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Abstract. Big data are data that are not able to fit in only one com-
puter, or the calculations are not able to fit in a single computer memory,
or may take impractical time. Big graphs or automata are not outdone.
We describe a memory-based distributed solution of such large-scale
automata minimisation. In opposition to previous solutions, founded on
platforms such as MapReduce, there is a twofold contribution of our
method: (1) a speedup of algorithms by the use of a memory-based sys-
tem and (2) an intuitive and suitable data structure for graph representa-
tion that will greatly facilitate graph programming. A practical example
is provided with details on execution. Finally, an analysis of complexity
is provided. The present work is a first step of a long term objective that
targets a advanced language for large graphs programming, in which the
distributed aspect is hidden as well as possible.

Keywords: Big data - Distributed computing - Automata minimizing

1 Introduction

Automata are a mathematical model of computation, a simple and powerful
abstract machine modeling many problems in computer science. They have been
studied long before the 1970s. Automata are closed under several operations and
this advantage makes them suited for a modular approach in many contexts.
Applications include natural language processing, signal processing, web services
choreography and orchestration, compilers, among so many others.

Determinization, intersection, and minimisation are some examples of prob-
lems linked to automata and that have been largely studied in the literature.
Since one of our main objectives is to have artifacts for distributed programming,
we choose to tackle the minimisation of large-scale or big automata. When it is
about very large graphs (classical graphs or automata), distributed methods such
as disk based parallel processing [22,23], MapReduce model [3,8,12,13,16,17]
and distributed memory-based system [4,15,24] are considered.

Presently we study the innovative use of Pregel [19], a model for large-scale
graph processing, to implement automata minimisation. Unlike the work we com-
pare ourselves [12], we speed up the whole process by the use of a memory-based
distributed system, and we don’t need to use a counterintuitive data structure.
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Our long term goal is a high level language for distributed graph, a sort of
language that hides, as well as possible, the distributed nature of the graph. In
this way, the present work is one of the first steps, and it provides interesting
new artefacts in addition the ones that appear in starting works [5,6].

The remaining of our paper is structured as follows: Sect.2 presents some
related works and Sect. 3 gives technical definitions and some backgrounds, that
is automata and their minimisation in MapReduce, which is the work we compare
ourselves. In Sect.4 we describe our proposition, as well as some important
discussions. Conclusions are shown in Sect. 5.

2 Related Works

Big data are collections of data that are too large — in relation to their process-
ing — to be handled by classic tools. It concerns data collecting, storage, analysis,
visualizing, querying and so on. Using a lot of computers for a shared storage
and a parallel processing is a usual solution. Large scale graphs and automata
are, of course, not outdone.

In this section we will point out two families of methods. The first one is
about solutions that are built from-scratch, that is, not only the infrastructure
(cluster of computers), but also its coordination. The second family concerns
methods with a high level abstraction so that coordination complexity is hidden.
In this way, users don’t need low tasks programming skill and can only focus on
functional aspects. We place ourselves in this second family of methods.

When it comes to an automaton, an important algorithm consist in obtaining
its unique minimal and deterministic version. Some parallel algorithms consider
shared RAM computers, using the EREW PRAM models [21] for instance. The
aforementioned algorithms are applicable for a cluster of tightly coupled parallel
computers with shared and heavy use of RAM. In addition, authors in [21] used
a 512-processor CM-5 supermachine to minimise a Deterministic Finite state
Automaton (DFA) with more than 500,000 states. In the case of a very large
DFA, a disk storage will probably be needed. In this context, authors in [22,23]
propose a parallel disk-based solution with a cluster of around thirty commodity
machines to produce the unique and minimal DFA with a state reduction of
more than 90%.

As presented above, the aforementioned solutions are part of the first family
of methods.

