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Abstract. Nowadays, the pickup array is used in a large number of occasions,
such as human voice recognition, audio conference, video conference and sound
source localization. The research of sound source recognition algorithm based
on pickup array has broad application prospects in the military field. The sound
source recognition technology at this stage is implemented by a relatively fixed
pickup array. However, due to the high requirements for the number of array
elements, it faces severe environmental noise interference. Therefore, the sound
source signal needs to be pre-processed before being formally processed. This
paper discusses the sound source recognition algorithm based on the pickup array,
which reduces the influence of environmental noise interference by preprocess-
ing the sound source signal; realizes the target sound source recognition through
feature extraction and the establishment of a recognition model. This article starts
with the study of the preprocessing method of the sound source signal of the L-
shaped pickup array node, and discusses an LMS noise cancellation model based
on an improved variable step size. At the same time, this article identifies the target
sound source signal and uses the MFCC feature extraction method. On the basis,
the MFCC feature extraction method for high frequency suppression is given, and
then the sound source recognition algorithm based on GMM-UBM is introduced.

Keywords: L-shaped pickup array · Noise cancellation · Sound source
identification

1 Introduction

Since the array signal processing technology was successfully introduced into the field
of speech signal processing by Professor Silverman and others, the use of pickup arrays
in speech signal processing has become a new research hotspot [1]. Nowadays, pickup
arrays are used inmany occasions, such as human voice recognition, video conferencing,
sound source localization, etc. [2–4]. However, the sound source identification research
based on the pickup array is rarely seen in themilitary field due to its low anti-interference
ability and complex terrain environment. However, due to the relatively long sound wave
wavelength, its unique diffraction characteristics and low-cost low-power consumption.
The pickup makes a very high economic benefit [3].
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At this stage, the sound source identification is realized by a relatively fixed pickup
array. However, due to the high requirement on the number of array elements, it faces
severe environmental noise interference [4–7]. Therefore, the sound source signal needs
to be preprocessed first. At the same time, due to the sound signal It is a wideband signal,
and the phase difference output after it is received is not only related to the direction,
but also related to the signal frequency, which increases the amount of calculation for
the sound source recognition algorithm.

The main research content of this paper is the sound source recognition algorithm
based on the L-shaped pickup array, which reduces the influence of environmental noise
interference by preprocessing the sound source signal; realizes the target sound source
recognition through feature extraction and establishment of a recognition model [8–10].

2 Adaptive Variable Step Size NLMS Algorithm

2.1 Analysis of L-Shaped Pickup Array Structure

Figure 1 shows the signal model of the L-shaped pickup array. Since the pickup array
needs to be a two-dimensional or three-dimensional structure, the algorithm of the latter
is more complicated and costly. Therefore, the design of the pickup array structure in
this paper is L-shaped.

Fig. 1. Signal model of L-shaped pickup array

The sound sources used in this paper are tank sound, truck sound and infantrywalking
sound. The noise of the three sound sources is between 10 Hz and 850 Hz. Therefore,
the half-wavelength theory can be used to obtain the expression of the distance d of the
pickup array:

d ≤ 1

2
λ = 1

2
× c

f
= 340 m/s

2 × 850 Hz
≈ 0.20 m (1)
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In formula (1), d is the element spacing between two adjacent elements in the L-
shaped array, c represents the propagation speed of sound in the air (under a standard
atmospheric pressure, the speed is 340 m/s), and λ is the wavelength of the sound wave,
f is the sound source frequency.

From formula (1), it can be seen that if the array element spacing d ≤ 0.2, the aperture
of the array is no longer limited by the half-wavelength theory, so in this article d= 0.20
m; Considering the computational complexity and cost issues, choose to install 3 pickup
elements in the horizontal and vertical directions, that is, the horizontal and vertical
directions share one element at the junction. Considering that environmental noise will
affect the reception of the target signal by the pickup array in the actual situation, the next
section will discuss the preprocessing process of the sound source signal received by the
pickup array, and uses the method of noise cancellation to restore the sound spectrum
structure of the sound source.

