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Abstract. Agronomists deal with challenges to determinate ideal
parameters (e.g., soil moisture, temperature, etc.) to grow each vari-
ety of plants according to the nature of soil and climate zone. Tradi-
tional method consists in having experimental farms in which different
conditions are created to discover which environmental and chemical
conditions enable maximizing yield for each variety of seed. This pro-
cess is fastidious and accuracy of results is difficult to evaluate. In this
paper, we propose an Edge AI Internet of Things (IoT) framework for
agronomic experimentations and will the solution be cost efficient, easy
to deploy, low maintenance, and robust, which makes it very appeal-
ing in the African context. Our proposal is composed of three segments:
experimental farm zone (Lab) where sensors and actuators network are
deployed, a set of data collection and processing gateways called Edge
AI-IoT Nodes which implements Edge Machine Learning Models, and
Cloud and Fog segment that provides a social network and services for
agronomic experts. Social network is an interface for agronomic experts
that allow them to follow data collected from experimental farms and
for cross validation of results around the world. For the purpose of illus-
tration two use cases are presented: plant leaf disease detection using
machine learning; and smart automated irrigation with IoT framework.

Keywords: AI-IoT · Edge computing · Smart-agriculture ·
Smart-irrigation · Machine learning · Experimental farms · Plant Leaf
Disease Detection · ICT4D

1 Introduction

Internet of Things (IoT) based Smart-Agriculture is a fast-emerging research and
development field with wide range of applications. It consists in using in farming
sensors or Unmanned Aerial Vehicles (UAV) to collect data on farm’s physical
environment (soil moisture, pH., temperature, wind speed, electrical conduc-
tivity, etc.) and actuators connected to communication system. The result can
be a decision-support systems (such as proper amount of nitrogen, phosphorus,
potassium, etc.), optimization system of farming resources (water, fertilizers,
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insecticides, etc.) [5], farming monitoring systems (such as detecting plant stress,
wheat diseases, pests, and weeds), automated irrigation system.

However, the optimizing tasks and early agronomic research are less
addressed by IoT in specific areas in Africa. Indeed, African agronomic
researchers and engineers have less opportunities to experiment with a large vari-
ety of Farms-Labs environments a large variety of Farms-Labs environments. IoT
and AI tools on the edge can be very valuable [13,17]. For instance, an IoT based
automated irrigation system wouldn’t be efficient without taking into account
threshold of dry and moisture that can be supported by plants in the field. Agro-
nomic Engineers might need systems that assist them to monitor their testing
farms and provide support in analyzing produced data. This is even more rele-
vant in the African context where there is a lack of agronomists experts and an
inefficiency due to outdated and/or out of context data.

Traditional IoT architectures composed of IoT Core network and cloud com-
puting resources are not suitable in the Sub-Saharan Africa area. The main
reasons include the followings: firstly these architectures require centralization
in a Cloud as well as good network coverage in the experimental fields [14]. Sec-
ondly, rural areas in Sub-Saharan Africa suffers from low network coverage and
available bandwidth. This makes it very difficult to consider developing central-
ized architecture. Finally, national agronomic research structures do not have
much means to support large scale tests over a long period of time.

In this paper we propose an Edge AI-IoT framework for experimental agri-
culture that we call eFarm-Lab. Basically, the use of IoT, Edge, and AI in agri-
culture is not new [7,16]. However, in our knowledge, using a framework for
studying agronomic conditions in experimental farms is something new as far as
we know. The general principle is that the framework is designed to allow, on
the fly, machine learning modelling and deployment of models on Edge Nodes to
assist local agronomic researchers in their experimental labs. So the outcome of
this proposal targets experimentation farms, not production ones. For instance,
to study growth phases of a plant, sensors (cameras, humidity sensors, etc.) can
be deployed to monitor the height of the plant and other agronomic parameters,
and use machine learning models to better know the needs of the plant.

eFarm-Lab is composed of three segments : Simple IoT sensors and actuators
network; a set of Edge-AI-IoT nodes implementing machine learning models for
experimentation; and finally Cloud architecture. A social network of agronomic
experts as oracles can help labelling data and enhance quality of learning. Social
network is an interface for agronomic experts that allow them to follow plants
evolution using pictures captured by platform and for cross validation of results
by agronomist community.

2 Related Works

There are several works in the field of smart agriculture based on IoT eventu-
ally with AI. Topics covers from Smart Irrigation systems [3,9,12], Monitoring
and information collection systems [9,11], Crops Protection systems and data
analysis [15] and plan disease detection [4]. Main network technologies are WiFi,
WiMAX, LR-WPAN, GSM-Based, Bluetooth, LoRa, SigFox, NB-IoT.
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Bu et al. [6] use deep Reinforcement learning in IoT network for Smart agri-
culture. In this work, computations are centralized on the cloud.