Not long ago, Hadoop distributed platform [2] has been proposed by Google
and has become rapidly the standard for big data processing. Its model for
parallel programming is called MapReduce [9]. The objective of MapReduce
is to facilitate parallel processing through only two routines: map and reduce.
Data are randomly partitioned over computers and a parallel processing is done
by executing the map and reduce routines on partitions. In Hadoop, different
computers are connected in such a way that the complexity is hidden to end
users, as if he is working with a single supercomputer. From that moment, several
graph problems have been tackled by using MapReduce [3,8,16,17]: shortest
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path, graph twiddling, graph partitioning, minimum spanning trees, maximal
matchings and so on. In the specific case of big automata, authors in [12,13]
have proposed algorithms for NFAs intersection and DFA minimisation.

Even if MapReduce paradigm can be used for many graph concerns, it’s well
known that it is unsuitable for iterative graph algorithms. This a consequence
of the immoderate input and output with HDFS, the Hadoop distributed file
system, and data shuffling at all rounds. In this way, iterative algorithms can only
be written by doing one job after another, because there is no natural support
for iterative tasks in MapReduce. This often leads to considerable overhead. As
a consequence, many graph processing frameworks using RAM are proposed:
GraphLab [18], Spark/GraphX [11], PowerGraph [10], Google’s Pregel [19] and
Apache Giraph [1]. A vertex centric model is followed by the majority of these
frameworks. For instance, in Pregel and Giraph frameworks, which are based on
BSP [25], Bulk Synchronous Parallel, in each iteration, each graph node (vertex)
may receive messages from some other ones, process a local task, and then may
send messages to some other nodes.

Nonetheless, the particular case of automata is not very well exploited by
the aforementioned frameworks. In this way, we propose the use of Pregel pro-
gramming model to implement big DFA minimisation. Not only we enhance the
process performance compared to the MapReduce solution in [12], but also we
don’t need to use and maintain their counterintuitive data structure.

3 Background and Terminology

3.1 Automata and Minimization

FSA, DFA and NFA: In this section we recall two kinds of automata or FSA
(Finite State Automata), namely Deterministic and Non-deterministic Finite
state Automata, respectively abbreviated by DFA and NFA.

A DFA consists in a finite set of states with labelled and directed edges
between some pairs of states. Labels or letters come from a given alphabet.
From each state, there is at most one edge labeled by a given letter. So, from a
given state, a transition dictated by a given letter is deterministic. There is an
initial or start state and also certain of the states are called final or accepting.
A word w is accepted by the DFA if the letters of the word can be read through
transitions from the start state to a accepting state. Formally, a DFA is a 5-tuple
A= (X,Q,qs,0, F) such that the alphabet is X, the set of states is denoted by
@, the initial or start state is ¢s € @, and the accepting or final states is the
subset F' C Q. The transition function is denoted by § : Q x XY — @, which
decides, from a state and for a letter, in which state the system will move to.

An NFA is almost the same, with the difference that, from a state, we may
have more than one edge with the same letter or label. The transition corre-
sponding to the given letter is said to be non-deterministic. An NFA is formally
defined by a 5-tuple A = (X, Q, ¢s, 9, F'). It differs from a DFA in the fact that
§:Qx X — 29 with 29 being the power set of Q. From a state and for a letter,
an NFA can move to any one of the next states in a non-deterministic way.
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The set of all words accepted by a FSA A defines the language accepted by
A. Tt’s denoted by L(A). NFAs and DFAs are equivalent in terms of accepted
languages. A language L™ is regular if and only if there exists an FSA A such
that L™ = L(A). Any NFA A can be transformed into a DFA AP, such that
L(AP) = L(A). This transformation is called determinization, and can be done
by the powerset construction method. On the basis that a DFA transition func-
tion J takes as arguments a state and a letter and returns a state, we denote by 0*
the extended transition function that takes a state p and a string w = ajas -+ - q;
and returns the unique state ¢ = 6*(p,w) = §(3(---06(0(p,a1),a2) -+ ,a;—1),a;),
which is the state that the automaton reaches when starting in state p and pro-
cessing the sequence of symbols in w. Thus for a DFA A, the accepted language
L(A) can be defined as {w : §*(¢gs,w) € F}. A DFA A is described as minimal, if
all DFAs B that accept the same language (L(A) = L(B)) have at least as many
states as A. There is a unique minimal and equivalent DFA for each regular
language L"°9.

