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Abstract. Smart contracts have extensive applications in various
emerging domains such as IoT, 5G networks, and finance. In this regard,
the Ethereum platform has provided the capability of running smart
contracts on its distributed infrastructure. Smart contracts are small
programs that describe a set of rules for supervising associated funds,
often written in a Turing-complete programming language called Solid-
ity. Furthermore, Ethereum is currently one of the most extensive cryp-
tocurrencies next to Bitcoin. This provides an extraordinary opportunity
for attackers to exploit potential zero-day vulnerabilities in this ecosys-
tem that are tightly twisted with financial gain. Consequently, this paper
introduces a practical framework called “EthFuzz” to identify vulnerabil-
ities and generate concrete exploits for the Ethereum ecosystem. Our sys-
tem works through a graph-based method in combination with dynamic
symbolic execution. Moreover, our proposed framework can tackle the
path explosion problem in its symbolic execution engine. To prove our
approach’s usefulness, we could successfully identify and generate 26,015
exploits out of 207,412 exploitable paths, within 1,000,000 real-world
smart contracts on the Ethereum live blockchain network.
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1 Introduction

Blockchain is a distributed ledger technology that designates exchanges of value
between individuals securely, permanently, and in a simply provable manner [19].
It is also the underlying technology for cryptocurrencies such as Bitcoin and
Ethereum. Even though initially used for financial transactions, applications of
blockchain extend beyond finance and can affect a wide variety of industries
such as 5G and beyond networks [23]. For example, smart contracts can enable
applications to communicate with Things in the IoT [16], in a way similar to how
hardware drivers allow applications to cooperate with devices. Moreover, smart
contracts can provide high security for the 5G networks involved in decentralized
ledgers.

The programmability of the Ethereum platform is predicated on its ability
to build and perform smart contracts [19]. The term “smart contract” was intro-
duced by Nick Szabo in 1996 [29], when he described it as “a set of promises,
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specified in digital form, including protocols within which the parties perform
on these promises”. Smart contracts are agreements between transacting par-
ties that are written using computer code and programmed to self-execute when
specific conditions are met. These can be integrated into a blockchain platform
like Ethereum to implement the verification and integrity required for such an
automated system to work.

However, creating trustworthy and secure smart contracts can be remark-
ably complicated due to the complex semantics of the underlying domain-specific
languages and their testability. There have been high-profile incidents suggest-
ing that certain blockchain smart contracts could accommodate various code-
security vulnerabilities which can potentially lead to financial harm [26]. This
is especially challenging given the notion that smart contracts are supposed to
be “immutable”. In other words, once a contract code is deployed, it cannot be
changed anymore, which makes patching identified vulnerabilities impossible.

In this paper, we introduce a practical and scalable framework for performing
in-depth security analysis and automatic exploit generation for commercial off-
the-shelf (COTS) smart contracts available on the blockchain network. We call
our system “EthFuzz”, and it can identify and exploit zero-day vulnerabilities,
exploits and runtime attacks based on user specifications in Datalog [31]. Our
approach works based on a backward slicing method to classify and control
the safety of critical execution paths with a combination of static and dynamic
analysis in lockstep with a symbolic execution engine.

We made the following contributions in this work:

1. Generating concrete exploits. EthFuzz automatically generates concrete
exploits for detected vulnerabilities in smart contracts without access to the
source code. Hence, we created a symbolic execution engine based on the
Z3 SMT solver to trigger critical executable paths in given Ethereum smart
contracts and create exploit inputs.

2. The low cost of specifying new vulnerabilities. While previous work [12,
15,17,30] has relied on literal hard-coded configurations, which produce a high
maintenance cost and a high cost per vulnerability controlled, in EthFuzz’s
design, new vulnerability and attack patterns can be specified by the end users
in Datalog files, provided by an auxiliary API in our framework. This allows
users and developers to upgrade the framework for new attacking patterns
without struggling with low-level structures and recompilation process.

