 3, with ρ > 1, for all small values of β̂ (including
β̂ = 0), irrespective of the type of the policy, the equilibrium state remains the
same (at NVDF), (θ̂, ψ̂) = (1 − 1/ρ, 0). Thus, the value of h(·) in user utility
function (2) for all such small β̂ equals the same value and is given by:

hm := h(π(0)) = h

(
1 − 1

ρ
, 0

)
= cv1 + c̄v2 − pI (θ) cI1 , with, pI (θ) :=

λθ

λθ + ν
.(12)

In the above, pI(·) is the probability that the individual gets infected before the
next vaccination epoch. The quantity hm is instrumental in deriving the following
result with ρ > 1. When ρ < 1, the equilibrium state for all the policies (and all
β̂) is (0, 0) leading to the following (proof in [12]):

Lemma 1. If ρ < 1, or if ρ > 1 with hm > 0, then π(0) is an ESS-AS, for any
π ∈ Π. �

When the disease is self-eradicating (ρ < 1), the system converges to (0, 0), an
infection free state on it’s own without the aid of vaccination. Thus we have the
above ESS-AS. When ρ > 1, if the inconvenience caused by the disease captured
by −hm is not compelling enough (as −hm < 0), the ES equilibrium state again
results at β̂ = 0. In other words, policy to never vaccinate is evolutionary stable
in both the cases. Observe this is a static policy irrespective of agent behaviour
(i.e., for any π ∈ Π), as with β̂ = 0 the agents never get vaccinated irrespective
of the system state.

From tables of the previous section, there exists β̄(π) such that the equilib-
rium state remains at NVDF for all β̂ < β̄ (including β̂ = 0) and for all π ∈ Π.
For such β̂, we have h(θ̂, ψ̂) < 0 if hm < 0. Thus from the user utility function
(2) and ESS-AS definition, the static best response set B(π(β̂)) = {1} for all
π ∈ Π and all β̂ < β̄. Thus with ρ > 1 and hm < 0, any policy π(β̂) such that
β̂ < β̄ is not an ESS-AS. This leads to the following (proof available in [12]):

Theorem 5. [Vaccinating-ESS-AS] When ρ > 1 and hm < 0, there exists
an ESS-AS among a π ∈ Π if and only if the following two conditions hold:

(i) there exist a β∗ > 0 such that q(Υ ∗) = 1 and q̃(Υ ∗) �= 1 under policy π(β∗),
(ii) the equilibrium state is (θ∗, ψ∗) = (θE , ψE) , with μρ > μ + 1 and the corre-

sponding user utility component, h(π(β∗)) = h (θE , ψE) < 0. �

Remarks: Thus when ρ > 1 and hm < 0, there is no ESS-AS for any π ∈ Π if
h(θE , ψE) ≥ 0; observe that (θE , ψE) is equilibrium state with q̂ = 1 and hence
from ODE (11), does not depend upon π. On the contrary, if h(θE , ψE) < 0,
π(β∗) is ESS-AS for any π ∈ Π, with β∗ > μρ, β∗ > (μρ)2/(μρ−1), and β∗ >
(μρ)2/(μρ−1−μ) respectively for FC, FR and V FC policies (using Tables 1, 2
and 3).
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Thus interestingly, evolutionary stable behaviour is either possible in all, or in
none. However, the three types of dynamic agents require different set of param-
eters to arrive at ES equilibrium. An ES equilibrium with vaccination is possible
only when μρ > μ + 1 and interestingly, the infected and vaccinated fractions at
this equilibrium are indifferent of the agent’s behaviour. In conclusion the initial
dynamics could be different under the three different agent behaviours, however,
the limiting proportions corresponding to any ESS-AS are the same.

Numerical Examples: We study the variations in vaccinating ESS (θE , ψE),
along with others, with respect to different parameters. In these examples, we set
the costs of vaccination and infection as cv1 = 2.88, cv2 = 0.65, c̄v2 = 1.91, cI1 =
4.32/r. Other parameters are in the respective figures; black curves are for de = 0.
In Fig. 2, we plot the ESS-AS for different values of birth-rate. Initially, ρ > 1,
and vaccinating ESS-AS exists for all b ≤ 0.54; here h(θE , ψE) < 0 as given
by Theorem 5. As seen from the plot, θE is decreasing and approaches zero at
b ≈ 0.54. Beyond this point there is no ESS because μρ reduces below μ+1. With
further increase in b, non-vaccinating ESS emerges as ρ becomes less than one.
Interestingly, a much larger fraction of people get vaccinated at ESS for smaller
birth-rates. This probably could be because of higher infection rate per birth.
In fact from the definition of θE , the infected fractions at ES equilibrium are
concave functions of birth rate. When infection rate per birth is sufficiently high,
it appears people pro-actively vaccinate themselves, and bring infected fraction
(at ES equilibrium) lower than those at smaller ratios of infection rate per birth.