In Fig. 1 we depict two FSAs on X' = {a, b} and that accept words that start
with “a” and end with “b”: a NFA A (1-a) and its determinization AP (1-b).

Algorithm 1. Algorithm of Moore

a,b
a b Input: A DFA A = ({a1,--- ,ax},Q,¢s,0, F)
9@@ @ Output: 7 = Q /=

1:i—0
(a) NFA 2: for allp € Q > The initial partition
b 3: if p € F then
a b 4: T{'; — 1
5: else
OFG@ ol et
7 end if
8: end for
(b) DFA a 9: repeat
100 i—i+1
11: for all p € Q . - -
Fig. 1. An example of two FSAs. 12 T T ay) Ts(man) TS (pag)
13:  end for )
14: until |7*] = |7°71)

Minimization Algorithms: According to a taxonomy [26], the notion equiv-
alent states is the one on which are based the majority of DFA minimisa-
tion algorithms. One exception is Brzozowski’s algorithm [7] which is based
on determinization and reversal of DFA. For a given DFA A, he showed that
(((ARYDYR)YD ig the minimal DFA for L(A), knowing that the reversal of A is
the NFA Af = (X, Q, F,6%,{qs}), where 6% = {(p, a, ¢} such that (¢,a,p) € J.
In other words, if w = ay ---a; € L(A), then w® = a;---a; € L(A®). However
it is quite clear that this method is costly.
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The other algorithms, like Moore’s [20] and Hopcroft’s [14], are based on
states equivalence. Two states p and g are said to be equivalent, wich is denoted
by p = ¢, if for all strings w, it holds that §*(p,w) € F < §*(¢q,w) € F. The
relation = is an equivalence relation, and the induced partition of the state space
Q is denoted by Q /=. The quotient DFA A/= = (¥, Q/=,qs/=,7, F/=), such that
¥(p/=,a) = d(p,a)/=, is a minimal DFA, that is L(A) = L(A/=). One important
property is that this equivalence relation = can iteratively be computed as a
sequence =g, =1, , =, ==, such that p=gqifpe F&qge F,and p=,41 g
if p=;, gand Va € X¥,6(p,a) =; 6(q,a). It is known that this sequence converges
in at most [ iterations, [ being the length of the longest simple path from the
initial state to any final state.

In the following, only one states equivalence-based solution will be considered.
It is about Moore’s algorithm [20]. Authors in [12] proposed Algorithm 1 as an
implementation of Moore’s algorithm. Algorithm 1 calculates the partition @ /=
by iteratively refining the initial partition # = {F,Q \ F'}. At the end of the
computation, 7 = Q/=. 7 is considered as a mapping that assigns a string of
bits m, — as a way to identify partition blocks — to each state p € Q. The
number of blocks in 7 is denoted by ||, and the value of 7 at the i iteration
is denoted 7.

3.2 DFA Minimization in MapReduce

Works in [12,13] are the unique contributions we know and that propose high
level distributed platform to process automata related problems. In [12], authors
describe MapReduce implementations of Moore’s and Hopcroft’s algorithms for
DFA minimisation, as well as their analysis and experiments on several types
of DFAs. As mentioned earlier, we will only focus on the algorithm of Moore,
named Moore-MR.