3. Controlling false positives. In contrast to previous work, EthFuzz proac-
tively separates exploitable from non-exploitable paths with the help of a
dynamic execution module in order to prune useless paths from further anal-
ysis and symbolic execution operations. In consequence, the final result is
more reliable and the exploit generation is faster and less error-prone.

4. Real-world evaluation. We have gathered and investigated COTS smart
contracts derived from the Ethereum network to find current trends in secu-
rity issues in the Ethereum ecosystem and regulate the effectiveness of Eth-
Fuzz for real-world applications.
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2 Background

Smart contracts are only controlled by code that can handle transactions fully
autonomously. Moreover, smart contract code is executed when a user submits a
transaction along with a smart contract as the recipient. Users add payload data
in transactions, which in turn is provided as input to the subject smart contract.
More specifically, a contract is established as a collection of functions, which
users can invoke. A contract can also trigger the execution of another contract
through CALL instruction. This critical instruction transfers a message similar
to Remote Procedure Call (RPC) in other programming paradigms [11].

In order to execute a smart contract, a sender has to send a transaction
to the subject contract and pay a charge, which is called “GAS” (it will be
acquired from the contract’s computational cost.). The contracts themselves can
also call other contracts present on the Ethereum blockchain [26]. Note that
every contract is tied to an account and the contract code can be triggered by
calls or transactions received from other contracts. However, accounts cannot
launch new transactions on their own, which means they can only respond to
other transactions they receive. Since smart contracts are generally designed to
manipulate and hold funds designated in Ether, they are considered to be highly
attractive targets for cybercriminals [27].

2.1 Smart Contract Vulnerabilities

There are multiple well-known security issues reported in the smart contract
ecosystem that all have been comprehensively described in various references
such as [7,26]. However, we briefly introduce some of the most prevalent vulner-
ability classes that we frequently mention throughout this paper. For the sake
of saving space, we present a two-letter acronym for each vulnerability.

Integer Overflow (I0) and Underflow (IU). Integer overflow (and under-
flow) is a common error in numerous programming languages but in the con-
text of Ethereum it can have serious outcomes. In Solidity “Integer” data types
have no built-in security against integer overflow (IOF) and underflow (UOF)
attacks [17,30]. For example, if a loop counter were to overflow, generating an
infinite loop, the funds of a contract would become fully frozen. Thus, attackers
can exploit this bug by increasing the number of iterations of a loop, for example,
by introducing new users to a vulnerable contract [30].

Re-Entrancy (RE). This is a well-known attack that has taken Ethereum secu-
rity communities by storm, particularly after the notorious DAO hack [28]. This
vulnerability will be exploited when a contract attempts to send Ether before
having updated its internal state. If the target address is a different contract, the
contract code will be executed and can invoke the function to ask Ether again
and again, which results in generating funds.

Unhandled Exceptions (UE). Some low-level operations in Solidity (e.g.
send), which is used to transfer Ether, do not throw an exception on failure,
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instead they report the status by returning a Boolean. If this returns value were
to be unchecked, a contract would continue its execution even if the payment
failed, which could lead to inconsistencies [22].

Transaction Order Dependency (TOD). In Ethereum, different transac-
tions are carried in a single block, which means that the state of a contract
can be updated many times in the same block. If the order of two transactions
calling the same contract changes the final outcome, adversaries can exploit this
property. For example, in the case of a smart contract that expects members to
submit the resolution to a puzzle in exchange for a bonus, an adversary member
could decrease the amount of the bonus when the transaction is submitted.

Locked Ether (LE). Ethereum smart contracts can also have a function
labelled as payable that allows the contract to receive Ether and to increase its
balance. The contract can also have a function which sends Ether. For example,
a contract might have a payable function called deposit, which receives Ether,
and a function called withdraw, which sends Ether. However, there are several
reasons why the withdraw function may become unable to send funds any longer.
One reason could be that the contract may depend on another contract which
has been destructed using the SELFDESTRUCT instruction of the EVM—i.e.
its code has been removed and its funds transferred. It is also possible that the
withdraw function requires an external contract to send Ether. However, if the
dependence contract has already been destructed, the withdraw function will not
be able to actually send the Ether anymore and lock the funds of the contract.
This case occurred in the Parity Wallet bug in November 2017, which resulted
in a loss of millions of USD worth of Ether [25].