2.2 Nodal Sound Source Signal Preprocessing

2.2.1 Analysis of Adaptive Noise Cancellation System

The adaptive noise cancellation system of the pickup element is shown in Fig. 2. In order
to obtain the environmental background noise, this article uses two types of high and
low sensitivity pickups. The high-sensitivity pickup mainly collects the mixed signal of
the sound source and the noise, namely: xi(t) = s(t) + ni(t) A low-sensitivity pickup is
placed on the top of the pickup array to collect background noise n0(t) that is not related
to the sound source signal s(t) but related to ni(t) in the experimental environment. After
the background noise n0(t) passes through the adaptive filter, a noise estimation signal
n̂i(t) can be obtained, which is subtracted from the main signal n̂i(t) can get the required
sound source signal after denoising, namely:

yi(k) = xi(t) − n̂i(t) = s(t) + ni(t) − n̂i(t) (2)

Fig. 2. Adaptive noise cancellation system

Figure 3 is a schematic diagram of the adaptive noise cancellation algorithm. The
pollution signal is xi(k) in Fig. 2, namely:

xi(k) = s(k) + ni(k) (3)
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Fig. 3. Adaptive noise cancellation algorithm

In Eq. (3), i represents the i-th high-sensitivity pickup, and n0(k) is the noise vector
collected by the low-sensitivity pickup. A noise estimate n̂i(k) can be obtained through
the transversal filter in the figure, namely:

n̂i(k) = ŵH
i (k − 1)n0(k) (4)

The ŵi(k − 1) in Eq. (4) represents the least mean square estimation of the weight
vector of the transversal filter in the system at k–1.

From Eq. (3), the output signal yi(k) can be:

yi(k) = s(k) + ni(k) − n̂i(k) (5)

Then its mean square value is:

E[y2i (k)] = E[s2(k)] + E[(ni(k) − n̂i(k))
2] + 2E[s(k)(ni(k) − n̂i(k))] (6)

It can be obtained by the irrelevant nature of the signal and noise:

E[y2i (k)] = E[s2(k)] + E[(ni(k) − n̂i(k))
2] (7)

It can be seen that in the case of the minimum mean square of the transversal filter,
n̂i(k) and n0(k) are the closest, then the output signal yi(k) and the target sound source
signal s(k) are also the closest at this time, and the original signal can be restored to the
maximum extent.

2.2.2 Adaptive Noise Cancellation Algorithm

The most classic type of adaptive noise cancellation algorithms is the LMS algorithm,
namely:

e(k) = d(k) − ŵH
(k − 1)x(k) (8)

ŵ(k) = ŵ(k − 1) + μx(k)e∗(k) (9)

In formula (9), μ is the step factor, which is a fixed value, and corresponds to the
above:

d(k) = s(k), ŵ(k) = ŵi(k), u(k) = xi(k) (10)
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The convergence conditions of the algorithm are:

0 < μ <
2

λmax
(11)

In formula (11), λmax represents the largest eigenvalue corresponding to the
autocorrelation matrix of the input signal μ(k).

LMS adaptive calculation cannot achieve the best compromise between convergence
rate and steady-state error. As μ increases, the rate of convergence is greater, but at the
same time the steady-state error will be greater. In order to solve this contradiction, the
step factor μ can be adjusted with the iteration process.

The normalized least mean square (NLMS) adaptive algorithm is proposed on this
basis, and its convergence result has nothing to do with the strength of the input signal,
so its step adjustment function is as follows:

μ(k) = μ̃

δ+‖u(k)‖2 (12)

In formula (12), μ̃ is an adaptive constant; δ is a small constant greater than 0, which
is used to solve the calculation problem with a denominator of 0.

