
Intrusions Detection and Classification
Using Deep Learning Approach

Léonard M. Sawadogo(B), Didier Bassolé, Gouayon Koala, and Oumarou Sié

Laboratoire de Mathématiques et d’Informatique, Université Joseph KI-ZERBO,
Ouagadougou, Burkina Faso
http://www.univ-ouaga.bf

Abstract. In this paper we propose an intrusions detection technique
using Deep Learning approach that can classify different types of attacks
based on user behavior and not on attacks signatures. The Deep Learning
approach used is Supervised Learning model called Convolutional Neu-
ral Networks (CNN) coupled with Tree Structure whose set is named
Tree-CNN. This structure allows for incremental learning. This makes
the model capable of learning how to detect and classify new types of
attacks as new data arrives. The model was implemented with Tensor-
Flow and trained with the CSE-CIC-IDS2018 dataset. We evaluated the
performance of our proposed model and we made comparisons with other
approaches considered in related works. The experimental results show
that the model can detect and classify intrusions with a score of 99.94%
for the detection and 97.54% for the classification.

Keywords: Intrusion detection · Deep learning · Classification ·
Tree-CNN

1 Introduction

Intrusions generally involve gaining unauthorized access to data on a computer
system or network by bypassing or defusing the security devices in place. Intru-
sion detection systems for the security of computer systems are diversified, but
they are still confronted with two major problems, namely the rate of false alarms
and the capacity to detect new attacks, in particular “zero-day” attacks. The
goal of intrusion detection is to spot the actions of an attacker attempting to
take advantage of system vulnerabilities to undermine security objectives. Dif-
ferent categories of intrusion detection methods are explored in the literature, in
particular those based on a behavioral approach such as static analysis, Bayesian
analysis, neural networks and those based on a scenario approach such as the
search for signatures, pattern matching, simulation of Petri networks.

An intrusion detection system can attempt to identify attacks by relying
on information relating to transitions taking place in the system (execution of
certain programs, certain sequences of instructions, arrival of certain packets

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

Y. Faye et al. (Eds.): CNRIA 2021, LNICST 400, pp. 40–51, 2021.

https://doi.org/10.1007/978-3-030-90556-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90556-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-90556-9_4


Intrusions Detection and Classification 41

network, . . .) or by studying state of certain properties of the system (integrity
of programs or stored data, user privileges, rights transfers, . . .). How to detect
different network attacks, especially ones that have never been seen before, is a
key question researchers are trying to solve. To this end, to be able to assess the
possible limits of current existing intrusion detection systems and to consider
the contribution of Machine Learning techniques to improve intrusion detection
systems, their intrusion detection process and also efficiently manage alerts, is a
major concern in the field of computer security.

The rest of this paper is structured as follows: Sect. 2 deals with related
works. Section 3 presents our Approach and architecture related vulnerabilities
and the classification of machine learning techniques used to predict the type
of vulnerability. Section 4 illustrates the description of our dataset used, the
experimental set-up and our learning algorithm. Section 5 provide discussions on
results of our analysis and make comparison with other approaches. We conclude
this work in the Sect. 6.

2 Related Works

Intrusion Detection System (IDS) research, particularly that involving machine
learning methods, is of great interest to computer security researchers. These
authors deal with various machine learning methods (supervised, unsupervised,
etc.). As data issues are very important for machine learning, several researchers
deal with them. These authors discuss the quantity, quality, availability and
compatibility with different machine learning methods.

In [1], Alex Shenfield et al. present an approach to detect malicious attacks
traffic on networks using artificial neural networks based on deep packet inspec-
tion of the network’s packets. The KDD CUP 1999 dataset was used for training.
They achieved an average accuracy of 98% and an average false positive rate of
less than 2%. This shows that the proposed classification technique is quite
robust, accurate and precise, but the false alarm rate is still high.

