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Abstract. Cyber threat intelligence (CTI) sharing provides cyberse-
curity operations an advantage over adversaries by more quickly char-
acterizing the threat, understanding its tactics, anticipating the objec-
tive, and identifying the vulnerability and mitigation. However, orga-
nizations struggle with sharing threat intelligence due, in part, to the
legal and financial risk of being associated with a potential malware
campaign or threat group. An entity wishing to share threat informa-
tion or obtain information about a specific threat risks being associated
as a victim of the threat actors, resulting in costly legal disputes, reg-
ulatory investigation, and reputational damage. As a result, the threat
intelligence data needed for cybersecurity situational awareness and vul-
nerability mitigation often lacks volume, quality, and timeliness. We pro-
pose a distributed blockchain ledger to facilitate sharing of cybersecurity
threat information and provide a mechanism for entities to have non-
attributable participation in a threat-sharing community. Learning from
Distributed Anonymous Payment (DAP) schemes in cryptocurrency, we
use a new token-based authentication scheme for use in a permissioned
blockchain. The anonymous token authentication allows a consortium
of semi-trusted entities to share the workload of curating CTI for the
community’s cooperative benefit.

Keywords: Blockchain · Cyber threat intelligence · Zero-knowledge
proof

1 Introduction

Adversaries have the upper hand in cyber attacks. They benefit from anonymity,
both in person and in purpose. In contrast, targeted entities (e.g., companies) have
difficulty distinguishing everyday benign activities from malicious activities. Thus,
entities spend prodigious efforts to gain actionable threat intelligence. In a recent
survey on Cyber Threat Intelligence (CTI) sharing, security professionals strongly
agree that intelligence sharing supports breach detection/recovery and vulnerabil-
ity identification/mitigation efforts [40]. However, many technical, trust, legal and
cultural barriers prohibit more widespread threat information sharing [21].
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Many cyber threats target critical infrastructures in the private sector. These
target entities have the same trust barriers and even more technical and legal
barriers due to the limits of qualified security professionals working at each orga-
nization. A recent report on cyber threat sharing indicated only 3% of private
sector participants shared any threat indicators in 2018 [25].

Furthermore, the value received from CTI is often lacking due to various
technical challenges and missing context. In one study [7] 70% of respondents
find shared threat data too voluminous and complex for actionable intelligence.
Similarly, [8] finds CTI solutions need to enhance their ability to provide context
and flexibility to improve the overall value proposition.

1.1 The Current State of Threat Sharing

Organizations are rapidly developing the competency and appetite to participate
more in threat-sharing communities. The global rise in security operations cen-
ters, through which most CTI exchange occurs, has an expected market growth
of 11.5% through 2025 [9]. However, with current approaches heavily focused on
classified data and government intelligence services, actionable data is too little
and too late. Likewise, as [22] points out, private sector organizations have little
motivation to share their threat data sustainably.

Entities share threat data to gain a better understanding of the risk posed to
their mission. An average entity may experience tens of thousands of malicious
probes from the Internet per day. However, most probes result from automated
scanning and do not represent a motivated and intelligent human adversary.
Entities participate in threat sharing to distinguish actual danger from benign
in hopes of mitigating the threat before it manifests.

Society has an interest in preventing cyber threats from entities that provide
critical services and infrastructure. Military and law enforcement agencies would
generally provide protection, but they have limited purview into the interaction
between adversaries and private entities. Government agencies, national Com-
puter Emergency Response Teams (CERTs), and non-profit Information Sharing
and Analysis Centers (ISACs) offer two-way threat-sharing services to address
this gap.

However, private entities have many barriers encumbering CTI sharing. A
private entity wishing to share threat information risks attribution of the cyber
threat, resulting in costly legal disputes, regulatory investigation, and reputa-
tional damage. For example, a mistaken analysis of VPN logs to maintain a
failed water pump led to a federal investigation of cyber warfare [39]. In [26],
legal compliance and limiting attribution are identified as the primary challenges
for organizations wishing to share their own CTI with others.