The NLMS algorithm can be regarded as a variable step size algorithm. Its conver-
gence rate is faster than that of the LMS algorithm, but it cannot effectively solve its
contradiction with steady-state errors.

Another idea that can effectively solve this problem is to use a larger step size to
increase the convergence rate at the beginning of the algorithm iteration, and use a
smaller step size when the iteration is about to complete to reduce the steady-state error.
The change of u(k) is related to the error signal e(k). Professor Qun Niu developed a
variable step size LMS algorithm in 2018, and the u(k) is:

μ(k) = β[1 − exp(−α

∣
∣
∣e2(k)e(k − 1)

∣
∣
∣)] (13)

In formula (13), both α and β are constants.
The form of formula (13) is relatively simple, and the step length changes slowly

when the error approaches 0, which optimizes the convergence characteristics, but does
not describe the physical meaning of the exponential term. The adaptive step size NLMS
algorithm proposed in this paper takes into account the interference of colored noise and
uses the third-order correlation of the error signal e(k) to adjust the step size, which can
effectively improve the contradiction between the convergence speed and the steady-state
error. Long and unaffected by system noise, its u(k) is:

μ(k) = β[1 − exp(−α|e(k)e(k − 1)e(k − 2)|)] (14)

In formula (14), a> 0, the function is to control the step change trend of the adaptive
algorithm in the iterative process, 0 < β< 2/λmax , is a constant used to control the step
change interval. When a is constant, the initial step size and convergence rate increase
with the increase ofβ, but the steady-state errorwill also increase; whenβ is constant, the
change of step size tends to be flat with the increase of a, and the rate will decrease during
the convergence process. Increase, but the steady-state error also increases. Therefore,
the algorithm in this paper can choose a smaller a value and a larger β value, which can
effectively improve the convergence rate and steady-state error.
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2.2.3 Experimental Results and Analysis

Based on the content of the previous section, this section compares the three algorithms of
LMS, NLMS and the algorithm in this paper, and analyzes the recovery and convergence
performance of the signal added with white noise/color noise. Table 1 below is the white
noise condition experimental simulation parameters.

Table 1. Simulation experiment parameters of various adaptive algorithms under white/color
noise conditions

Algorithm SNR Filter order Fixed step μ Adaptive constan
μ̃

Constant α Constant
β

LMS 15 dB 10 0.005 —
—

—

NLMS 15 dB 10 — 0.05
—

—

Algorithm 15 dB 10 — — 1000 0.08

The experimental results are shown in the figure below:

Fig. 4. Time-domain types of algorithms under white noise under white noise conditions

Fig. 5. The learning curve of the three types of algorithms under white noise conditions

Figure 4 is a comparison diagramof the time-domain signals output by the three types
of algorithms under white noise conditions, where a) is the original signal sin(0.1πt +
10), b) is the signal with white noise, and c) is the LMS cancellation After the output
signal, d) is the output signal after NLMS cancellation, e) is the output signal after
cancellation by the algorithm in this paper. It can be seen from the figure that the noise-
added signal has some residual noise after passing through the LMS algorithm and the
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NLMS algorithm. The algorithm in this paper has a significantly better effect of filtering
noise.

Figure 5 is the learning curve of the three types of algorithms under white noise
conditions. The number of sampling points is 2000, and the simulation iterations are 150
times. From the figure, it can be seen that the LMS algorithm completes convergence
after about 800 iterations, while the NLMS algorithm is 300 times. The algorithm used
in this article Convergence is reached after only 50 iterations. At the same time, it can
be seen from the figure that the steady-state error after convergence is the last one. It can
be seen that the algorithm in this paper has a faster convergence rate compared with the
two algorithms of LMS and NLMS. As well as lower steady-state error, it can deal with
the contradiction between convergence rate and steady-state error very effectively.