N. Chockwanich et al. [2] used Recurrent Neural Network (RNN) and Con-
volutional Neural Network (CNN) to classify five types of attack using Keras
with TensorFlow. To evaluate performance, they used the MAWI dataset which
are pcap (“packet capture”) files and compared their results with those of Snort.
The results show that Snort could not detect the network scan attack via ICMP
and UDP. They proved that RNN and CNN can be used to classify Port scan,
Network scan via ICMP, Network scan via UDP, Network scan via TCP, and
DoS attack with high accuracy. RNN offers an accuracy of 99.76% and 99.56%
for CNN.

In [3] Leila Mohammadpour et al. used CNN and the NSL-KDD dataset
for network intrusion detection system. They obtained, for their experimental
results, a detection rate of 99.79%.

Peng Lin et al. [4] use Long-Short Term Memory (LSTM) to build a deep
neural network model and add an attention mechanism (AM) to improve the
model performance. They use the CSE-CIC-IDS2018 data set. Experimental



42 L. M. Sawadogo et al.

results show an accuracy of 96.2%, and they claim that this figure is better than
the figures of other machine learning algorithms. Nevertheless the score is below
that of other models using the same data set as shown in the work below.

In [5] V. Kanimozhi et al. compared the performance of several algorithms on
the CSE-CIC-IDS2018 dataset. They showed that the artificial neural networks
(ANN) performed significantly better than the other models with a score of
99.97% and an accuracy of 99.96%.

V. Kanimozhi et al. [6] propose a system which consists in detecting a botnet
attack classification. The proposed system is created by applying an artificial
neural network model to a CSE-CIC-IDS2018 data set. The proposed system
offers a precision score of 99.97% and the average false positive rate is only
0.1%. However, the model is only applied to botnet intrusions and therefore
does not have the capability to detect other types of attacks.

3 Methodology: Approach and Architecture

3.1 Approach

In order for Intrusion Detection Systems to perform well with an excellent
false alarm rate and “zero-day” attack detection, they must be trained regu-
larly with new data obtained from monitoring network traffic. More the IDS
model is trained, more it will adjust to improve. Traditionally, training for arti-
ficial intelligence models takes place in one go (“One-Shoot”) and then these
models are used, whatever the duration, without learning new information. Dif-
ferent techniques including continuous learning and incremental learning [7,8]
are introduced in an attempt to learn continuously. This has become a very
fashionable field of research [7,9–11]. However, changing part of the parameter
space immediately affects the model as a whole [12]. Another problem related
to the progressive training of a Deep CNN model is the issue of catastrophic
oblivion [13]. When a formed Deep CNN is exclusively recycled on new data, it
results in the destruction of existing features learned from previous data.

But based on an algorithm proposed by Deboleena Roy et al. [14] we can
exploit the advantages of incremental learning. In their work, to avoid the prob-
lem of catastrophic forgetting, and to keep the functionalities learned in the
previous task, Deboleena Roy et al. propose a network composed of CNN that
develops hierarchically as that new classes are being introduced. CNN are able to
extract high-level features that best represent the abstract form of low-level fea-
tures of network traffic connections. We chose to use CNNs because of the many
advantages they offer, particularly their ability to select the most significant fea-
tures themselves and their architecture gives them the ability to prioritize the
selected features from the simplest to the most sophisticated.

3.2 Architecture

Inspired by hierarchical classifiers, the model we propose, Tree-CNN is composed
of several nodes linked together to have a tree structure. The first node of the



Intrusions Detection and Classification 43

tree structure is the “root” node where the first classification takes place. All
the other nodes of the tree structure, except the “leaf” nodes, have a Deep
Convolutional Neuronal Network (Deep CNN) which is trained to classify the
entry for their “child” nodes. The classification process starts at the “root” node
and the data is then passed on to the next “child” node, depending on the result
of the classification of the “root” node. This node then classifies the data at its
own level and transmits it in turn, depending of the result of the classification, to
one of its “child” nodes. This process is repeated until a “leaf” node is reached.
This is the end of the classification steps.