Angelopoulos et al. in [2] propose an Edge computing architecture to reduce
the traffic between the IoT network and cloud.

Ahmed Imteaj et al. proposed a system that is able to detect the appropriate
time to water the field according to the soil moisture and the intensity of light.
The system can also monitor irrigation level to prevent accumulation of water
around tree roots and send a text message to the farmer in case of lack of
water [12]. In [3], authors presents different technologies that can be used in
the implementation of an automatic irrigation system for saving water using the
Internet of Things. In this article, authors use Zigbee for communication between
the sensors and the actuator. Authors of paper [9] designed a basic system based
on the Internet and the cloud technologies. LI-FI technology is used to provide
communication between the sensors and the data collection server. It is used to
collect all the information on the field and to send on the cloud using GPRS or
WIMAX as a transmission medium.

[1] has proposed smart farming using automation and IoT technology. The
authors have implemented a GPS-based remote-controlled vehicle that will per-
form several tasks in the field and in the warehouse. Her tasks include scaring
birds and animals, detecting soil moisture, spraying fertilizers and pesticides,
weeding, detecting soil moisture, and so on.

If we sum up, all these papers about smart agriculture try to enhance agricul-
ture inside production farms. However, before automating irrigation, or detecting
plant disease, thresholds must be tested out by agronomist engineers.

Our objective in this paper is to design an Edge AI-IoT framework for experi-
menting farm conditions for development of varieties of plants in an uncontrolled
environment. This point is very relevant for Sub-Saharan Africa since there is
not enough agronomist experts to realise this kind of experimentation.

A second aspect of our proposal is it includes a social network of experts in
agronomy in order to test different conditions of farming and remotely validated
the best ones.

3 Our Proposition

3.1 General Architecture of Proposed Framework

eFarmLab is composed of three segments (Fig. 1): Experimentation farm domain
that contains sensors and actuators network, Edge AI-IoT Nodes for small AI
training and model deployment and Cloud/Fog for larger machine learning mod-
els training and dataset storage.

The experimentation farm area contains a set of plant squares, each corre-
sponding to a specific agronomic experience (seed selection, disease study, plant
need, etc.). The different squares can reproduce the same conditions or envi-
ronment for experimenting and/or monitoring plant evolution (Fig. 2). These
area contains plants and network of end nodes (sensors and actuators network).
Sensor and actuator network is a set of nodes that embed sensors for collecting
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Fig. 1. General architecture for Edge AI-IoT framework

data or modifying environmental conditions via actuator to create different con-
ditions in experimental field (such as starting watering). This network collects
data about plant environment parameters like thresholds, soil moisture, plant
appearance with camera, and communicate with Edge AI-IoT Nodes.

These sensor-actuator-nodes can manage multiple sensors depending on the
need of monitoring. More concretely, if expert wants to explore the stress level of
the plant according to the aridity conditions on the maps, it would be possible
to use one or more cameras to monitor the general appearance of the plant.

The Edge AI-IoT Nodes (Gateway) act as interface between the sensor and
actuator network, and the agronomic experts web based interface through the
Internet. These nodes have the role of hosting the intelligence of the network.
Intelligence is represented by training lightweight machine learning models but
also receiving the deployment of models that come from the fog computing part.

This can be implemented by existing Edge AI platforms (Raspberry Pi,
Nvidia Jetson Nano, etc.) with or without a GPU. Tiny Machine Learning mod-
els can be trained directly on Edge AI-IoT Node for ROI (Region of Interest)
detection (KNN, KMeans, etc.). We will provide an example of directly trained
machine learning model on Edge Node.

To allow the deployment of more complex models these nodes host envi-
ronment containers so that they do not have compatibility issues in running or
deployed models. This enables hot deployment and programming of the AI-IoT
Edge node.

Finally the Fog/Cloud segment has more computing and storage resources
to store larger datasets and train more complex/greedy machine learning algo-
rithms such as CNN. The output models can be deployed on the Edge AI-IoT
Nodes.

Agronomists experts use web based interface (social network) to evaluate the
result of the machine learning services or enhancing them. With this platform, it
could be allowed expert to participate in experimentations by comparing aspects
of the plants at different moment. In this way, they can indicate to platform if it is
doing well or not. Access devices could be tablets, smartphones and computers.
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Fig. 2. Example of experimental farm captured at Saint-Louis/Senegal

The aim of this overall architecture is to automate testing and monitoring for
agronomist while giving them possibility to participate on model enhancement.