Fig. 6. Three types of algorithms output time-domain signals under colored noise conditions

Fig. 7. The learning curve of the three types of algorithms under the color noise condition

Figure 6 is a comparison diagram of the time-domain signal output by the three
types of algorithms under the color noise condition, where a) is the original signal sin
(0.1πt + 10), b) is the signal with white noise, and c) is the LMS cancellation After the
output signal, d) is the output signal after NLMS cancellation, e) is the output signal
after cancellation by the algorithm in this paper. It can be seen from the figure that the
color-added noise signal has more noise residue and distortion after passing through the
LMS algorithm and the NLMS algorithm. The algorithm in this paper has a significantly
better effect of filtering noise without distortion.

Figure 7 is the learning curve of the three types of algorithms under the color noise
condition. The number of sampling points is 2000, and the simulation iteration is 150
times. It can be seen from the figure that the LMS algorithm has completed convergence
after about 800 iterations, while the NLMS algorithm is 400 times. The algorithm used
in this article Convergence is reached after only 60 iterations; at the same time, it can
be seen from the figure that the steady-state error after convergence is the last one. It
can be seen that the algorithm in this paper has a faster convergence rate compared with
LMS and NLMS As well as lower steady-state error, it can deal with the contradiction
between convergence rate and steady-state error very effectively.
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In order to verify the effect of this algorithm in practical applications, a section
of tank traveling sound is used as an experiment. Considering the serious influence of
colored noise on the spectrum structure of the sound source in the actual environment,
the additional frequencies of the original sound source are 1000 Hz, 1500 Hz, 2000 Hz
and The sound of 2500 Hz is used to simulate the interference of colored noise. The
specific experimental parameters are as follows (Table 2).

Table 2. Experimental parameters of adaptive noise reduction spectrum of actual tank sound
source

Filter order Sampling frequency Step change trend control
constant α

Step change interval control
constant β

100 48 kHz 1 0.01

The experimental results are as follows:

Fig. 8. a) Comparison of the original sound spectrum and b) the colored interference sound
spectrum of the low-sensitivity channel.

Fig. 9. Comparison of adaptive noise vs. anechoic spectrum under different SNR conditions of
high-sensitivity channels

Figure 8 shows the original sound spectrum a) of the tank moving sound source, and
the color noise interference sound spectrum obtained by the low-sensitivity pickups in
the array b), while Fig. 9 shows the noise-containing spectrum obtained by the high-
sensitivity channel and preprocessed Sound spectrum comparison, where a), b), and c)
are the colored noise spectrum under different signal-to-noise ratio conditions, and d), e),
and f) are the corresponding adaptive noise cancellation spectra. From the above results,
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it can be seen that the algorithm in this paper can effectively filter the interference of
colored noise, and at the same time SNR will affect its removal effect. There is some
noise interference under the condition of 0 dB, and the effect of 10 dB and 20 dB is
better.

3 Sound Source Recognition Algorithm Based on L-Shaped Pickup
Array

3.1 MFCC Feature Extraction Method for High Frequency Suppression

The most commonly used feature extraction method for the target sound source is the
MFCC feature extraction method, which is to obtain the characteristic parameters of the
target sound source by simulating the non-linear mapping characteristics of the human
ear when receiving sound. From the previous analysis, it can be seen that the spectral
characteristics of the target sound source are concentrated in the low-frequency region,
so the target sound source needs to be subjected to low-pass filtering before feature
extraction to suppress high-frequency noise. The specific process is as follows.