We assume backgrounds on the MapReduce programming model [9], however
we recall basic notions. This model is based on routines map and reduce, and
the user has to implement them. The signature of map is (K3, V1) — {(K2, Va)}
and the one of reduce is (Ky, {Va}) — {(K3, Vs)}. HDFS is used to store data,
and each mapper task will handle a part of this input data. In each MapReduce
round or iteration, all mappers emit a list of key-value couples (K, V). This list
is then partitioned by the framework according to the values of K. All couples
having the same value of K belong to the same partition (K, [Vi,--- ,V]), which
will be sent to the same reducer.

Moore-MR [12] consists in a preprocessing step, and several iterations of
MapReduce.

Preprocessing: Since the algorithm is an repetitive refinement of the initial
partition 7 = {F, @\ F'}, and due to the nature of MapReduce paradigm, authors
have to build and maintain a set A from A = ({a1,-- ,ar},Q,qs,0, F). The
set A consists in labeled transitions (p,a, ¢, 7, D) such that: 7, is a string of
bits representing the initial block of p, D = + tells that the tuple represents a
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transition, whereas D = — tells that the tuple is a “dummy” transition that hold
in its fourth position information of the initial block of state ¢. In addition, tuples
(ri,ai,,p,mp, —) are also in A, because state p new block will be required in the
following round when it’s come to update states rq,--- ,7,, block annotation,
where (r1,ai,,p), -, (T'm,ai, ,p) are transitions that lead to p.

map Routine: Authors in [12] define v as the number of reducers, and h :
Q — {0,--- ,v—1} as a hash function. During iteration ¢, each mapper receives
a part of A. For every tuple (p,a,q,ﬂlij_l,—&—), the mapper outputs key-value
couple (h(p), (p,a,q,7,~*,+)). And for every tuple (p,a,q, ", —), the mapper
outputs couples (h(p), (p,a,q,m, ', —)) and (h(q), (p,a,q, 7, ", —)).
reduce Routine: Every reducer p € {0,--- ,v — 1} gets, for all p € @ such that
h(p) = p, outgoing transitions (p,al,ql,ﬂ;*1,+),-~~ , (p, ak,qk,wfjl,—l—), along
with “dummy” transitions (p, a1, q1, 7l " =), -, (p, ak, qr, 7, ', —) and
(r1,ai,,p, 7r;i)_17 =)s s (P Qi s 77;2_17 -).

The reducer is now able to compute ﬂ; — qil il il il

p q1 q2 dk
write the new value 7r; in the tuples (p,a,qjm;_l,—i—), for j € {1, - ,k}, and
(rj,a,p, 71';_1, —), for j € {1,--- ,m}, which it then returns. The reducer may
return a “change” tuple (p,true) as well, if the new value of 7r; signifies the
increase of the number of blocks in 7;. In this case, the algorithm need another
iteration of MapReduce.

It goes without saying that it would be better if one could not have to
use a structure like A, which is not very intuitive. Fortunately, our proposition
presented in Sect. 4 will do without any extra data structure, in addition to the
speedup of the whole process.

i—1
qr

and

4 Our Memory-Based Approach

4.1 Pregel System

Pregel [19] is one of the first BSP (Bulk Synchronous Parallel, [25]) implemen-
tations that provides an high level API for programming graph algorithms. BSP
is a model for parallel programming, and that uses MPI (message passing inter-
face). It has been developed for scalability by parallelizing tasks over multiple
computers. Apache Giraph [1] is an open-source alternative. Pregel computing
paradigm is said to be “think like a vertex” as long as graph processing is done in
terms of what each graph node or vertex has to process. Edges are communica-
tion means between vertices. During a superstep, a vertex can run “compute()”,
a single routine coded by the user, exchange messages with any other vertex and
may change its state (active/inactive). BSP is based on synchronization bar-
rier (Fig.2-a) to ensures that all messages sent in a previous superstep will be
received in the following superstep. Function voteToHalt () can be called by a
vertex in order to be inactive during the following superstep. But, this vertex
will be active if it receives a message. The Pregel process will end if at the begin-
ning of a superstep all vertices are inactive. Figure 2-b shows state transition of
a vertex.
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Compute Communicate

voteToHalt ()