Additional barriers exist with sharing of classified intelligence to private enti-
ties. Programs exist to clear private sector entities, but they come at a high cost.
Then, moving classified intelligence to actionable threat and vulnerability miti-
gation cannot keep pace with adversarial intrusion techniques’ dynamic nature.
Likewise, attempts for fully bidirectional threat sharing have mostly failed.
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1.2 Contributions

This paper provides a solution for entities to share observed CTI without attri-
bution using a permissioned blockchain. We propose a novel approach to a Dis-
tributed Anonymous Payment (DAP) scheme [33] for permissioned blockchains
to allow for anonymous transactions in CTI sharing. This solution also efficiently
maintains anonymous authentication and provides revocation services for enti-
ties. It does so by splitting maintenance of the Merkle tree used for anony-
mous authentication between participating peers, which allows for more regular
updates of the Merkle Tree across the distributed ledger.

Anonymous transactions address the legal and regulatory barriers organiza-
tions have with cyber threat attribution, increasing CTI sharing on the ledger.
We then propose a new chaincode to incentivize CTI creation for the coopera-
tive benefit of participating entities. The chaincode targets the barriers prevent-
ing bidirectional threat sharing between private sector entities and government
agencies by generating timely and actionable CTI without the need for costly
declassification.

The chaincode also seeks to reduce volume and increase value in CTI. Human
analysts control the volume of threat data through work evaluation functions.
Whereas automated log sharing solutions produce data at the speed of machines,
the chaincode produces intelligence at the speed of humans. Furthermore, human
analysts should find the intelligence actionable because the chaincode originates
directly from private entity queries.

1.3 Organization

Section 2 reviews related work. Section 3 introduces the building blocks for our
approach. Section 4–6 presents the proposed approach and its major components.
Section 7 discusses evaluation results. Section 8 concludes this paper.

2 Background and Related Work

CTI exchange programs fall into three categories:

1. Classified Threat Sharing - Provides automated classified threat indicators to
its members. The DHS Enhanced Cybersecurity Services (ECS) is an example
of this type of service [4].

2. Data Lakes - Collects a large volume of logs from its members and centrally
analyzes the data. The Department of Energy Cyber Risk Information Shar-
ing Program (CRISP) uses the data lake model [3].

3. Analyst to Analyst - Threat hunting analysts exchange data over a shared
platform. The European Union Agency for Cybersecurity recommends the
Malware Information Sharing Platform for community threat sharing [8].

This paper targets the third category of CTI in which human analysts directly
share threat intelligence and indicators between entities. The most commonly
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shared threat data includes low-level indicators such as IP addresses, URIs,
DNS names, and file hashes collected automatically or via threat hunting. Our
platform supports sharing of other security information as well, e.g., vulnerability
mitigation information. Many services provide one-way data sharing to the entity
of known malicious threat indicators.

Stillions’ Detection Maturity Levels [35] characterizes this type of data as
lower-level evidence of an intrusion attempt. In contrast, higher levels of intelli-
gence include data about how the adversary operates and their motivations.

The work of creating CTI involves tying lower-level indicators to adversarial
motivation. However, these indicators exist in the networks of private entities
and outside of the direct purview of CTI producers. Timely bidirectional CTI
exchange means indicators and resulting CTI are shared freely. The producers
receive value by better tracking malicious activity, and consumers receive value
through an improved understanding of adversarial risk.

Using a distributed ledger, we can commoditize CTI work as described in
Sect. 6 while, at the same time, eliminating trust barriers that preclude the
sharing of threat indicators.

2.1 Blockchain Technologies

The permissioned ledger fundamentally uses blockchain as a basis for distributed
trust. Blockchain has gained popularity with cryptocurrency technologies like
bitcoin [30], and ethereum [38] making possible public distributed transactions
with no central authority. Several recent works have suggested using blockchain
technologies for CTI exchange [23,24,32]. Our work differs by addressing attri-
bution and targeting CTI sharing communities of trust through a permissioned
ledger.

The use of a permissioned blockchain presented in [10] has growing accep-
tance as a general-purpose distributed ledger. While still public, in the sense of
being accessible over the Internet, permissioned blockchains take advantage of
partial trust relationships in a system. In the Hyperledger Fabric project, net-
work peers first execute transactions and then order and distribute them onto the
blockchain. This approach allows for more complex transactions because peers
can detect state and denial of service problems before the chaining operation.