3.2 Machine Learning Deployment on the Edge IoT

Machine learning tools are deployed in different places in the network. On
the Cloud-Computing/fog part where there are more storage and computing
resources available, machine learning algorithms are trained on large data sets
in order to produce the best models according to what the agronomist expert
seeks to study. For example, if the objective of the platform is to detect the
presence or absence of disease of a plant from leaves in the Fog part, we will
have a dataset of leaves of diseased or healthy plants. These models are created
using well-known machine learning algorithms such as SVM, KNN, KMeans,
CNN Machine learning models are mainly represented as classifiers, decisions
trees, equations, inference rules, etc.

Once the model is validated, it can be deployed to any Edge node it has
enough resources. Deployment can be done using containers instead of traditional
virtual machines because they are lighter to deploy and consume less computing
and storage resources.

This functionality makes it possible to deploy machine models in any equip-
ment, knowing that the context. In the next session we will illustrate use cases
of the deployment.
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3.3 AI on the Edge for Experimental Fields

Edge KMeans Kernel-Learning for Plant Leaf Disease Detection. Plant
diseases result in an alteration of the plant which modifies or interrupts its
vital functions such as photosynthesis, transpiration, pollination, fertilization,
germination, etc. Manifestations of the disease are usually seen on the leaves,
fruits and stems of the plant. This can have a very big impact on the yield of
the plant. In this use case we consider the context of an agronomist who wants
to study a disease that manifests itself in the leaves automatically.

Edge AI-IoT Node, in this case embed a KMeans Kernel-Learning model to
assist agronomic expert for plant leaf disease detection after a short number of
interactions with the system. The principle of KMeans Kernel Learning consists
in creating KMeans models trained with selected images (Kernel Images). The
clusters resulting from these Kernel Images are called Kernel Clusters and are
then labelled diseased zones or healthy zones [8]. This would help the expert
extracting diseased area even if it is almost visible (Fig. 3).

Fig. 3. KMeans Kernel learning clustering

More formally, considering Ik0 a Kernel Image chosen we have the Eq. (1):

KMeans(Ik0) =
{
ϕk0, Ωk0

}
(1)

Where ϕk0 is the KMeans Kernel Model clustering model based on the Ik0
kernel image and Ωk0 is the set of cluster centroids and their labels as a healthy
or disease regions of the plant leaf. Ωk0 is defined by Eq. (2):

Ωk0 =
{
(ωi,k0, label)/i ∈ [0 − 3], label ∈ {

health, diseased
}}

(2)

Where ωi,k0 is the centroid of the cluster number i (related to Ik0) and the
label indicates if the cluster formed from this centroid belongs to a diseased
region or healthy. We make the assumption that by taking the one cluster that
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contains most significant disease region we can make decision about the health
of the plant leave. So only one cluster is labelled diseased and we always refer
to it by ω2,k0. The framework uses Kernel Image Ik0 which is supposed to have
representative features of a diseased plant leaf. This Kernel Image is used to
build a KMean Kernel Model ϕk0 and Kernel Clusters ωi,k0 ; i ∈ [0, 3]. Each
cluster can be labelled healthy or diseased. In our context we orient KMeans
algorithm so the cluster that contains most of diseased region is always named
ω2,k0. KMean Kernel Models are just classifiers based on KMean that have been
trained with data IR3 composed by Kernel Image pixels components (Fig. 4).
We limited the number of clusters to 4 because we observed that the number of
empty clusters increases when K ≥ 4.

Clusters produced by KMeans Kernel Learning

Fig. 4. Segmented plant leaf with four clusters

The KMean algorithm identifies the cluster containing the largest diseased
part. Agronomic experts can at this stage tag a few clusters of a few plants to
indicate which ones represent a diseased part. The system can present in the
social network clusters such as in Fig. 4 so they can retag them if necessary.

As experimentation we use Plant Village DataSet [10] wich is composed of
plant leaf images that are segmented. The aim was to design a model for plant leaf
disease detection based on Kernel KMeans. We selected 1474 images of diseased
plant leaves and 1129 images of healthy plant leaves. For the training/testing
split we used 80%/20%. For implementation of Kernel KMeans we used popular
Sci-kitLearn, Pandas, openCV and matplotlib.

The results of the test on multiple samples of plant leaf images is presented
by the following table.

The model is fast and accurate without much help from experts. The precision
is about 95% while accuracy is 93%. It exists machine learning models that are
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Precision Recall F1-score Support

Diseased leaves 0.93 0.95 0.94 1474

Healthy leaves 0.93 0.90 0.91 1129

more accurate and the purpose was not to compete in term of accuracy. However
it can be a decision support and monitoring tool for agronomic expert.