/\

Message received

Jajireg uopes|uolyauks

@ Active vertices

' O lInactive vertices I

(a) Basic model for graph processing (b) Vertex states transition

Fig. 2. About BSP model

4.2 Solution Inspired by the One of MapReduce

Given automaton A = ({a1,---,ax}, @, qs,9, F), we propose the compute()
function (Algorithm 2) in order to minimise A. We remind that compute () will
be executed by every active vertex during each superstep. And of course these
vertices are distributed all over the memories of the distributed system (clus-
ter of computers). Since the present work consider automata, Pregel’s vertices
represent automata states, and Pregel’s edges represent automata transitions.
Algorithm 2 consists in an alternation of two types of supersteps or rounds, thas
is even (0,2,4,---) and odd (1,3,5,---) supersteps. New block identifiers are
created in even supersteps. In order to create two rounds later the next block
identifier of a state p, p has to ask for data to each of its target states ¢;, to be
sent in the next and odd round. Actually, odd rounds are dedicated to sending
messages from target states ¢; to soliciting state p.

At the start (line 2), that is the first superstep, all the automaton states are
active and will divide up into the two initial blocks of the partition: the block
identifier of a state p is 1 if p is final (line 4) and 0 otherwise (line 6). Apart
from the first superstep, new block identifier 7, of a state p will be created
depending on it previous block identifier 7, and the ones of its targets states mq,
(line 13). For this purpose, state p asked for information, two steps earlier, from
each target state g; (line 16). Thus, this query is received and handled by each
¢; in the previous (odd) round. In the end, p will get solicited data (through
messages in M) in the present (even) round or superstep, and can extract block
identifiers of each target state ¢; (from line 9 to 12). The block identifier of p
will be updated (line 14) in order to be sent, in the following (odd) superstep,
to requesting states leading to p, that is, states for which p is a target state.

Finally, as said above, odd rounds are dedicated to providing data from target
states g; to each asking state p (line 20).

Concerning termination detection (line 24), we can be inspired by the MapRe-
duce termination detection, or use the original Moore’s algorithm termination
detection. We’ll consider the first one, and the second one will be discussed in
Sect. 4.3.
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Algorithm 2. compute(vertex p, messages M)
1. if (EVEN,SUPERSTEP) then

2:  if (superstep = 0) then

3: if (p € F) then

4: T — 1 {The initial bock identifier of p is 1}
5: else

6: mp — 0 {The initial bock identifier of p is 0}
7 end if

8 else

9: for each a; € X' do

10: qi — 0(p,as) {q: is the target state of p related to a;}
11: Tq; — M.getr(qi) {Get block identifiers of target states g;}
12: end for

13: T = Ty - Mgy * Tgy- o~ Mgy, {The new bock identifier 7}, of p}
14: Tp — " {Updating identifier for the next round}
15:  end if

16:  sendMessage(p.ID,g;); {Asks for data (mq;) from each state ¢; = §(p, a:)}
17: else

18:  {//ODD_SUPERSTEP}
19:  for each p.ID in M do

20: sendMessage(my, p.ID) {to send message () to soliciting p}
21:  end for
22: end if

23: if (NO_NEW_BLOCK) then
24:  p.woteToHalt();
25: end if

The block identification proposed in [12] is sophisticated enough to “locally”
detect the appearance of a new block. In this way, from a block identifier mp,
we can know if a new block was created for p. The block 7, is a bit-string
consisting of k+ 1 of previous iteration. Having an increase of the different com-
ponents signifies the creation of a new block. Algorithm 2 has to be completed
by adding the following instruction: "if (NEW_BLOCK) then sendToAggregator
(’change’)" between lines 14 and 15. Pregel’s aggregators enable “global” infor-
mation exchange and will decide, in our case, to stop the whole process when
no new block creation is detected, that is, the aggregator doesn’t receive any
“change” message from states. Example 1 gives running details of Algorithm 2
on a small automaton.