3 Security Analysis Method

Critical Operation. To have a better understanding of the security exploitation
in the smart contract ecosystem, we studied all reports available on the National
Vulnerability Database (NVD) in order to extract and specify the most critical
EVM instructions that are commonly involved in cyber attacks. As a result,
we concluded that there are a number of EVM instructions involved in most
of the exploits that are essentially linked to value transformation operations.
For example, creating transactions (CALL), transaction termination (SELF-
DESTRUCT), code injections (CALL CODE), and (DELEGATECALL) are
some of the most repeated instructions that the public exploits databases. List-
ing 1.1 represents some of the critical instructions in the abstract level, and
Table 1 shows the details of the instructions.

Listing 1.1. A sample generated exploit in Slick (for easier reading the sample contract
is shown at the source level)

<address>.call(bytes memory) returns (bool, bytes memory)
<address>.delegatecall(bytes memory) returns (bool, bytes memory)
<address>.staticcall(bytes memory) returns (bool, bytes memory)
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Accordingly, we found that smart contract attackers often steal Ether by
exploiting these critical instructions or in some cases, they attempt to interrupt
target contracts by triggering errors in the code logic. Consequently, to imple-
ment our security analysis mechanism, we are particularly interested in analyzing
the runtime behavior of the EVM bytecode instructions associated with critical
operations that can be potentially involved in suspicious activities during the
code execution.

Table 1. The most critical instructions in the EVM bytecode

OPCODE|INSTRUCTION |DESCRIPTION

0x55 SSTORE Save word to storage

Oxe2 SSTOREBYTES | Only referenced in pyethereum

0xf1l CALL Message-call into an account

0xf2 CALLCODE Message-call into this account with alternative account’s code

0xf3 RETURN Halt execution returning output data

0xf4 DELEGATECALL|Message-call into this account with an alternative account’s
code

Oxfa STATICCALL Similar to CALL, but does not modify state

Oxff SELFDESTRUCT |Halt execution and register account for later deletion

Accordingly, we aim to introduce an efficient analysis system that identifies
not only zero-day vulnerabilities and unseen attacks but also generates reliable
exploits the identified bugs without human intervention. Hence, we combine a
hybrid approach based on “static call graph analysis”, “dynamic execution”, and
symbolic execution in order to gain accurate results with maximum coverage.

Figurel represents the abstract architecture of our introduced approach,
which is called “EthFuzz”. To deploy our system without special firmware modi-
fications or root privileges on different platforms, we implemented EthFuzz in an
isolated and portable execution environment working on top of Ubuntu kernel
16.04 64 bit inside the QEMU emulator [10], which is a fast dynamic translator.
Moreover, to evade accessing the contracts’ source code for the analysis, Eth-
Fuzz functions based on the EVM bytecode instrumentation through leveraging
“Parity Ethereum Client” [5]. This feature also enables us to perform bytecode
instrumentation for real-world smart contracts.

As illustrated in the abstract of EthFuzz, our approach works based on the
following three main stages:

1. Code Property Graphs Analysis
2. Dynamic Execution
3. Symbolic Testing
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Fig. 1. The overview architecture of EthFuzz.

3.1 Step 1: Call Graph Analysis

In order to interpret and identify potentially exploitable execution paths within
the bytecode of smart contracts, we generate a graph model of the target smart
contract in a first step. Our graph model is based on Code Property Graphs
(CPGs) [32], which is an extensible and language-agnostic representation of pro-
gram code designed for incremental and distributed code analysis. The CPGs
are constructed based on the EVM bytecode to help us to distinguish critical
instructions and the relevant execution paths. Note that a critical instruction
in a generated CPGs can be managed to find data dependency paths between
the variables. After finding these paths, we later execute them symbolically to
reproduce their corresponding exploits. In order to generate the call graph we
used “Porosity” [2], which is an open-source tool. However, the available source
code contained many bugs. For example, it stopped the call graph at STOP
and REVERT instructions and did not treat STATICALL as call instructions.
Porosity only recognized JUMPI as jump instruction and thus ignored JUMP
instructions.