We choose a permissionless blockchain over a public blockchain because of
privacy considerations. A CTI sharing community is often open only to partici-
pating members from a given sector or nation-state. Although peer entities have
no problems with attribution among the community, privacy concerns would
likely arise in a public blockchain.

2.2 Zero Knowledge Proofs

The public nature of blockchain systems spotlights the need for anonymity and
private information retrieval. Common to most solutions to these problems are
zero-knowledge proofs (ZKP), which allow authentication without identification.
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In [19], Chaum first developed an e-cash system in which a user could present
proof of authentication from some certifying entity without revealing the user.
Pseudonym systems in [28] have a similar mechanism to allow entities to oper-
ate under a pseudonym untraceable to their original authenticated identity and
ultimately form a chain of pseudonyms to conduct anonymous transactions in a
system.

Direct Anonymous Authentication (DAA) systems extend and implement
ZKP and have widely deployed on trusted platform modules (TPM), and
blockchain systems [15–18]. Most recently, the anonymizing idemix library has
become available as a core service in Hyperledger Fabric.

However, DAA schemes do not have a mechanism for incentives, and they
require additional roles in managing access to the ledger. Instead, we look to
recent advancements in cryptocurrency. The explosive growth of cryptocurren-
cies has ushered in a wave of innovation in anonymizing transactions in the past
decade. Anonymous spending in cryptocurrency is made possible through zero-
knowledge Succinct Non-Interactive ARgument of Knowledge (zk-SNARKS)
presented in [20]. Zerocoin [29] is one of the first systems proposed to support
anonymous transactions on top of bitcoin. Zerocash [33] and others [27] made
use of zk-SNARKS to make this more feasible and extend the system to prevent
tracing the history of a coin and improve efficiency.

Although permissioned blockchains do not require a cryptocurrency incen-
tive, we propose an incentive mechanism for the desired outcome of high quantity
and quality threat data. The “gas” or currency of cybersecurity exists in human
work and actionable CTI.

3 Building Blocks

Before presenting the approach to non-attributable CTI sharing, we introduce
the building blocks used by our approach.

3.1 Sparse Merkle Trees

Merkle trees provide an efficient data structure to authenticate information.
They are used on the blockchain to verify transactional integrity. Branches of
the tree get formed from the combined secure hashes of its children. In this way,
anyone can verify the membership of a tree leaf by comparing the calculated
Merkle root with some other valid Merkle root.

Sparse Merkle Trees make use of the property that the path to any given
leaf is a function of a small number of branches up to the Merkle root. In the
example shown in Fig. 1, we store a minted coin, cm, as a leaf in the Merkle Tree.
The leaf’s index is determined by the branch direction down the tree, in which a
0 means the left branch, and a 1 means the right branch. Then, for someone to
later validate the inclusion of cm, they need only the index and the tree branches
along the path indicated by the index, which is necessary to calculate the root.
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We represent the tree path as path, which contains attributes for the index
location in the tree, path.addr, and the branch siblings, path.S necessary to
calculate the Merkle root.

Fig. 1. Sparse Merkle tree.

3.2 Distributed Anonymous Payment

First, distributed anonymous payment (DAP) schemes allow an entity to prove
they have an electronically minted coin, cm, without actually revealing the coin.
The proof also requires the entity to provide knowledge of an associated, yet
untraceable, serial number, sn, to prevent an entity from double-spending.

DAP schemes have the important property of retaining the minted coin as a
valid leaf value in the Merkle Tree. Unlike Bitcoin, they do not have the luxury of
maintaining an unspent transaction object (UTXO) inventory. To do so requires
identifying spent coins, which DAP schemes do not reveal. Therefore, we must
evaluate the Merkle tree size appropriate to support the life of the blockchain.

3.3 zk-SNARKs

The proof of knowledge in [33] uses zero-knowledge Succinct Non-Interactive
Arguments of Knowledge (zk-SNARK) proofs from [13]. zk-SNARKs provide an
efficient proof construct and verification mechanism. Our proof demonstrates
the knowledge of a cm ∈ CMList without revealing cm, which equates to an
anonymous user proving, “I have a valid token, but to ensure my anonymity, I
am not going to tell you which token.”
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At its core, a zk-SNARK equates to demonstrating knowledge of a well-
formed polynomial, p(x), such that h(x)t(x) = p(x), where t(x) is a tar-
get polynomial available to the ledger, and h(x) is derived by the prover as
h(x) = p(x)/t(x). The prover constructs the polynomial, p(x), through an alge-
braic circuit available on the ledger which has been translated from code repre-
senting the Merkle Tree proof of knowledge. The prover samples some arbitrarily
chosen secret s, such that h(s)t(s) = p(s). To ensure the integrity of the target
polynomial and sampled value, s, all operations are performed using homomor-
phic encryption with generator, g, such that (gh(s))t(s) = gp(s).