The Fig. 1 shows a three-level architecture of our model. The method of
training an artificial neural network with such an architecture is described by
the Algorithm 1. One of the advantages of the tree structure is that it allows a
considerable reduction of the decision (prediction) time. The principle is to first
detect whether or not it is an attack and then to classify the intrusion. This is
done by a structure in the form of a tree as shown in Fig. 2. There are three
levels:

Fig. 1. Structure of a CNN Fig. 2. Illustration of tree hierarchie

– the first level is the “root” node;
– the second level is made up of two nodes: a “leaf” node linked to the Benign

class and a node linked to the Attack class;
– the third level contains “leaf” nodes, all from the “Attack” node.

All nodes, except the “leaf” nodes, contain a Deep CNN which is trained
to classify the classes of its “child” nodes, each at its own level. The first node
which is the root node is used to make the decision (to predict) whether it is an
attack or a benign event. And if it’s an attack, to give more details about the
attack so that the administrator can intervene effectively, the node linked to the
“Attack” class is led to make a classification. The node linked to the Attack class
classifies the different types of attacks. The fourteen types of attacks, grouped
into seven, are classified by this node.



44 L. M. Sawadogo et al.

4 Implementation

4.1 Tools Used

TensorFlow.1 It is an open-source Google platform dedicated to machine learn-
ing. It offers a complete and flexible ecosystem of tools, libraries and of commu-
nity resources to enable researchers to advance in the machine learning domain,
and for developers to create and deploy applications that exploit this technology.

Pandas.2 It is an open source library used for data manipulation and processing.
It is a fast, powerful, flexible and easy to use data manipulation and analysis tool.
In particular, it offers data structures and operations for manipulating numerical
tables and time series.

Keras.3 It is an API for deep neural networks and is written in Python, and now
included in TensorFlow. It focuses on ergonomics, modularity and extensibility.
It was born within the framework of the ONEIROS project (Open-ended Neuro-
Electronic Intelligent Robot Operating System). It was originally written by
François Chollet in his book Deep learning with Python.

Scikit-Learn.4 It is a free Python library for the learning machine. It has simple
and effective tools for predictive data analysis. Built on NumPy, SciPy, and
matplotlib, it is accessible and reusable in various contexts. It is open source,
and is developed by numerous contributors, particularly in the academic world.

NumPy.5 It is a library written in the Python programming language, designed
to manipulate matrices or multidimensional arrays as well as mathematical func-
tions operating on these arrays. It is an open source project aimed at enabling
numerical computation with Python. It has been created in 2005, on the basis
of initial work from the Numerical and Numarray libraries.

4.2 Data-Set

The dataset used is CSE CIC-IDS20186. It is one of the most recent, realistic
and up-to-date public data sets and more complete in terms of the types of
attacks they contain. The attacks that the CSE CIC-IDS2018 contains are topical
and best reflect threats networks and information systems of our companies,
which are currently facing nowadays. The CSE CIC-IDS2018 dataset contains 86
“features”. The data contained in CSE CIC-IDS2018 are labelled with fourteen
labels which are presented in Table 2. The number of lines in the data set is over
sixteen million (16,000,000) and is distributed as shown in Table 1 according to
the type of attack.
1 https://tensorflow.org.
2 https://pandas.pydata.org.
3 https://keras.io.
4 https://scikit-learn.org.
5 https://numpy.org.
6 http://www.unb.ca/cic/datasets/ids-2018.html.

https://tensorflow.org
https://pandas.pydata.org
https://keras.io
https://scikit-learn.org
https://numpy.org
http://www.unb.ca/cic/datasets/ids-2018.html


Intrusions Detection and Classification 45

Table 2 clearly show that there is an imbalance in the data. The label
“benign” alone represents more than 80% of the data. Indeed, in everyday use,
benign cases far outweigh the cases of attack. But the model risks giving more
weight to the benign label compared to others during training. This problem
can be alleviated by using the SMOTE (Synthetic Minority Oversampling Tech-
nique) [15] to try out to balance the data. SMOTE is an over-sampling method,
it works by creating synthetic samples from the class or the minority classes
instead of creating simple copies.