Backward Slicing. In order to generate concrete exploits, we also need to gain
the correct entry point (we call it “source”) so that a potential generated exploit
can reach the critical instructions and perform an attack in the target contract
successfully. To do so, EthFuzz performs a hybrid technique that comprises two
steps, namely backward slicing” and non-exploitable path pruning (introduced
in [6]), which is shown in Algorithm 1.
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Algorithm 1: Performing backward-slicing to extract exploitable paths

Input: Sensitive Instructions
Result: Exploitable Paths
initialization;
SensitiveNodes < FIN SensitivelntructionNode(Sensitivelnstructions);
foreach sn € SensitiveNodes do
| EzxploitableEV M Paths = ANALY ZECRITICALNODE(sn);
end
returnExzploitable EV M Paths;
Function ANALYZECRITICALNODE (vertex):
Exploitable EV M Paths «— ] ;
paths = BackwardSLC(sn);
foreach path € paths do
if pathhasasource then
| Exploitable EV M Paths «— path;
else
callPaths = ANALY ZECRITICALNODE((callVertex);
FEzxploitable EV M Paths < path + callPaths;
end
end
return Exzploitable EV M Paths;
unction BackwardSLC(vetex):
IntraPaths «— [| ;
while vertez is not a source vertex is not a func. argument do
Incvertices = GETINCOMINGDDV ERTEX (vertex);
UnsanVertics = FILTERSANNV ERTICS (Incvertices);
verter < unsanVertixs;
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IntraPaths = GETPATHSTO (vertex);
return IntraPaths;
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The backward-slicing algorithm starts by investigating the nodes (presenting
EVM instructions) in the generated graph in order to draw critical instructions
(line 2). For each node showing an instruction in the graph, EthFuzz explores its
data dependency links in a backward way. ANALYZECRITICALNODE calls
BackSLC in order to succeed all data dependency paths from an instruction
node either to a source or a function argument. If the path drops at a func-
tion argument, ANALYZECRITICALNODE is called recursively over the points
denoting the call-sites of that particular function. The function BackSLC then
analyzes intra-procedural paths between sources and the critical nodes. It also
controls safety functions (e.g., SafeMath in OpenZeppelin [3]) in the identified
paths and prunes non-exploitable ones. Eventually, GETPATHSTO realizes all
investigated paths in the graph leading to sources (entry points).

Pruning Non-exploitable Paths. To reduce the overhead caused by ana-
lyzing non-exploitable execution paths, we made an assumption. Suppose a
detected path cannot reach a critical EVM instruction in the contract under
analysis. In that case, we consider the path as a non-exploitable path, which
must be excluded from further analysis because it may cause overhead and false-
positive results. Algorithm 2 represents the details of the pruning method for
non-exploitable paths.
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Algorithm 2: Pruning non-exploitable paths

Input: 3: candidate path set, exposedCN: explosed critical node
Result: a: set of paths after pruning
foreach p € Path do
if isRelevant() == True then
| a.push(P);
else

Function isExploitable(P):
if Const.solve() == 0 then

1
2
3
4
5 end
6
7
8 ‘ return False;

9 else
10 if P.Succs N exposedCN == () then
11 | return False;
12 else
13 return True;

3.2 Step 2: Dynamic Execution

In real-world smart contracts using off-the-shelf libraries for safety enhancement
is quite common. For example, Open Zeppelin SafeMath is one of the popu-
lar libraries for protecting smart contract against Integer overflow/underflow
attacks. In our approach, we also need to detect the presence of this type of
protection in execution paths in order to reduce the potential of false-positive
reports. To do so, we leverage dynamic execution to assess the exploitable target
paths with actual runtime data. Thus, in the dynamic execution module, a spe-
cial input or operation result, and a symbolic variable with a specific name (we
call it “Taint Label”) is added to the exploitable path. This symbolic variable is
initially set by 0 and will be defined TAINT-PC (PC means program counter).
We demonstrate this module in Fig. 2.