The process for non-interactive proof and verification consists of the following
steps:

1. Multi-Party Setup - A multi-party setup protocol occurs to produce the
public parameters, pp, which includes the homomorphic encryption of the
powers of x in the secret polynomial of dimension, d for secret, s. Thus, the
proving key consists of the powers necessary to compute the secret polyno-
mial, the target polynomial, and sampled values to ensure zero knowledge of
the secret polynomial. An initial setup requires multiple parties with strong
zero-knowledge guarantees [14]. The keys used for proving and verification
are referred to as the common reference string.

2. Algebraic Circuit - A program to construct the zero-knowledge proof con-
verts to an algebraic circuit by flattening the program into a series of expres-
sions in the form x = yopz, which form the so-called circuit wires. Ultimately,
these form the basis of the secret polynomial coefficients. In our case, the cir-
cuit consists of the Merkle Tree proof of inclusion.

3. Proof - An entity constructs a proof of knowledge demonstrating they have a
valid token in the Merkle tree using both the public parameters and algebraic
circuit. The proof is non-interactive because the prover does not need to
exchange keys to produce the proof statement. Zero-knowledge comes through
a key sampled by the prover, which conceals the secret polynomial.

4. Verification - Verification is performed in the chaincode of the ledger to
ensure the construction of the secret polynomial in addition to the public
inputs to the circuit is valid.

Besides the original works in zk-SNARKs, the papers [11,31] provide good
tutorials on the process.

4 Distributed Ledger for Threat Sharing

Distributed ledgers provide transactional integrity for large and diverse com-
munities. In its most well-known cryptocurrency implementations, distributed
ledgers supply a high assurance system for transacting digital goods such as
Bitcoin. Our scheme considers human work as the exchanged commodity for
cybersecurity threat sharing. The work of threat identification and attribution
involves costly human labor to identify artifacts, piece together the adversarial
objective, and tie cyber observables to malware campaigns and threat actors.
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Entities receive value through more actionable intelligence and an improved
understanding of cyber risk.

The use of a distributed ledger for cybersecurity work is not without prece-
dent. [34] proposes the use of economic incentives to incentivize secure data
sharing. Also, in many ways, a marketplace for threat information can be com-
pared to software bug bounty programs where companies wishing to fix software
vulnerabilities before an adversary exploits them monetize the work of finding
vulnerabilities [5]. However, with cyber threats, the work production comes from
entities wishing to protect their systems better.

We propose a distributed ledger in which any participating entity submits
monetized threat intelligence work in the form of structured work queries as
transactions on the ledger. Entities requesting work do so through anonymous
credentials using a web application tied to a peer entity on the distributed ledger.
Participants use the same web application to search for information about a given
threat. The ledger does not record searches as transactions.

4.1 Distributed Ledger Network

This section proposes a permissioned blockchain network architecture to support
the exchange of threat intelligence between participating entities. Our imple-
mentation for threat sharing uses a permissioned blockchain. These differ from
public blockchains by requiring authenticated access and eliminating the need
for proof-of-work or proof-of-stake consensus. Chaincode is a set of smart con-
tracts installed by participating entities and serves as the blockchain’s central
service rather than the currency transaction object. With cryptocurrency, smart
contracts are a service of the blockchain, but with permissioned blockchains, the
blockchain is a service of the smart contract.

Also, cryptocurrencies overcome almost all trust boundaries, but this is
not always desirable, especially with CTI. Instead, we use the permissioned
blockchain to overcome trust boundaries existing between organizations.

Figure 2 shows an example blockchain network in where the shaded area
represents elements required by the blockchain and users involved in CTI access
the network outside of the shaded area. Fundamentally, the blockchain includes
a group of entities, referred to as peers, who have consensus on the chaincode
execution and maintain a copy of both the blockchain and the current state
database of chaincode assets (or objects).