Fig. 10. MFCC feature extraction flowchart

Figure 10 shows theMFCC feature extraction process. The target sound source signal
is first passed through a low-pass filter to suppress the high frequency part, and then the
signal is processed by FFT after framing and windowing, so as to change the signal
spectrum into a linear spectrum, and then use mei After the Mf filter is processed by
the logarithmic transformation, the logarithmic nonlinear spectrum after dynamic range
compression can be obtained, where themel frequency is fmel = 2595 log10(1+f /700),
and the mel frequency filtering is achieved by Mf triangular bandpass filters. The sound
source is converted from a linear frequency spectrum to a mel frequency spectrum. The
transfer function is as follows:

Hi(k) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0 (k < f (i − 1))
k−f (i−1)

f (i)−f (i−1) (f (i − 1) ≤ k ≤ f (i))
f (i+1)−k

f (i+1)−f (i) (f (i) ≤ k ≤ f (i + 1))

0 (k > f (i + 1))

(15)

Finally, perform discrete cosine transform on it, namely:

o(l) =
Mf
∑

i=1

S(i)cos

(
lπ(i + 1/2)

Mf

)

1 ≤ l ≤ D/2 (16)

S (i) in Eq. (16) is the logarithmic spectrum obtained by the i-th triangular filter, and
o(l) is the l-dimensional static characteristic of the obtained target sound source. Then,
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the difference operation with an interval of 2 can be performed on different frames to
obtain the dynamic characteristics. The combination of the two forms a D-dimensional
MFCC feature vector, which is the MFCC feature parameter of the target sound source
signal.

3.2 GMM-UBM Sound Source Recognition Algorithm

GMM model is mainly used to recognize the speaker’s voice. Its advantage is that it
does not need to care about the semantic and contextual connection during training
and pattern matching, so it is suitable for sound source recognition.The disadvantage
is that its parameter scale and characterization ability are not coordinated. When the
decomposed Gaussian component is relatively small, the accuracy of the characteristic
model obtained is low. Therefore, it needs to be improved. GMM-UBM algorithm is
improved on this basis, and its target sound source identification process is shown in the
figure below (Fig. 11).

Fig. 11. Sound source recognition process of GMM-UBM model

First, a large number of sound source data need to be UBM training to obtain its
model parameter hUBM Then, based on the maximum posterior probability adaptive
principle, the model parameter H is obtained by fine-tuning the data obtained from a
small amount of target sound ht arg et and the two model parameters were fused to obtain
the parameter h of GMM-UBM hfus,s. When identifying the target sound source, it is
necessary to first extract the features of the identified sound source data, then calculate the
posterior probability ofUBMandGMM-UBMmodel, and then calculate the logarithmic
likelihood ratio of the two models respectively for scoring and identification.

3.2.1 GMM Model

Suppose that the sound source feature vector of the t-th frame of the target sound source
signal obtained after MFCC feature extraction is ot = [ot(1), ot(2)...ot(D)], and the
likelihood function of its GMMmodel is fitted with G Gaussian components as follows:

p(ot |h) =
G

∑

i=1

ωipi(ot) (17)

pi(ot) = 1

(2π)D/2|�i|1/2
exp

[

−1

2
(ot − μi)(�i)

−1(ot − μi)′
]

(18)
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G
∑

i=1

ωi = 1 (19)

In formula (17), p(ot |h) is the Gaussian mixture function of ot; h is the parameter set
of the GMM model; pi(ot) is the distribution function of the i-th Gaussian component,
and ωi is the corresponding weight. In Eq. (18), μi is the mean vector of the Gaussian
component distribution function, and�i is the corresponding covariance matrix (usually
an DxD dimensional diagonal matrix).

The principle of GMM training is: Given a training sample, use the Expectation
Maximum (EM) method to obtain the maximum likelihood estimation of h. The likeli-
hood of the model parameter set h of the T-frame sound training sample is calculated as
follows:

L(h|O) = P(O|h) =
T

∏

t=1

p(ot |h) (20)

From Eq. (20), the maximum likelihood of h can be estimated as follows:

ĥ = argmax L(h|O)

ĥ

= argmaxP(O|h)
ĥ

= argmax
T

∏

t=1

p(ot |h)
ĥ

(21)

When the initial value h0 = {(ω(0)
i , μ

(0)
i , �

(0)
i )} A of h is given, the EM method can

be used to loop iteratively to obtain its maximum likelihood estimation solution.