Table 1. Distribution of CSE CIC-
IDS2018 data

Label Number

Benign 13484708

DDOS attack-HOIC 686012

DDoS attacks-LOIC-HTTP 576191

DoS attacks-Hulk 461912

Bot 286191

FTP-BruteForce 193360

SSH-Bruteforce 187589

Infilteration 161934

DoS attacks-SlowHTTPTest 139890

DoS attacks-GoldenEye 41508

DoS attacks-Slowloris 10990

DDOS attack-LOIC-UDP 1730

Brute force-Web 611

Brute force-XSS 230

SQL injection 87

Table 2. Breakdown of CSE CIC-
IDS2018 data into “Benin” and “Attack”

Label Number Percentage

Benign 13484708 0,8307

Attack 2748235 0,1693

4.3 Learning Algorithm

We used Deboleena Roy et al.’s algorithm [14]. To train the model to recognize
a number of new classes of attacks, we provide data on these attacks at the
root node. We obtain a three-dimensional matrix at the output layer: OK×M×I ,
where
K is the number (in our case 02) of child nodes of the root node,
M is the number of new classes of attacks and
I is the number of data samples per class.
O(k;m; i) indicates the output of the kith node for the iith given belonging to
the mith class, where k ∈ [1,K], m ∈ [1,M ] and i ∈ [1, I].
Oavg(k,m) (Eq. (1)) is the average of the outputs(of the kith node and the mith

class) on I data.
OK×M

avg is the matrix of these averages over the I data.



46 L. M. Sawadogo et al.

The Softmax (Eq. (2)) is calculated on each average Oavg (Eq. (1)) to get a
matrix LK×M .
An ordered list S is generated from the matrix LK×M , having the following
properties:

– The list S has M objects. Each object is uniquely linked to one of the new
classes M.

– Each object S[i] has the following attributes:
1. S[i].label = label of the new class.
2. S[i].value = [v1, v2, v3], the 3 highest Softmax values of the averages

(Oavg) of this new class, ranked in descending order v1 ≥ v2 ≥ v3.
3. S[i].nodes = [n1, n2, n3], the nodes corresponding respectively to the val-

ues Softmax v1, v2, v3.
– S is ordered by descending value of S[i].value[1]

Oavg (k,m) =
I∑

i=1

O (k,m, i)
I

(1)

L(k,m) =
eOavg(k,m)

∑K
k=1 eOavg(k,m)

(2)

This scheduling is done to ensure that new classes with high Softmax values are
first added to the Tree-CNN tree. After building S, we examine its first element
and take one of the three paths:

i. add the new class to an existing child node: If v1 is greater than the next
value (v2) of a threshold, α (in our case α = 0, 1), this indicates a strong
resemblance to the node n1. The new class is then added this node;

ii. merge 2 child nodes and add the new class: If two of the values Softmax are
close, i.e., when v1 − v2 < α, and v2 − v3 > β (a user-defined threshold, here
we have defined it α = 0, 1), then, if n2 is a leaf node, we merge n2 into n1

and add the new class to n1;
iii. add the new class as a new child node: If the three values Softmax are not

different with wide margin (v1 −v2 < α, v2 −v3 < β: for example if the three
largest values Softmax are v1 = 0, 35, v2 = 0, 33, and v3 = 0, 31), or if all
child nodes are full, the network adding the new class as a new child node.

To prevent the Tree-CNN tree from becoming unbalanced, the maximum
number of children that a branch node can have can be set. The procedure
described above is repeated iteratively until all new classes are assigned a location
below the root node. The pseudo code is described in the paper [14]. We also
illustrate an example of incremental learning in Tree-CNN with the Fig 2.