In Fig. 3 we plot ESS-AS for different values of ν. For all ν ≤ 0.31, the
vaccinating ESS-AS exists. Beyond this, there is no ESS because μρ reduces
below μ + 1. As ν further increases, hm becomes3 positive, leading to NV DF
as ESS. One would expect a smaller infected proportion at ES equilibrium with
increased availability rate, however we observe the converse; this is because the
users’ perception about infection cost changes with abundance of vaccines.

Fig. 2. ESS versus birth-rate (Color
figure online)

Fig. 3. ESS versus vaccine availability
(Color figure online)

3 This is because the chances of infection before the next vaccination epoch decrease
with increase in the availability rate ν.
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With Excess Deaths (de>0): The analysis will follow in exactly similar lines
as above. In this case, we have identified the equilibrium points of the ODE (11)
but are yet to prove that they are indeed attractors. We are hoping that proof
of attractors will go through similar to case with de = 0, but we have omitted
it due to lack of time and space. Once we prove that the equilibrium points are
attractors, the analysis of ESS would be similar to the previous case. When ρ < 1
or if ρ > 1 and hde

m := h(π(0)) = h
(

1 − 1
ρe

, 0
)

> 0 (see (2), Table 4 and 5), then
π(0) is an ESS-AS, as in Lemma 1. Now, we are only left with case when ρ > 1
and hde

m < 0 and one can proceed as in Theorem 5. In this case the only candidate
for ESS-AS is π(β̂) with β̂ such that q = 1 and q̃ �= 1 and h(θ̂, ψ̂) < 0. So, we
will only compute the equilibrium points for β̂ such that q = 1 and q̃ �= 1. From
ODE (11), such an equilibrium point is given by (B := λb + de(r + de − λ − ν)):

θde
E = 1 − 1

ρe
− λψde

E

λ − de
and ψde

E =
−B +

√
B2 + 4λdeν(r + b)

2λde
.

One can approximate this root for small de (by neglecting second order term
λde ≈ 0), the corresponding ES equilibrium state (θde

E , ψde

E ) (again from (11)):

ψde
E ≈ (r + b)ν

λb + de(r + de − λ − ν)
, that is,

(θde
E , ψde

E ) ≈
(

1 − 1

ρe
− ode

μρe
,

ode

μρe

λ − de

λ

)
with ode :=

1

1 + de(r+de−λ−ν)
μλν

.

As before, there is no ESS if μ + ode ≥ μρe (for larger de, when θde

E < 0).
From Figs. 2, 3 (red curves), the ES equilibrium state in deadly case has higher
vaccinated fraction and lower infected fraction as compared to the corresponding
non-deadly case (all parameters same, except for de). More interestingly the
variations with respect to the other parameters remain the same as before.

Fig. 4. VFC2 agents: Limit behaviour Fig. 5. FC agents, against λ

6 Numerical Experiments

We performed Monte-Carlo simulations to reinforce our ODE approximation
theory. We plotted attractors of the ODE (11) represented by (θ, ψ), and the
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corresponding infected and vaccinated fractions (θs, ψs) obtained via simulations
for different values of λ, ν and β. Our Monte-Carlo simulation based dynamics
mimic the model described in Sect. 3. In all these examples we set N(0) =
40000. The remaining parameters are described in the respective figures. We
have several plots in Figs. 5, 6, 7 and 8, which illustrate that the ODE attractors
well approximate the system limits, for different sets of parameters.