The taint label covers to succeeding branches along with the potential dan-
gerous data, engaging in computations but without modifying the results. Our
taint tracking method is described as follows:

1. Performing data flow analysis based on the propagation rules that describe
which operations can propagate taint message or lead to new taint messages
during the execution time (e.g. ADD, SUB, MUL.).

2. At some specific program points, security-critical parameters or state vari-
ables are supposed to be tainted or not on-demand, according to whether
they carry taint labels.

3. If security-critical data of a risky point was tainted, the source entry can also
be detected based on the tainted label.

3.3 Step 3: Symbolic Testing and Exploit Input Generation

After identifying exploitable paths, EthFuzz starts to generate concrete exploits
for the paths. To avoid path explosion issues, we perform this stage with the help
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Fig. 2. Dynamic execution allows us to tracks all tainted inputs in the memory during
the execution time.

of the collected actual and runtime data during the dynamic execution. Thus,
our symbolic engine is not trapped in infinitive loops and infeasible paths. The
exploit generation system operates based on a dynamic symbolic execution and
Z3 SMT solver [14]. Consequently, we model the exploitable paths as a logical
formula “F_xpq:p” so that their constraints are derived from the arguments of
the extracted source “F_gource” and critical instruction “F_cgpns” that repre-
sent which values after submitting to the target contract can lead to successful
attacks.

As a result, the final formula is created as “F_ xpath N F-Source N F_crins”
and will be sent to the Z3 SMT solver. The solver is responsible for executing
the exploitable path symbolically and collects a set of path constraints to deliver
the values (we call the values “payloads”). In the Z3 engine, we model the argu-
ments of the call sites as “fixed-size” and “bit-vector” expressions. Moreover, we
define the “variable-length” elements, such as the arguments by using the array
expressions. The outcome of this modelling is actual practical exploits to trigger
vulnerabilities inside target EVM bytecode.

Note that EthFuzz generates exploits on a single path first, before seeking
more extensive path sequences. Due to the relatively small size of EVM smart
contracts, EthFuzz explores path sequences up to length 10, consisting of at
most 8 state-changing paths and one last exploitable path. Listings 1.2 and 1.3
present a vulnerable contract and corresponding exploit generated by EthFuzz.
As we stated before, we have implemented our symbolic execution engine based
on the Z3 SMT solver.

4 Evaluation Result

We evaluated EthFuzz with 1,000,000 real-world smart contracts available
on the Ethereum main blockchain. We collected these benchmarks from the
beginning of October 2019 until the end of December 2019 with the help of
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Listing 1.2. A generated exploit in EthFuzz in the source code level (for the ease of
readers)

contract Overflow {

uint private Balance=0;

function add(uint value) returns (bool){
Balance += value; // possible overflow vulnerability

}

function secure_add(uint value) returns (bool){
require(value + Balance >= Balance);
Balance += value;

3

Listing 1.3. An example of a EthFuzz’s generated exploit for an overflow vulnerability

Location: from 22:27 to 22:46
2 numberTokens * COST_PER_TOKEN

Transaction Sequence:

Tx #1:

Origin: Oxdeadbfefdeadbeefdeadbeefdeadbfefdeadbfee [ ATTACKER ]
Function: buy(uint256) [ d969094a ]

Data: 0xd969094a80100000000000000000000000000000000000000
00000000000000000000000

Value: 0x0

Etherscan [1]. The details of our collected corpus is shown in Table 2. Figures 3
and 4 also present the average Lines of Code (LoC) and number of functions,
contracts and libraries in each categories respectively.

Table 2. Various contract categories in our corpus.