Intrusions Detection and Classification 47

5 Tests and Results

5.1 Execution Environment

The tests were carried out in a Cloud environment with shared resources. Indeed
we used Google Colab in which we have access to 25.5 Gb of RAM mem-
ory, a GPU (Tesla P100-PCIE-16 GB) and a CPU (Intel(R) Xeon(R) CPU @
2.30 GHz). But Google does not give any guarantee on the total availability of
the promised resources. Our model is composed of ten (10) layers of convolu-
tions interspersed with two (02) layers of Maxpooling, one Flatten layer, two
(02) dense layers. All the convolution and dense layers, except the last one, have
a ReLU activation. The last layer has Sofmax activation.

The training has been carried out over 2000 epochs. The Algorithm 1 shows
how is the inference of our model.

5.2 Score and Other Measures

Four (04) basic elements are used to assess performance IDS. They can be rep-
resented in the form of a cross table Table 3. The actual metrics are:

The metrics derived from these basic elements are:

Algorithm 1: Inference algorithm [14]

Table 3. Basic elements for measuring the performance of an IDS

Positive prediction Negative prediction

Intrusions TP (True Positive): intrusions are
identified as intrusions

FN (False Negative): intrusions are
identified as benigns

Benigns FP (False Positive): benigns are
identified as intrusions

TN (True Negative): benigns are
identified as benigns



48 L. M. Sawadogo et al.

– Accuracy: it is defined as the ratio of correctly predicted samples to the
total number of samples. The score is an appropriate measure only when the
data set is balanced.

Accuracy: = TP+TN
TP+FN+FP+TN

– Precision: it is defined as the ratio of correctly predicted positive samples
to predicted positive samples. It represents confidence in the detection of
attacks.

Precision: = TP
TP+FP

– Recall: it is defined as the ratio of correctly predicted positive samples to
the total number of actually positive samples. It reflects the system’s ability
to recognize attacks.

Recall: = TP
TP+FN

– F1-measure: It is defined as the harmonic mean of Precision and Recall.
The higher rate of F1-measure shows that the system is performed better

F1-measure: = 2 ×
[
Precision×Recall
Precision+Recall

]
= 2×TP 2

TP 2+TP×(FN+FP )

– Rate of False Negative (RFN): it is defined as the ratio of intrusions
are identified as benigns to the total number of intrusions. The RFN is also
termed the Missed Alarm Rate.

RFN = FN
TP+FN

– Rate of False Positive (RFP): it is defined as the ratio of benigns are
identified as intrusions to the total number of benign. The RFP is also termed
the False Alarm Rate.

TFP = FP
V N+FP

The tests for detection (performed by the “root” node) give the following
results Table 4:

Table 4. Results of detection test

Accuracy Precision F1-measure Recall RFP RFN

99,94% 99% 99% 99% 0.0001 0.0001

For the multi-class classification (performed by the “Attack” node), we obtain
a accuracy of 97.54%. The following Table 5 gives details.



Intrusions Detection and Classification 49

Table 5. Results classification test

Classe Precision F1-measure Recall

DDOS 100% 100% 100%

DoS 96,50% 92,71% 89,21%

Bot 100% 99,82% 99,64%

BruteForce 90,00% 93,43% 97,12%

Infilteration 97,19% 98,40% 99,64%

Web attack and injection 99,63% 98,73% 97,84%

5.3 Comparison with Related Works

It is difficult to compare work that does not use the same methods or dataset.
So we have chosen to compare with work that uses similar machine learning
techniques to our own. We have through the Table 6 summarized the results
obtained in other works, particularly those using deep learning. In the cited
works, some of them deal with intrusion classification (multi-classes) Table 7
and others deal with intrusion detection Table 6 (binary classification).

As far as detection is concerned, we obtained a score of 99.94%, an accuracy
of 99%. These measurements are slightly lower than those of Kanimozhi et al. [6]
(the best) cited in Table 6. But this can be explained by the fact that our model
takes more parameters into account since, in addition to detection, it makes the
classification, contrary to that of Kanimozhi et al. Also through the Table 6, we
see very clearly that our model is better for multi-class classification. Indeed,
the score largely exceeds those of the multi-class classification works cited in
Table 6. The accuracy of our model on each class shows that it is not very
wrong on classification. From all the above, we can say that our method is a
good means of detecting and classifying intrusions.