VFC2 Agents: These agents attempt to vaccinate themselves only when the
disease is above a certain threshold Γ , basically q̃ = β̂ψ1{θ>Γ}. As one may
anticipate, the behaviour of such agents is drastically different from the other
type of agents. Theorem 1 is applicable even for these agents (approximation
in finite windows will be required here). However with a close glance at the
ODE, one can identify that the ODE does not have a limit point or attractor,
but rather would have a limiting set. From the RHS of the ODE (11), one can
observe that the ψ derivative fluctuates between positive and negative values,
and hence ψ goes through increase-decrease phases if at-all θ(t) reaches near Γ .
This indeed happens, the fact is supported by a numerical example of Fig. 4.
Thus interestingly with such a vaccine response behaviour, the individuals begin
to vaccinate the moment the infection is above Γ , which leads to a reduced
infection, and when it reaches below Γ , individuals stop vaccinating themselves.
This continues forever, and one can observe such behaviour even in real world.

Fig. 6. FC agents vs ν Fig. 7. FR agents vs λ Fig. 8. FC agents vs β

7 Conclusions

With the ongoing pandemic in mind, we consider a scenario where the vaccines
are being prematurely introduced. Further, due to lack of information about the
side-effects and efficacy of the vaccine, individuals exhibit vaccination hesitancy.
This chaos is further amplified sometimes due to reported disease statistics,
unavailability of the vaccine, leading to vaccination urgency. We developed an
epidemic SIS model to capture such aspects, where the system changes due to
births, deaths, infections and recoveries, while influenced by the dynamic vacci-
nation decisions of the population. As observed in reality, a variety of behavioral
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patterns are considered, in particular follow-the-crowd, free-riding and vigilant
agents. Using stochastic approximation techniques, we derived the time asymp-
totic proportions of the infected and vaccinated population for a given vaccina-
tion response. Additionally, we considered the conflict of stability for dynamic
policies against static mutations, identified the strategies which are stable against
static mutations and studied the corresponding equilibrium states.

Interestingly, the agents exhibit different behaviors and lead to different equi-
librium states, however, at ESS-AS, all of the agents reach same limit state,
where they choose vaccination either with probability 1 or 0, only based on
system parameters. Also, by analysing the corresponding ODEs, we obtained
many responses under which disease can be eradicated completely, but none of
those are stable against mutations. Ironically, this is a resultant of the rationality
exhibited by agents, which prevents them from reaching the disease-free state.

We observed certain surprising patterns at evolutionary stable equilibrium:
(a) no one gets vaccinated with abundant vaccines; scarcity makes them rush;
(b) the limit infected proportions are concave functions of birth rates.

Lastly, the excess deaths did not change the patterns of ES equilibrium states
versus parameters, however, the limit vaccination fractions are much higher.
So, in all it appears individuals rush for vaccine and we have smaller infected
fractions at ES equilibrium, when there is a significant scare (of either deaths,
or of scarcity of vaccines, or high infection rates etc.). Ironically, the disease can
be better curbed with excess deaths.

Appendix A: Stochastic approximation related proofs

Lemma 2. Let δ = 2/(N(0)−1). Then for any k, ηk ≥ δ̄ := N(0)−3
(N(0)−1)2 a.s. And

thus,

E

[

1
η2

k

]

≤ 1
δ̄2

and Ek

[∣

∣

∣

∣

(

1
ηk+1

− 1
ηk

)∣

∣

∣

∣

]

≤ εk
δ̄ + 1
δ̄2

a.s., for any k.

Proof is provided in [12]. �

Lemma 3. The term αm
k → 0 a.s., and,

∑

k εk|αm
k | < ∞ a.s. for m = θ, ψ.

Proof: We will provide the proof for αψ
k and proof goes through in exactly

similar line for αθ
k. From equation (9), as in (10),

αψ
k = Ek

[
Lψ

k+1 − ηk+1

ηk
Lψ

k+1

]
, where Lψ

k+1 =
1{ηk>δ}

ηk+1
[GV,k+1 − (Nk+1 − Nk)ψk] .

By Lemma 2 and because |GV,k+1 − (Nk+1 − Nk)ψk| ≤ 2 a.s., we have:

∣∣∣αψ
k

∣∣∣ ≤ 2Ek

[∣∣∣∣
1

ηk+1
− 1

ηk

∣∣∣∣
]

≤ 2εk
δ̄ + 1

δ̄2
a.s. (13)
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Thus we have:
∞
∑

k=1

εk|αψ
k | ≤ 2

δ̄ + 1
δ̄2

∞
∑

k=1

ε2k < ∞ a.s. �

Lemma 4. supk E|Lm
k |2 < ∞ for m = θ, ψ, η.