Category SLOC | LLOC | CLOC
High ETH Moving | 450 300 100
High Occurrence |195 150 50
High Interaction | 390 225 40
High Origin 500 350 100
High Value 450 275 45

SLOC indicates Source lines of Code, LLOC represents Logical lines of Code,
and CLOC represents Comments Line of Code. Our pre-analysis indicates that
the average size of the EVM smart contracts on the blockchain is smaller than
400 LLOC. Furthermore, we represented the number of functions, contracts and
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libraries in the corpus, based one § categories including “Higher Moving”, “High
Occurrence”, “High Interaction”, “High Origin”, and “High Value”.
Interestingly, the top 100 contracts (i.e. 0.1% of the corpus) hold 98.86% of
the total Ether value. Hence, this category of the contracts would be an attractive
target for hackers (we label them “High Value Targets”). Likewise, we define
another category as “High Origin” that comprises the top 100 contracts that
impacted approximately 800k other contracts in terms of bytecode similarity.

SLOC LLOC CLOC
500 350 100
450 90
400 300 80
350 250 70
300 60
250 200 @ 50
200 (1 150 I 40 ”W M
Q B High ETH )Iovingm [ High Occurrence H f High Interaction E] [l High Origin a 7] ‘
Fig. 3. Average number of Lines of Code (LoC)
Number of Functions Number of Contracts Number of Libraries

W k= O N @

=8 L

’ B B High ETH l\lmviu;;[]] 0 High OccuncnccE H High Interaction @ [ High Origln@ 4 ‘

Fig. 4. Presenting the details of our benchmark suite based on the number of functions
and libraries in the contracts

Moreover, we presented the top 10 most duplicated contracts in Table 3,
and surprisingly one of the contracts, which is called “User Wallet”, has been
deployed over 651K times, which reveals the impact that the top 10 contracts
have on the whole EVM smart contract blockchain network. Furthermore, only 2
contracts out of these top 710 most duplicated contracts actually have available
and verified source code. This is highly surprising, since it raises the question of
how a close-sourced contract can be replicated so many times? It seems these 2
contracts have been extensively used by a few certain companies active in the
EVM blockchain.
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Table 3. Top 10 most duplicated contracts in the corpus.

Address Source code available | Frequency
2bf69ddcf80f6b24f2e6a8bf1454f662 v 651930
fa00c5b8d83dbf920aec56d52c¢1df224 | X 158186
55f0329f9e5dbac461e933c66e0e29b5 | X 115132
dfcc91bedc37abae7e8e9c82d57fbf6d | v 99548
702edb219bba3238d55b2b38¢759798b | X 90489

X

X

X

X

X

923d7eaf6e90eb272493d3cabch5859d5 78018
7b63bae3ec81aa70d809a091240dccaa 42868
62dbffb5cce3d14500568320ab6dcd75 40456
1ae99eb3c89152¢83cf788a5e7df4532 37534
125fb7c1ad488e¢0d0b9b034cfd12a977 28255

Experimental Setup. We presumed that the storage of each smart contract
is initially empty, and that we can therefore handle duplicated contracts at the
same time. We eventually made the experiment on an 8 Core Xeon W 3.2 GHz
machine with 82 GB RAM running Ubuntu 16.04 LTS. In order to avoid any
potential deadlock in analyzing a bytecode excessively, we dedicated 5 min as
the maximum analysis time. We yielded this time constrain after multiple con-
figurations of EthFuzz on 1000 arbitrary contracts to reach the maximum path
coverage.

4.1 Analysis Results

Performing our in-depth security analysis on the collected corpus has taken
approximately 60 days (from the beginning of January 2020 until the end of
February 2020). Consequently, EthFuzz could successfully identify and gener-
ate 26,015 exploits within one million collected contracts. On the other hand,
EthFuzz could not find even a single exploitable execution path inside 681,005
contracts. In other words, we could not detect any critical instructions (e.g.,
CALL, SSTORE and DELEGATECALL) in the bytecode of these contracts, so
we would label them as “secure contracts”.