Peers join the network either initially or through peer consensus. The collec-
tive peers comprise the distributed system’s nodes, and they participate in the
validation of new blocks and storage of the data. However, with permissioned
blockchains, peers also provide the service of user interaction with the blockchain
network.

An organization does not need to be a peer of the blockchain to participate in
the service. Instead, peers provide credentialing services through their certificate
authority. Users of other organizations are then permitted to execute chaincode
transactions through peer applications.
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Fig. 2. Threat ledger network.

In the example shown in Fig. 2, the peers include organizations typically
involved in threat sharing, such as government agencies, CERTs, ISACs, and
research labs. These organizations have the incentive and resources to install and
maintain the peer service needed for threat sharing. If a private entity wanted
to participate in the network, they would only need to obtain credentials from
a peer and use a published web application, thus, significantly lowering the bar
of complexity for threat exchange participation.

The network also requires an ordering service. Blocks of transactions get
added to the blockchain through the ordering service. Consistent with the
execute-order-validate consensus approach described in [10], peers will first sim-
ulate the execution of proposed transactions before sending them to the ordering
service. The ordering service then packages valid transactions into the next block
and sends them to all network peers.

4.2 Chaincode Assets

The network’s chaincode centers on CTI reports commonly exchanged between
organizations. We choose to use the standard MISP format [37]. Other CTI
taxonomies include STIX [12], and the Common Cyber Threat Framework [6],
but the MISP format is extensible and concentrates on the threat report instead
of the observable artifacts. By aggregating artifacts into event reports, we can
more easily form a high-level representation of the CTI report’s value.
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An sample MISP report with object relationships is shown in Fig. 3. A MISP
Event Report contains the creating organization (or anonymous), description,
and report object, which can range from single threat observation reports to
several thousand indicators and sightings of a malware family. There are over 200
open object definitions, and reports can contain multiple objects. Tags describe
the report in terms of the information-sharing community. Example tags include
the DHS Traffic Light Protocol, malware classifications, IDS rules, and admiralty
scale. The tags can be helpful in chaincode for defining access control rules,
expiration, and other state transition logic.

Finally, object attributes tie to the reported objects and contain the observ-
able artifacts associated with an event, such as IP addresses, URIs, file hashes,
and email addresses. Attributes are the primary search targets for the net-
work. Each network peer stores a document-oriented NoSQL database of existing
reports and indexes the attributes for fast searching and correlation.

Fig. 3. MISP data object model.

Besides the threat objects, we also define two assets used for managing the
quality of threat reports. The work asset represents human work and consists
of structures for both the problem and the solution. When first submitted, the
solution is empty and queued for human analysis. Examples of work may include
associating tactics, techniques, and procedures (TTP) to threat artifacts or attri-
bution of a threat report. Other types of work might include validation or annota-
tion of reports to assist in automatic classification, and generation of mitigation
actions for vulnerabilities that the adversary tries to exploit.



174 P. Huff and Q. Li

Finally, a tree asset serves to facilitate anonymous authentication and man-
age the human work by controlling the input, incentivizing the output, and
anonymizing the submittal of software artifacts.

5 Non-attributable Token Authentication

For the CTI distributed ledger to function, we must provide its users with
anonymization guarantees. We now present the approach for anonymous authen-
tication using a Merkle Tree for zero-knowledge commitment. To start, we
present the process of token commitment. Then we show an approach of split-
ting the tree to support more authentication features such as revocation and
value-based spending.

5.1 Anonymous Token Spending

A user receives a token upon the chain code validating some threat intelligence
work, or perhaps as part of some bootstrapping process where new users have a
limited set of tokens. A user will provide a token to the ledger when performing
work for the chaincode to later validate. Then, once the chaincode validates the
token, commitment occurs by adding the token as a leaf to the Merkle tree,
tree.

The user arbitrarily samples a secret key through the security parameter, λ
representing the key length and pseudorandom function Gen(1λ). A user may
safely use the secret key repeatedly as a witness to multiple tokens. For each
new token, a user arbitrarily generates a serial number, sn, in the same way.
Then, using a collision-resistant hash function, CRH = (0, 1)∗ → 0, 1λ, the token
is generated as shown in the following functions.