Proof: The result follows by Lemma 2 and (9) (for an appropriate C):

|Lθ
k|2 ≤ 4

η2
k

a.s., and |Lψ
k |2 ≤ 4

η2
k

a.s., and |Lη
k|2 ≤ C < ∞, a.s. �

Proof of Theorem 1: As in [10], we will show that the following sequence of
piece-wise constant functions that start with Υk are equicontinuous in extended
sense. Then the result follows from [10, Chapter 5, Theorem 2.2]. Define
(Υ k(t))k := (θk(t), ψk(t), ηk(t))k where,

θk(t) = θk +

m(tk+t)−1∑
i=k

εkLθ
k+1, ψk(t) = ψk +

m(tk+t)−1∑
i=k

εkLψ
k+1, ηk(t))k = ηk +

m(tk+t)−1∑
i=k

εkLη
k+1,

where m(t) := max{k : tk ≤ t}. This proof is exactly similar to that provided
in the proof of [10, Chapter 5, Theorem 2.1] for the case with continuous g,
except for the fact that g(·) in our case is not continuous. We will only provide
differences in the proof steps towards (θk(t))k sequence, and it can be proved
analogously for others. Towards this we define Mθ

k =
∑k−1

i=0 εiδM
θ
i with δMθ

k :=
Lθ

k+1−gθ(Υk)−αθ
k as in [10] and show the required uniform continuity properties

in view of Lemmas 3–4. Observe that ηk ≤ 1 + N(0)/k, θk ≤ 1 for any k. Now
the uniform continuity of integral terms like the following is achieved because
our g(·) are bounded:

∣∣∣∣
∫ t

s

gθ(Υ k(z))dz

∣∣∣∣ ≤
∫ t

s

|gθ(Υ k(z))|dz ≤
∫ t

s

λ + r + b + 2de

δ(d + b)
dz ≤ m̄(t − s) ≤ m̄δ1.

Such arguments lead to the required equicontinuity (details are in [12]). �

Appendix B: ODE Attractors Related Proofs

Proof of Theorem 2: Let Υ := (θ, ψ, η). Let Υ̂ represent the corresponding
attractors from Table 1. Here q(θ, ψ) = min{q̃(θ, ψ), 1} with q̃(θ, ψ) = βψ.

We first consider the case where q̃(θ̂, ψ̂) < 1. Further, note that one can
re-write ODEs, Υ̇ = g(Υ ), as below:

θ̇ =
1{η>δ}Aθ

η�
, ψ̇ =

1{η>δ}Bψ

η�
, and η̇ = 1{η>δ}C, where
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A = A(Υ ) := (1 − θ − ψ)λ − r − b, B = B(Υ ) := (1 − θ − ψ)βν − b and
C = C(Υ ) := (b−d)/−η. To this end, we define the following Lyapunov function
based on the regimes of parameters:

V (Υ ) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
Â(θ)

)2

+ ψ
(
B̂(ψ)

)2

+ C(η)(η̂ − η), if β < ρμ, ρ > 1,

θ
(
Â(θ)

)2

+
(
B̂(ψ)

)2

+ C(η)(η̂ − η), if β > ρμ, and ρ > 1

θ
(
Â(θ)

)2

+ ψ
(
B̂(ψ)

)2

+ C(η)(η̂ − η), if ρ < 1,

where Â(θ) := A(θ, ψ̂, η̂), B̂(ψ) := B(θ̂, ψ, η̂). We complete this proof using the
above functions and the details are in [12]. �

Lemma 5. Let θ̂, ψ̂ > 0. If q̃(θ̂, ψ̂) �= 1, there exists a Lyapunov function such
that (θ̂, ψ̂, η̂) is locally asymptotically stable attractor for ODE (11) in the sense
of Lyapunov.