Table 6. Table of detection performance of some models

Works Methods Dataset Accuracy Precision F1-measure

T. Le et al. [16] LSTM:binary KDD Cup99 97.54 0.97 –

Zeng et al. [17] 1D-CNN:binary ISCX2012 99.85 – –

Zeng et al. [17] LSTM:binary ISCX2012 99.41 – –

Kanimozhi et al. [6] ANN:binary CSE-CIC-IDS 2018 99,97 1,0 1,0

Our method Tree-CNN:binary CSE-CIC-IDS 2018 99,94 0.99 0.99

Table 7. Table of classification performance of some models

Works Methods Dataset Accuracy Precision F1-measure

Q. Niyaz et al. [18] RNN:5-class NSL-KDD 79.10 – –

S. Potluri et al. [19] CNN:5-class NSL-KDD 91.14 – –

D. Yalei et al. [20] CNN:5-class NSL-KDD 80,13 – –

S. Potluri et al. [21] DBN+SVM: 5-class NSL-KDD 92,06 – –

Our method Tree-CNN: 6-class CSE-CIC-IDS 2018 97,53



50 L. M. Sawadogo et al.

6 Conclusion

We proposed in this paper a model of Intrusion Detection System using CSE-
CIC-IDS-2018 and Tree-CNN, a hierarchical Deep Convolutional Neural Net-
work for incremental learning. We evaluated the performance of the model by
comparing it with other approaches. Through this evaluation, we found that our
model is more effective on multi-class classification than the others mentioned
in the related works. Our approach therefore allows the classification and detec-
tion of intrusions with good performance. Nevertheless, there is still room for
improvement. Research carried out in this paper can be further investigated in
order to improve our approach and methods used. In terms of perspectives, this
means:

– improve the model: there is still room for improvement in performance, for
the multi-class classification of the model by further adjusting the hyper-
parameters. In addition, the model can be trained with other recent datasets
in order to reduce its false alarm rates and make it even more robust and
reliable;

– from IDS to IPS: another way to improve the proposed solution would be to
combine our model with rule-based intrusion detection tools such as Snort,
which could speed up the detection of trivial or recurring cases. In addi-
tion, it would be interesting to further develop our solution so that it can
trigger actions based on detected intrusions, i.e. it can act against an attack
while waiting for the administrator’s intervention. The final solution would no
longer be an Intrusion Detection System (IDS), but an Intrusion Prevention
System (IPS).

References

1. Shenfield, A., Day, D., Ayesh, A.: Intelligent intrusion detection systems using arti-
ficial neural networks. ICT Express 4(2), 95–99 (2018). SI on Artificial Intelligence
and Machine Learning

2. Chockwanich, N., Visoottiviseth, V.: Intrusion detection by deep learning with
TensorFlow. In: 2019 21st International Conference on Advanced Communication
Technology (ICACT), pp. 654–659 (2019)

3. Mohammadpour, C.S.L.L., Ling, T.C., Chong, C.Y.: A convolutional neural net-
work for network intrusion detection system. In: Asia-Pacific Advanced Network
(APAN) (2018)

4. Lin, P., Ye, K., Xu, C.-Z.: Dynamic network anomaly detection system by using
deep learning techniques. In: Da Silva, D., Wang, Q., Zhang, L.-J. (eds.) CLOUD
2019. LNCS, vol. 11513, pp. 161–176. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-23502-4 12

5. Kanimozhi, V., Prem Jacob, T.: Calibration of various optimized machine learning
classifiers in network intrusion detection system on the realistic cyber dataset CSE-
CIC-IDS 2018 using cloud computing. Int. J. Eng. Appl. Sci. Technol. 4, 2455–2143
(2019)

https://doi.org/10.1007/978-3-030-23502-4_12
https://doi.org/10.1007/978-3-030-23502-4_12