1 : sk ← Gen(1λ)

2 : sn ← Gen(1λ)

3 : tk ← CRH(sk ‖ sn)

The sparse Merkle tree then gets calculated with the inclusion of the token
as (rt, path). The user then has the following public and private data related to
the token.

1 : tkpub ← (rt, sn)

2 : tkpri ← (sk, path)

Algorithm 1 shows the zk-SNARK circuit for proof and verification. To gener-
ate a zk-SNARK proof, a user supplies the public parameters, pp, which includes
the common reference string for proving and the zk-SNARK circuit. Public input
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Algorithm 1 Token Verifier Circuit
Public Parameters: pp
Public Input: rt, sn
Witness: sk, path
Output: π - proof of inclusion

1: procedure token verifier
2: tk ← CRH(sk ‖ sn)
3: rttk ← the smt calculation using tk and path

4: if rt = rttk then
5: return true
6: else
7: return false
8: end if
9: end procedure

includes both the Merkle root, rt, demonstrating knowledge of a valid token,
and the serial number, sn, formed through the witness. The witness includes the
secret key, sk, and the path down the tree to the token.

The chaincode on the distributed ledger verifies the proof represented in
Algorithm 2. Here, the public parameters, pp, include the portion of the common
reference string used for verification in the ledger. The verification includes (i)
checking to ensure the zero-knowledge proof is valid, (ii) verifying the Merkle
Root is a valid root for the ledger, and (iii) the serial number represents an
unspent coin. The first check uses the zk-SNARK for the network. For the second
check, the ledger must include a set of valid roots, and we describe this process
in Sect. 5.2. The final check on whether sn exists in SNList prevents a double
spend.

Algorithm 2 Verify Token Proof
Public Parameters: pp
Input: π, rt, sn
Output: Valid or Invalid

1: procedure verify proof
2: valid ← verify(pp, π, rt, sn) � zkSNARK verification
3: if valid ∧ rt ∈ RTList ∧ sn /∈ SNList then
4: return Valid
5: else
6: return Invalid
7: end if
8: end procedure
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5.2 Merkle Tree Structure and Root Updates

In the token spending scheme described above, a root update when inserting a
batch of new tokens to the tree would make token spending attribution trivial.
An entity would only need to search the ledger for the root associated with a
token proof to identify the user.

To prevent this attack, we designate an entity to perform the service of send-
ing out root updates at a time interval, tnew. Then validation should only include
roots published within some time interval, texpiry. Thus, a user wishing to spend
a token must wait within a timespan of tnew after receiving the validation. Also,
a token proof will be valid within a timespan of texpiry from the proof construc-
tion. The expiration prevents token attribution because the prover supplies only
recent token roots instead of the root calculated at token insertion.

The problem then becomes regularly distributing the tree paths to the net-
work, which we now address. A Merkle tree in a DAP scheme may have token
leaves distributed in any order. The location of the leaf in the tree has no asso-
ciation with the identity of the token owner. However, permissioned blockchains
have inherent organizational structures, which the ledger can use for more robust
authentication features and storage efficiency.

For a Merkle tree of height, h, the branch levels are split into three levels, hnet,
horg, and huser as shown in Fig. 4. Thus, the tree supports 2hnet organizations
and each organization may have 2horg users.

Fig. 4. Merkle tree structure.
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By dividing the tree height, we minimize the size of tree updates and storage
requirements to only those necessary for the entity’s role in the network. As an
example, a tree with a height of 32 requires approximately 256 GiB of storage.
Also, to keep the siblings, path.S, up to date, the network must distribute a
similar-sized update. However, using a permissioned blockchain’s organizational
structure and setting the hnet level at 14, the network updates only require 1
MiB while allowing for 214 organizations.

Each organization is responsible for maintaining its similarly sized sub-tree
to distribute path.S updates to its users.

The organizational tree structure supports several other services, which we
now describe.

5.3 Revocation of Anonymous Authentication Tokens

Any network peer entity or organization may wish to revoke tokens as users leave,
tokens become compromised, or users abuse the network. Since the tree divides
into sub-trees of organizations and users, such revocation becomes trivial. User
tokens are revoked by setting the desired token sub-tree to null and recalculating
the root. Similarly, the network could revoke entire organizations by setting the
organization sub-tree to null.