3.2.2 UBM Model

Affected by the number of Gaussian components, the recognition performance of the
GMM model is also related to it. The greater the number of Gaussian components, the
better the recognition effect. However, with the increase of Gaussian components, the
corresponding target sound source data required increases, which leads to the increase of
model parameters that need to be estimated, and the amount of calculation is huge. Based
on this, a UBM training algorithm is proposed. The principle of the UBM algorithm is
to use the EM algorithm to train all types of sound source samples to obtain a GMM
model that is not related to the sound source type. This model is the feature model
hUBM = {(ωUBM ,i, μUBM ,i, �UBM ,i)} common to all types of sound sources. After
obtaining the required GMM model, based on the shared feature model, only a few
target sound sources can be adapted to the model parameters based on the maximum
posterior probability criterion. The process includes parameter fine-tuning and parameter
fusion based on UBM.

If the characteristic sample of the sound source to be identified is Ot arg et =
{Ot arg et,1,Ot arg et,2...,Ot arg et,T }, the posterior probability of the j Gaussian components
of the parameter adjustment model is as follows:

Pr
(

j|otarget, t, hUBM
) = ωUBM , jpj

(

otarget, t,μUBM , j, �UBM , j
)

G∑

i=1
ωUBM , ipi

(

otarget, t,μUBM , i, �UBM , i
)

(22)
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The weights are as follows:

ωtarget, j =

T∑

t=1
Pr

(

j|otarget, t, hUBM
)

T
(23)

The mean vector is as follows:

μtarget, j =

T∑

t=1
Pr

(

j|otarget, t, hUBM
)

otarget, t

T∑

t=1
Pr

(

j|otarget, t, hUBM
)

(24)

The covariance matrix is as follows:

�target, j =
∑T

t=1 Pr
(

j|otarget, t, hUBM
)(

otarget, t − μtarget, j
)′(otarget, t − μtarget, j

)

∑T
t=1 Pr

(

j|otarget, t, hUBM
)

(25)

After the above calculation is completed, the UBM parameter set and the
fine-tuned parameter set are combined to obtain the GMM-UBM model hfus =
{(ωfus,i, μfus,i, �fus,i)} of the target sound source to be identified, where

ωfus, j = αω
j ωtarget, j +

(

1 − αω
j

)

ωUBM , j (26)

μfus, j = α
μ
j μtarget, j +

(

1 − α
μ
j

)

μUBM , j (27)

�fus, j = α
Sigma
j �target, j +

(

1 − α
Sigma
j

)(

SigmaUBM , j+ mu2target, j
)

− mu2fus, j (28)

α
ρ
j =

{

αω
j , α

μ
j , α�

j

}

=
∑T

t=1 Pr
(

j|otarget, t, hUBM
)

∑T
t=1 Pr

(

j|otarget, t, hUBM
) + τρ

, ρ ∈ {ω,μ, �} (29)

3.2.3 Voice Scoring Recognition

After training all the sound source data to obtain the GMMparameters, the sound source
identification can be performed. You only need to calculate the likelihood function
corresponding to the htarget G of the target sound source, and then traverse the maximum
posterior probability to obtain the estimation of the maximum posterior probability. The
recognition results are as follows:

ŝ = arg max
1≤s≤S

p
(

O|hfus,s
) = arg max

1≤s≤S

T
∑

t=1

log p
(

ot |hfus,s
)

(30)

In Eq. (30), ŝ represents the recognition result of the sound source to be identified,
and hfus,s is the GMM-UBM model parameter of the s-th sound source.
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If there is only one type of sound source to be identified and the accuracy requirements
are low, only this type of sound can be trained.Then calculate its log likelihood:

�(O) = 1

T

T
∑

t=1

log p
(

ot |hfus,s
) − log p(ot |hUBM ) (31)

In formula (31), hfus is the GMM-UBM model parameter of the target sound source
signal; hUBM is the UBM model parameter of all types of sound. You can also reduce
the amount of calculation by setting the decision threshold.