Ezample 1. Let us consider automaton A = (X, Q, ¢s,0, F), with ¥ = {a, b},
Q ={0,1,2,3}, g = 0, F = {3} and ¢ presented in a state-transition table
(Table 1-(a)) showing what states automaton A will move to, depending on
present states and input symbols or letters.

In order to obtain A™", the minimal version of automaton A, we give some
details of the execution of Algorithm 2 in Table 1-(b). But only even supersteps
are described. In superstep 0, states are divided up into the two initial blocks “0”
and “1”. State 0 belongs to block with identifier “0”. Then, it will solicit data
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(block identifiers) from its target states 0 and 3. In superstep 1, these states will
send their block identifiers to all asking states. For instance, state 3 will send
identifier “1” to state 0. In next superstep (2), state 0 will receive requested
data, create the new block identifier and issue a message to indicate that a
new block is detected. This process will continue until no new block creation is
detected by any of the vertices. This is what happens in superstep 6 where each
block identifier 79 has the same number of different components as its previous
identifier 7#. Finally, we remark that my = ma, and the state-transition table of
A™in g given in Table 1-(c). O

Table 1. (a), (c) State-transition tables of A and A™™. (b) An example of a running.

(2)

51alb (k)
» 0(0 |3 Supersteps o T To T3
112
31313 0 g =0 ) =0 5 =0 s =1
G311 5 w5 = 0.0.1 2 _ w3 =0.0.1 73 = 1.1.0
s ; w1 = 0.0.0 e ; 3 ,
Issues ’change Issues ’change Issues 'change
I
(c) 4 7 =001.001.110|™1 = 009'000'091 w4 = 001.001.110| 74 = 110.110.000
§n b 0 Issues ’change 3
~ : — 7y = 001001110. [ #§ = 000000001. [ 75 = 001001110. | 75 = 110110000.
070173 6 001001110. 000000001 001001110. 110110000.
< 77;1 :1 :U 110110000 001001110 110110000 000000001
3 3 1

4.3 Discussions

Termination Detection: As said in the previous section, we can be take
our inspiration from the MapReduce termination detection, or use the original
Moore’s algorithm termination detection. The first kind of detection is used in
Example 1. In fact, block identification proposed in [12] is sophisticated enough
to “locally” detect the appearance of a new block, that is, from a local perspec-
tive or view. However it is not the case for the original termination detection
for which we have to check if the number of blocks has changed from one round
to another. If authors in [12] didn’t find this kind of suitable block identifica-
tion, they would be obliged to “globally” count, at each MapReduce round, the
number of blocks. And for this purpose, and due to the nature of MapReduce
paradigm, an extra round would be necessary after each functional or classic
round.

Our solution (Algorithm 2) would not suffer from this concern since each
vertex p just has to send its block identifier 7, to the aggregator; the latter will
“globally” count the numbers of different block identifiers and decide whether
the whole process will continue or not.

Comparative Complexities: In this section, an overview is given on com-
plexities of the two different solutions.
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Given a DFA A with n states, it is accepted that = = =,,_5 in the worst
case [20], and thus, Moore-MR algorithm needs (n — 1) iterations in the worst
case. Our Pregel solution needs 2 x (n — 1) supersteps. This is due to our
odd supersteps devoted to sending data. Despite that, our solution is far and
away faster then Moore-MR considering speed ratio between RAM and disk
accesses. As a reminder, MapReduce model suffers from excessive input/output
with HDFS (disk) and “shuffle & sort” at every iteration, whereas Pregel is
memory-based.

Concerning communication cost, the one for Moore-MR is O(k*n?logn) [12],
specially due to their set A they have to maintain. Contrary to them, in each
superstep, our solution causes k x n messages sending - when vertices ask for
information or when data are delivered to requesting states - and the n messages
sent by vertices to aggregator. We therefore have a cost of O(kn?) in all.