The revocation scheme works because tokens are not anonymous, and the
Merkle tree does not need to hide the token holders’ identities. A token spend
only reveals the serial number, which cannot associate with the token. The net-
work may safely maintain an identity on the token tree while preserving non-
attribution in token spending.

The revocation latency ties to the texpiry time interval associated with root
updates. Attempts to authenticate using a revoked token will guarantee to fail
after texpiry because the proof of token inclusion no longer works with the new
root.

5.4 Adding Value to Tokens

In a cryptocurrency, value is an attribute of the coin itself, and spend operations
pour an old set of coins into a new set with the same value preserved. However,
pouring coin value creates problems in the proposed scheme because the primary
purpose of the token is for non-attributable authentication, and supporting a
large number of token spends adds unnecessary complexity.

Instead, we propose tokens only have a value of 1, and we increase the user
Merkle tree height to support a large number of tokens. Only the user only needs
to maintain the path siblings for any levels below horg. Knowing these paths
allows the user to construct a valid proof without the network or organization
having to maintain a tree height to support a large number of possible tokens.

For example, if the network maintained a tree height of 14 at 1 MiB, and
each organization maintained a sub-tree height of 18 at 8 MiB, each user could
maintain their sparse sub-tree of 64 levels to support a vast number of tokens
far beyond the maximum necessary.
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5.5 Authentication Without Spending

Finally, by maintaining tokens with revocation services, they provide a useful
means of anonymous authentication. There are several scenarios where users
might desire anonymity. A user may wish to perform an anonymous search on
the network, e.g., searching for a particular IP address. Performing such a search
could infer the organization’s attribution as a victim of the malware.

To support anonymous authentication only, we make a minor modification to
the token spending circuit and remove the serial number as the public verification
parameter. Additionally, we hash the timestamp, ts, with the root to prevent
replay attacks.

Algorithm 3 Token Authentication Circuit
Public Input: pp, rt, ts
Witness: tk, path
Output: Whether the calculated root matches the given root

1: procedure token auth
2: rttk ← the smt calculation using tk and path

3: if CRH(rt ‖ ts) = CRH(rttk ‖ ts) then
4: return true
5: else
6: return false
7: end if
8: end procedure

6 Chaincode for CTI Work

This section presents in detail the state program model used for managing work
on the network. Several peer-authenticated transactions occur to update threat
reports, which this paper does not formalize. The transactional updates to threat
reports are essential but straightforward. Instead, we focus on the Work asset
transactions to facilitate the expansion of threat knowledge and automation
beyond existing services. Recall that a Work asset consists of problem and solu-
tion data structure which maps to an Event Report asset.

Work asset transactions focus both on the problem of submitting CTI anony-
mously and on validating the quality of the CTI. The cybersecurity community
has not extensively considered the use of non-attributable CTI, and the chain-
code recognizes this by including a set of evaluation states.

Figure 5 shows a state transition diagram of the workflow from the addition
of Work to the completion of a solution. Each state transition represents a
chaincode function made available to the network for processing the ledger. The
ledger must maintain state to support asynchronous processing of transactions
and high assurance in the logic of the chaincode.
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The object variables for the state program include the following chaincode
assets:

V ar = {event record, work, token tree} (1)

A threat record asset includes the complex data structure represented in
Fig. 3 and described in Sect. 4.2. Assets for work have a problem/solution data
structure that stores the proposed problem and maintains a set of proposed
solutions for evaluation. The tree asset supports the use of tokens described in
Sect. 5.

The program graph over V ar is defined as

Definition 1. State Transaction Program Graph

– S - Set of states
– Effect : Act × Eval(V ar) → Eval(V ar) - Transition effect function.
– R ⊆ S × Cond(V ar) × Act × S - Conditional transition relation
– S0 ⊆ S - The set of initial states
– g0 ∈ Cond(V ar) - The initial condition

The function Eval comprises the set of evaluations over V ar, and the function
Cond comprises the set of conditional expressions over V ar.

Work state is maintained through the smart contract logic. Valid work states
include S = READY WORK, IN PROGRESS, READY EVAL, IN EVAL, ADD WORK.