3.4 Use Case: Smart Irrigation Experimental Farm

Fig. 5. Architecture for Edge AI-IoT network smart irrigation experimentation

Each plant has its ideal environmental conditions for instance for tomatoes soil
moisture should be between 60% and 80%. To discover this kind of information,
agronomic tests are done in specialized experimentation farms where different
environment conditions can reproduced. Challenging task is to reproduce results
for a large number of plant varieties in uncontrolled outdoor environment. To
address this problem, as a second use case we propose that experimentation fields
are divided into five numbered zones (Fig. 5): Z0 to Z4. In each zone, we have a
sensors and actuators network that help to learn thresholds for ideal conditions.
All zones are connected to one gateway. With this layout, system should learn
four thresholds (Fig. 5):

– Z0: this is the reference zone of our field with a soil moisture threshold that
can ensure a good development of the plant. We will therefore compare this
zone (Z0) with the other zones (Z1, Z2, Z3, Z4) to see which zones have a
humidity that favors or alters the appearance of the plant;
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– Z1: the minimum threshold that negatively affects the appearance of the plant
with a humidity of 40% compared to Z0;

– Z2: in Z2 the minimum moisture threshold that retains the same appearance
of the plant as that found in the reference zone;

– Z3: the limit threshold which makes it look better than that of the reference
plant;

– Z4: the optimal threshold which gives a very good appearance and a better
qualitative transformation of the plant compared to Z0;

Figure 6 below illustrates the result that our algorithm should provide after the
experimental phase of studying our plant. The experimentation is done almost
remotely.

Fig. 6. Example of expected result in the case of tomato

In this use case, model is an algorithm executed by Edge node and that have
double inputs: one from sensor network, other from social network of agronomic
experts. The algorithm collects data from sensor network and makes decisions
according to feedback events from experts in social network part. Indeed, when
sensor network does an action (start watering for instance), after a while, it
needs to get feedback from agronomic experts which are considered as oracles to
tell if this action has positives effect or not. Algorithm 1 executes a main loop.
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Algorithm 1: Gateway’s Automated Irrigation System Control Algorithm
Data:
feedback : feedback of the social network about plant
Zonei : Concerned Zone inside expermation zone
socialNetworkServerAddress : Address of Expert FrontEnd Server
h : local soil humidity/moisture
Result: Thresholds in Z1, Z2, Z3, Z4

initialization;
while true do

picture ← getPicture(Zonei);
send(picture, Zonei, socialNetworkServerAddress);
feedback ← getFeedback(Zonei, socialNetworkServerAddress);
if feedback == state1 then

if (Zonei == Z1) or (Zonei == Z2) then
stopWatering(Zonei);

end
if (Zonei == Z3) or (Zonei == Z4) then

startWatering(Zonei);
wait(1 hour);

end

end
if feedback == state2 then

if Zonei == Z1 then

h ← h − 5%;
sendToSocialNework(Zonei, h);

end
if Zonei == Z2 then

stopWatering(Zonei);
h ← h − 5%;
sendToSocialNework(Zonei, h);

end
if (Zonei == Z3)or(Zonei == Z4) then

sendToSocialNework(Zonei , FAILURE);
stopWatering(Zonei);

end

end
if feedback == state3 then

if Zonei == Z3 then

sendToSocialNework(Zonei , h);
end
if Zonei == Z4 then

stopWatering(Zonei);
wait(1 hour);

end

end
if feedback == state4 then

h ← h + 5%;
sendToSocialNework(Zonei , h);

end

end
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First step is the IoT node takes a picture of plant and send it to social network
of experts. Agronomic experts give a feedback that is actually of an appreciation
of the action of gateway regarding to plant development. The possible feedback
events are:

– State1- plant with the same appearance as the reference Z0

– State2- plant in a state of degradation in comparison to Z0

– State3- better appearance of the plant in comparison to Z0

– State4- Substantial improvement in the appearance of the plant in comparison
to Z0.

As an example, when gateway sends a picture of plants in all zones to experts’
social network. Experts answer with feedbacks that are represented by Zi and
notifies to the gateway that all plants have the same aspect in all zones (state1).
This is to say that the plants have the same appearance in comparison to Z0

and thus watering is stopped in zones Z1 and Z2, but continues Z3 and Z4.

4 Conclusion and Future Works

In this paper we proposed an Edge AI-IoT framework for experimental agri-
culture that we call eFarm-Lab. The general principle is that the framework is
designed to allow, on the fly machine learning model training and deployment of
models on Edge nodes to asssist agronomic experts in their experimental labs.
eFarm-Lab is composed of three kind of nodes: IoT (sensors and actuators) net-
work; a set of Edge-AI-IoT nodes implementing machine learning models; and
finally Cloud architecture. A social network of agronomic experts as oracles can
help labelling data and enhance quality of learning. We exhibited two use cases
where this framework can be deployed for agronomic experimentation. The first
is related to plant leaf disease detection and we implemented it to show the proof
of concept. And finally the smart irrigation use case to illustrate how the social
network of expert can be used to enhance remote testing.

The next step is to deploy a real testbed to see the behavior of deploying an
Edge node with controllers encapsulating machine learning models.
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