Generally, Pregel solution costs the product of the number of rounds or super-
steps and the cost of a superstep. The latter is the sum of three costs: the longest
execution of compute() function, the maximum exchange of messages, and the
barrier of synchronization.

Implementation: We use Apache Giraph [1] to implement our solution. It
runs on Hadoop platform and thus uses HDFS to read input data and write
transformed graph (or output). Input is composed of two parts: a directed graph
and a the “compute()” function.

We use a custom class to handle a custom read of the input graph (files) from
the file system (HDFS). In these files, each vertex is represented in one line with
the following structure:

[vrtxID, vrtxData, [[destID_1, edgeVal_1], ..., [destID_k, edgeVal_k]]]

vrtxID is the vertex ID representing a state. vrtxData is a data structure that
will contain the initial and next block identifiers of the considered state. destID_1
is a destination or target state ID, and edgeVal_1 is the corresponding edge
value, that is, the symbol of the corresponding transition.

At the end of the computation, the resulting automaton can be obtained by
changing @ by 7 (the set of all blocks), ¢s by mq,, F' by {ms | f € F} and each
transition (p, a,q) € § by transition (m,,a, 7).

Perspectives: As long as our long term objectives is to find relevant program-
ming artifacts, for a high level language for distributed graph, and with which
and the distributed aspects are hidden at most, we have to find a distributed
graph object, general enough to allow us to faithfully and automatically tran-
scribe non-distributed graph algorithms. Clearly, when we consider the original
Moore’s algorithm, it starts with two initial blocks, and these blocks are refined
(broken into sub-blocks) at every round. Unfortunately, this block object cannot
be represented as a single vertex since it may not fit in a single computer RAM
(one initial block can contains all the automaton vertices, for instance if all of
them are final). A future work will consist of defining a logical structure over
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the vertices, a kind of a graph distributed object, composed of several vertices
and that may have its “compute ()”-like function.

5 Conclusion

In this proposition, we have described and implemented a solution based on a
cluster distributed memory to process big DFA minimisation. In fact, our propo-
sition is based a model for big graph processing, namely Pregel/Giraph. Unlike
the work we compare ourselves, we speed up the whole process by the use of
a memory-based distributed system, and we don’t need to use and maintain a
counterintuitive data structure. In fact, Pregel offers an intuitive and suitable
data structure for graph representation that greatly facilitates graph program-
ming. A running example is given, as well as details on execution and complexity
analysis. Finally, some important future works are described.

References

1. The Apache Software Foundation: Apache giraph. https://giraph.apache.org/

The Apache Software Foundation: Apache hadoop. https://hadoop.apache.org/

3. Aridhi, S., Lacomme, P., Ren, L., Vincent, B.: A mapreduce-based approach for
shortest path problem in large-scale networks. Eng. Appl. Artif. Intell. 41, 151-165
(2015)

4. Aridhi, S., Montresor, A., Velegrakis, Y.: BLADYG: a graph processing framework
for large dynamic graphs. Big Data Res. 9, 9-17 (2017)

5. Ba, C., Gueye, A.: On the distributed determinization of large NFAs. In: 2020 IEEE
14th International Conference on Application of Information and Communication
Technologies (AICT), pp. 1-6, October 2020

6. Ba, C., Gueye, A.: A BSP based approach for NFAs intersection. In: Qiu, M. (ed.)
ICA3PP 2020. LNCS, vol. 12452, pp. 344-354. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-60245-1_24

7. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite
events (1962)

8. Cohen, J.: Graph twiddling in a mapreduce world. Comput. Sci. Eng. 11(4), 29-41
(2009)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

10. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: 10th USENIX OSDI 2012, Hol-
lywood, CA, USA, 8-10 October 2012, pp. 17-30 (2012)

11. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
Graphx: Graph processing in a distributed dataflow framework. In: 11th USENIX
OSDI 2014, Broomfield, CO, USA, 6-8 October 2014, pp. 599-613 (2014)

12. Grahne, G., Harrafi, S., Hedayati, 1., Moallemi, A.: DFA minimization in map-
reduce. In: Afrati, F.N., Sroka, J., Hidders, J. (eds.) Proceedings of the 3rd ACM
SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond,
BeyondMR@SIGMOD 2016, San Francisco, CA, USA, 1 July 2016, p. 4. ACM
(2016)

N


https://giraph.apache.org/
https://hadoop.apache.org/
https://doi.org/10.1007/978-3-030-60245-1_24
https://doi.org/10.1007/978-3-030-60245-1_24

14

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. M. Diop and C. Ba

Grahne, G., Harrafi, S., Moallemi, A., Onet, A.: Computing NFA intersections
in map-reduce. In: Proceedings of the Workshops of the EDBT/ICDT 2015 Joint
Conference, Brussels, Belgium, 27 March 2015. CEUR Workshop Proceedings, vol.
1330, pp. 42-45 (2015)

Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
Technical Report, Stanford, CA, USA (1971)

Ko, S., Han, W.: Turbograph++: a scalable and fast graph analytics system. In:
Das, G., Jermaine, C.M., Bernstein, P.A. (eds.) Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, 10-15 June 2018, pp. 395-410. ACM (2018)

Lattanzi, S., Mirrokni, V.S.: Distributed graph algorithmics: theory and practice.
In: WSDM, pp. 419-420 (2015). http://dl.acm.org/citation.cfm?id=2697043
Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: a method for solving
graph problems in mapreduce. In: Rajaraman, R., auf der Heide, F.M. (eds.) SPAA
2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, San Jose, CA, USA, 4-6 June 2011 (Co-located with
FCRC 2011), pp. 85-94. ACM (2011)

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning in the cloud. PVLDB
5(8), 7T16-727 (2012)

Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, 6-10 June 2010, pp. 135-146. ACM
(2010)

Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C.,
McCarthy, J. (eds.) Automata Studies, pp. 129-153. Princeton University Press,
Princeton, NJ (1956)

Ravikumar, B., Xiong, X.: A parallel algorithm for minimization of finite automata.
In: Proceedings of IPPS 1996, The 10th International Parallel Processing Sympo-
sium, 15-19 April 1996, Honolulu, USA, pp. 187-191. IEEE Computer Society
(1996)

Slavici, V., Kunkle, D.; Cooperman, G., Linton, S.: Finding the minimal DFA of
very large finite state automata with an application to token passing networks.
CoRR abs/1103.5736 (2011)

Slavici, V., Kunkle, D., Cooperman, G., Linton, S.: An efficient programming
model for memory-intensive recursive algorithms using parallel disks. In: Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC 2012, Greno-
ble, France - 22-25 July 2012, pp. 327-334. ACM (2012)

Su, J., Chen, Q., Wang, Z., Ahmed, M.H.M., Li, Z.: Graphu: a unified vertex-
centric parallel graph processing platform. In: 38th IEEE International Conference
on Distributed Computing Systems, ICDCS 2018, Vienna, Austria, 2-6 July 2018,
pp- 15633-1536. IEEE Computer Society (2018)

Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103-111 (1990)

Watson, B.: A taxonomy of finite automata minimization algorithms (1993)


http://dl.acm.org/citation.cfm?id=2697043

	A Distributed Memory-Based Minimization of Large-Scale Automata
	1 Introduction
	2 Related Works
	3 Background and Terminology
	3.1 Automata and Minimization
	3.2 DFA Minimization in MapReduce

	4 Our Memory-Based Approach
	4.1 Pregel System
	4.2 Solution Inspired by the One of MapReduce
	4.3 Discussions

	5 Conclusion
	References