Proof: We use similar notations as in previous proof. Let us first consider the
case where q̃(θ̂, ψ̂) < 1, i.e., q(θ̂, ψ̂) = q̃(θ̂, ψ̂). Then, one can choose a neigh-
borhood (further smaller, if required) such that q̂ − δ < q(θ, ψ) < q̂ + δ, and
q(θ, ψ) = q̃(θ, ψ) for some δ > 0. Define the following Lyapunov function (for
some w1, w2 > 0, which would be chosen appropriately later):

V (Υ ) := w1(θ̂ − θ)Â(θ) + w2(ψ̂ − ψ)B̂(ψ) + C(η̂ − η), where (14)

Â(θ) := 1 − θ − ψ̂ − 1
ρ , and B̂(ψ) := q̂(1 − θ̂ − ψ) − μψ (recall q̂ := q(θ̂, ψ̂)). Call

˜θ := θ̂ − θ and ˜ψ := ψ̂ − ψ. The derivative of V (Υ (t)) with respect to time is:

V̇ = 〈∇V, g(Υ )〉 (15)

= −
(
Â(θ) + θ̃

) Aθλw1

η�
−

(
B̂(θ) + ψ̃(q̂ + μ)

) Bνw2

η�
− (C(η) + η̂ − η)C.

One can prove that the last component, i.e., −(C + η̂ − η)C is strictly neg-
ative in an appropriate neighborhood of Υ̂ as in proof of Theorem 2. Now, we
proceed to prove that other terms in V̇ (see (15)) are also strictly negative in a
neighborhood of Υ̂ .

Consider the term4
(

Â(θ) + ˜θ
)

A, call it A1:

A1 = 2θ̃A = 2
(
θ̃2 + θ̃ψ̃

)
= 2

((
θ̃c1 +

1

2c1
ψ̃

)2

+ (1 − c21)θ̃
2 − 1

4c21
ψ̃2

)
, (16)

where c1 will be chosen appropriately in later part of proof. Similarly the term
corresponding to B is (details in [12]),

4 Observe that Â(θ)A = (Â(θ̂) + θ̃)A, and Â(θ̂) = 0.
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B1 = 2(q̂ + μ)

[
ψ̃2

(
μ + p1(Υ ) + q̂(1 − c22)

)
− 1

4c22q̂
(q̂ − p2(Υ ))2 θ̃2

]

+ 2(q̂ + μ)q̂

(
c2ψ̃ +

1

2c2

(
1 − p2(Υ )

q̂

)
θ̃

)2

.

(17)

Thus, we get: V̇ < −A1
θλw1

η −B1
νw2
η . Now, for V̇ to be negative, we need (using

terms, in (16) and (17), corresponding to ˜θ2, ˜ψ2):

ν(q̂ + μ) ≤ 4c22q̂

w2 (q̂ − p2(Υ ))2
λw1(1 − c21)θ, and

1

2c21
θλw1 ≤ 2νw2(q̂ + μ)

(
μ + q̂(1 − c22) + p1(Υ )

)
.

By appropriately choosing the constants (for various agents), we complete the
proof (details in [12]). �

Appendix C: ESS Related Proofs

Lemma 6. Let ρ > 1. Assume q̃(Υ ) �= 1 where q(Υ ) = min{q̃(Υ ), 1}. Consider
a policy π(β̂) where π ∈ Π and Υ̂ is the attractor of the corresponding ODE (11).
Let Υ̂ε be attractor corresponding to ε-mutant of this policy, πε(β̂, p) for some
p ∈ [0, 1]. Then, i) there exists an ε̄(p) > 0 such that the attractor is unique and
is a continuous function of ε for all ε ≤ ε̄ with Υ̂0 = Υ̂ .
ii) Further ε̄ could be chosen such that the sign of h(Υ̂ε) remains the same as
that of h(Υ̂ ) for all ε ≤ ε̄, when the latter is not zero. �

Proof: We begin with an interior attractor. Such an attractor is a zero of a
function like the following (e.g., for VFC1 it equals, see (11)):

φλ − r − b, min
{

1, ψθβ̂
}

φν − bψ, and
b − d

�
− η. (18)

Under mutation policy, πε(β̂, p), the function modifies to the following:

φλ − r − b,
(

(1 − ε)min{1, β̂ψθ} + εp
)

φν − bψ, and
b − d

�
− η. (19)

By directly computing the zero of this function, it is clear that we again have
unique zero and these are continuous5 in ε (in some ε̄-neighbourhood) and that
they coincide with Υ̂ at ε = 0. Further using Lyapunov function as defined in
the corresponding proofs (with obvious modifications) one can show that these
zeros are also attractors in the neighborhood. The remaining part of the proof
is completed in [12]. The last result follows by continuity of h function (2). �

5 When q̃(Υ ) > 1, the zeros are (εp+(1−ε))/(μρ), otherwise they are the zeros of a
quadratic equation with varying parameters, we have real zeros in this regime.
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