Intrusions Detection and Classification 51

6. Kanimozhi, V., Jacob, T.P.: Artificial intelligence based network intrusion detec-
tion with hyper-parameter optimization tuning on the realistic cyber dataset CSE-
CIC-IDS 2018 using cloud computing. In: 2019 International Conference on Com-
munication and Signal Processing (ICCSP), pp. 0033–0036 (2019)

7. Giraud-Carrier, C.: A note on the utility of incremental learning. AI Commun.
13(4), 215–223 (2000)

8. Ring, M.B.: Child: a first step towards continual learning. In: Thrun, S., Pratt, L.
(eds.) Learning to Learn, pp. 261–292. Springer, Boston (1998). https://doi.org/
10.1007/978-1-4615-5529-2 11

9. Polikar, R., Upda, L., Upda, S.S., Honavar, V.: Learn++: an incremental learning
algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C
(Appl. Rev.) 31(4), 497–508 (2001)

10. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: Advances in Neural Information Processing Systems, pp. 2990–2999
(2017)

11. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
Proc. Mach. Learn. Res. 70, 3987 (2017)

12. XIao, T., Zhang, J., Yang, K., et al.: Error-driven incremental learning in deep
convolutional neural network for large-scale image classification. In: Proceedings
of the 22nd ACM International Conference on Multimedia, pp. 177–186 (2014)

13. Goodfellow, I.J., Mirza, M., Xiao, D., et al.: An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211 (2013)

14. Roy, D., Panda, P., Roy, K.: Tree-CNN: a hierarchical deep convolutional neural
network for incremental learning. Neural Netw. 121, 148–160 (2020)

15. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

16. Le, T., Kim, J., Kim, H.: An effective intrusion detection classifier using long short-
term memory with gradient descent optimization. In: 2017 International Confer-
ence on Platform Technology and Service (PlatCon), pp. 1–6 (2017)

17. Zeng, Y., Gu, H., Wei, W., Guo, Y.: Deep-full-range: a deep learning based network
encrypted traffic classification and intrusion detection framework. IEEE Access 7,
45182–45190 (2019)

18. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network
intrusion detection system. In: Proceedings of the 9th EAI International Con-
ference on Bio-inspired Information and Communications Technologies (Formerly
BIONETICS), pp. 21–26 (2016)

19. Potluri, S., Ahmed, S., Diedrich, C.: Convolutional neural networks for multi-class
intrusion detection system. In: Groza, A., Prasath, R. (eds.) MIKE 2018. LNCS
(LNAI), vol. 11308, pp. 225–238. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-05918-7 20

20. Ding, Y., Zhai, Y.: Intrusion detection system for NSL-KDD dataset using convo-
lutional neural networks. In: Proceedings of the 2018 2nd International Conference
on Computer Science and Artificial Intelligence, pp. 81–85 (2018)

21. Potluri, S., Henry, N.F., Diedrich, C.: Evaluation of hybrid deep learning techniques
for ensuring security in networked control systems. In: 2017 22nd IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA), pp.
1–8 (2017)

https://doi.org/10.1007/978-1-4615-5529-2_11
https://doi.org/10.1007/978-1-4615-5529-2_11
http://arxiv.org/abs/1312.6211
https://doi.org/10.1007/978-3-030-05918-7_20
https://doi.org/10.1007/978-3-030-05918-7_20

	Intrusions Detection and Classification Using Deep Learning Approach
	1 Introduction
	2 Related Works
	3 Methodology: Approach and Architecture
	3.1 Approach
	3.2 Architecture

	4 Implementation
	4.1 Tools Used
	4.2 Data-Set
	4.3 Learning Algorithm

	5 Tests and Results
	5.1 Execution Environment
	5.2 Score and Other Measures
	5.3 Comparison with Related Works

	6 Conclusion
	References