Anyone with a valid token may submit a work record to the network accom-
panied with a token proof. The chaincode first evaluates the token proof as a
guard condition for the work queue. In this way, the work has no attribution to
an entity, but the entity authenticates as a valid user of the network. Also, the
ledger preserves the quality of the work queue by requiring an entity to give up
something of value in exchange for work performed.

Each work asset gets added to a priority queue on the ledger. The priority
queue operates based on priority and time to differentiate work value and prevent
starvation for lower priority work requests. Workers should also choose work
based on their resources and capabilities, but we leave the optimal dequeuing of
work to future research.

Finally, the ledger adds an evaluated solution by i) updating the
event record with the added context provided through the work solution, ii)
inserting the tokens provided with the work solution and evaluation, and iii)
publishing a new root to the network based on the updated tokens.

The entity requesting work will likely search for the work solution period-
ically. Thus, the network supports authentication-only proofs using tokens to
preserve the anonymity of the work requester. An entity need not authenticate
with an identity, save only to perform work.

Due to the space limitation, an extended version of this paper will include
the algorithms for chaincode.
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Fig. 5. Work state transition.

7 Implementation

We performed testing to evaluate the Merkle tree maintenance from Sect. 5.2
and token authentication in Sect. 5. Also, we propose implementation guidelines
for implementing the blockchain under realistic loading conditions. Our tests of
the zk-SNARK proofs use snarkjs and circomlib, and the performance was tested
on an Intel Core i5-8356U CPU @1.60 GHz with 16 GB of RAM.

7.1 Token Authentication Performance

The Merkle tree height drives the network performance for token authentication
in both storage and time. Authentication allows sparse tree storage at both the
organizational, horg, and user levels, huser. However, the network must provide
frequent updates at the network level, hnet, to support anonymous authentica-
tion. Due to the frequency of these updates, we propose setting horg at 15, which
for a 256-bit node size, requires 1 MiB of storage.

Users can manage a much deeper portion of the Merkle tree because they
only store the sparse tree based on the number of tokens they possess, but the
token proof circuit requires a consistent depth. Figure 6 shows the relationship
between the depth and proof times. Here, we propose a reasonable tree depth
of, at most, 128, which provides ample space for both the foreseeable maximum
number of organizational users and the number of tokens allocated for each user.
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Fig. 6. Proof times relative to Merkle tree height.

The parameters and performance of the algebraic circuit for a tree with this
size are shown in Table 1.

7.2 Ledger Operation Guidelines

We developed the chaincode model for use in Hyperledger Fabric, and although
a full-scale simulation is in development, we make some observations here about
the operation of the network.

There are three types of transactions proposed: i) event reports, ii) work man-
agement, and iii) network maintenance activities, including Merkle root updates.
To develop a realistic expectation of throughput, we consider the critical infras-
tructure sectors in the United States. The Department of Homeland Security
identifies sixteen critical infrastructure sectors [2]. Using utility data from the
Energy Information Administration [1], we find 3,338 individual utility com-
panies in the electric sector. If each organization produced an average of ten
transactions per day during a peak of four working hours, we could expect a
maximum throughput of 40 transactions per second.

For this level of throughput, Hyperledger Fabric benchmark experiments indi-
cate a latency of approximately 1 s with a block size of 10 transactions [36]. They
also indicate that an endorsement policy of up to four network peers for each
transaction would have a minimal effect on the overall transaction latency. Over-
all, the system’s theoretical bounds would fall well within the efficient operating
conditions of Hyperledger Fabric.
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Table 1. Sparse Merkle tree proof circuit parameters and performance

Merkle tree height 128

Number of wires: 32,486

Number of constraints: 32,363

Private inputs: 130

Public inputs: 2

Number of labels: 151,304

Number of outputs: 0

Proof time: 4,200 ms

Verification time: 28.5 ms

8 Conclusion

This paper proposes a new approach for overcoming the trust barriers of inter-
organizational threat intelligence sharing using a distributed ledger technology.
We have demonstrated a novel use of zk-SNARKs and Sparse Merkle Trees to
enable anonymous authentication and anonymous token spending for the ledger’s
permissioned users. The results pave the way for a new approach to cybersecurity
threat intelligence sharing, which commoditizes the work of CTI curation and
sharing to produce a greater cooperative value.
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