The larger �(O) is, the greater the similarity of features between the sound source
to be identified and the target sound source is, and the smaller the �(O), the higher the
similarity between the sound source to be identified and E that is not related to the target
sound source.

3.3 Experimental Results and Analysis

First do MFCC feature extraction, and the simulation parameters are set as follows
(Table 3):

Table 3. MFCC feature extraction experimental parameters

Sampling
frequency

Feature
dimension

Filter order Framing
number

Oneframe
duration

Frame shift
ratio

FFT Cut-off
frequency

48 kHz 24 24 100 20 ms 1/4 2048 2000 Hz

The experimental results are as follows (Fig. 12):
As shown in Fig. 13, it is a normalized feature map of MFCC feature extraction

for three sound sources of military truck sound, marching sound and tank sound. It can
be seen that if high frequency suppression is not done, the MFCC static characteristics
of various sound sources The difference in the first three dimensions is very small,
and the distinction of dynamic features is not good. After high-frequency suppression,
the static features of the target sound source are very different, and it clearly reflects the
difference between different frames. Therefore, it is necessary to perform high frequency
suppression before performing MFCC feature extraction.

Then the target sound source is identified.The following table shows the experimental
parameters of feature extraction of the GMM-UBM algorithm and the experimental
parameters of its training and recognition process (Table 4).

The experimental results are as follows:
As shown in Fig. 14 above, the false alarm rate is 1.099%. Figure 14 is the scoring

result of the normalized fusion of the two tank sounds of m109 and Leopard by the
GMM-UBM algorithm, where m109 is the 11th type of sound source, and leopard is
the 10th type. From the above figure, we can see that the algorithm is for non-targets.
The score of the sound source category is lower, which means that when the normalized
threshold is the same, the false alarm rate is smaller, that is, the algorithm has fewer
incorrectly associated nodes.
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b) MFCC feature map for high frequency suppression

a) MFCC feature map without high frequency suppression

Fig. 12. Comparison of MFCC features without high frequency suppression and high frequency
suppression

Table 4. GMM-UBM feature extraction experimental parameters

Sampling
frequency

Feature
dimension

Filter order Framing
number

One frame
duration

Frame shift
ratio

FFT Cut-off
frequency

4819.98
kHz

24 24 550 24 ms 1/4 4096 2000 Hz

Table 5. GMM-UBM training and recognition experiment parameters

Experimental
model

Number of
test samples

Number of
training
samples

Gaussian
component
number

Number of
samples per
type

Model
correlation
factor

GMM-UBM 14 14 128 15 10

Fig. 13. GMM-UBM warning error curve
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a) m109 tank sound score b) Leopard tank sound score

Fig. 14. Comparison of the scoring results of the two types of target sound sources byGMM-UBM

4 Conclusion

This paper mainly studies the sound source recognition algorithm based on the L-shaped
pickup array structure in the military background. The completed research work is as
follows:

(1) The structure of the L-shaped pickup array is analyzed, and the signal preprocessing
algorithmof the array node is studied. Based on theLMSadaptive noise cancellation
technology, the variable step LMS algorithm that can change the sound spectrum
structure of the signal is discussed. It was verified by simulation.

(2) Identify the target sound source to determine the target type. The high-frequency
suppression MFCC feature extraction algorithm that can improve the sound spec-
trum structure of the sound source and the sound source recognition algorithm
based on GMM-UBM are studied, and the simulation analysis is carried out. It is
proved that the MFCC feature extraction method with high frequency suppression
can better distinguish the target sound source, and the GMM-UBM recognition
algorithm has a lower score for the non-target sound source category, and its false
alarm rate is lower, that is, this algorithm There are fewer nodes that are incorrectly
associated.
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