Nevertheless, to check the accuracy of the results, we randomly picked 1,000
of these secure contracts, and we manually controlled their opcode with the aid
of the Etherscan dissembler. This tool allowed us to convert the bytecode to
the EVM assembly code. Thus, we found only 17 contracts (i.e. 1.7%) actually
contain CALL instructions, which are reported secure by EthFuzz mistakenly.
This trivial false-negative issue occurred due to the time constraint we had set for
the analysis (i.e., 5 min). Hence, by increasing the analysis time to 10 minutes,
the issue could be resolved. We consider a 1.7% false-negative rate for EthFuzz’s
precision for the strict time constraints. Table4 presents the vulnerable smart
contract with the most popularity on the blockchain network.
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Table 4. Results of some vulnerable but popular smart contracts in our analysis.

Contract name Vulnerability Address

BeautyChain(BEC) Integer Overflow 0xC5d105E63711398aF9bbff092d4B6769C82F793D
BlackJack Bad Randomness 0xA65D59708838581520511d98fB8b5d1F76A96cad
CityMayor Reentrancy 0x4bdDelE9fbaeF2579dD63E2AbbF0BE445ab93F 10
CNYToken Integer Overflow 0x041b3eb05560ba2670def3ccheec2aeef8e5d14b
CNYTokenPlus Integer Overflow 0xfbb7b2295ab9f987a9f7bd5ba6cIde8ee762deb8
CryptoRoulette Unitialized Storage Pointers 0x8685631276cFCf17a973d92f6 DC11645E5158c0c
DAO Reentrancy 0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413
EtherLotto Bad Randomness 0xA11E4ed59dC94e69612f3111942626Ed513c¢B172
EtherPot Unchecked External Call 0x539f2912831125c9B86451420Bc0D37b219587f9
Ethraffle v4b Bad Randomness 0xcC88937F325d1C6B9I7da0AFDbb4cA542EFA 70870
EthStick Bad Randomness 0xbA6284cA128d72B25f1353FadD06Aal145D9095Af
FirePonzi Typographical error 0x062524205cA7eCf27F4A851eDeC93C7aD72f427h
G-GAME Unitialized Storage Pointers 0x3CAF97B4D97276d75185aaF 1IDCI3A2A8755AFe27
GGToken Integer Overflow 0xf20b76ed9d546 7fdcdc1444455e303257d2827c7
GoodFellas Function Default Visibility 0x5E84C1A6E8b7c¢D42041004De5¢D911d537C5C007
1CO Transaction Order Dependance | 0xd80cc3550Dal18313aF09fbd35571084913Cd5246
KingofTheEtherThrone | Unchecked External Call 0xb336a86e2feble87a328fcb7dd4d04de3df254d0
LastIsMe Transaction Order Dependance | 0x5D9B8FA00C16BCafaE47Deed872E919C8F6535BF
Lottery Bad Randomness 0x80ddae5251047d6CeB29765{38 FED1C0013004b7
LuckyDoubler Bad Randomness 0xF767fCA8e65d03fE16D4e38810f5E5376¢3372A8
MESH Integer Overflow 0x3AC6cb00f5a44712022a51fbacedCT7497F56eE31
MTC Integer Overflow 0x8febf7551eeabce499f96537ae0e2075c5a7301a
OpenAddressLottery Unitialized Storage Pointers 0x741F1923974464eFd0Aa70e77800BA5d9ed 18902
Rubixi Function Default Visibility 0xe82719202e5965Cf5D9IB6673B7503a3b92DE20be
SMART Integer Overflow 0x60be37dach94748a12208a7{f298f6112365e31f

True and False Positives. In our evaluation, we classified and represented true
and false positive results based on the attack type. Hence, we believe this helps
developers and security experts to take these measurements into perspective in
order to design secure test cases before releasing their contracts on the blockchain
network. Figure 5 gives the precision of true and false positives in our analysis.

According to descriptions, classical vulnerabilities, e.g., Integer Quverflow
seem to be easier to approach by EVM programmers, particularly by using secure
alternative Solidity libraries (e.g. SafeMath). However, the more complex oper-
ations exist in a code, the higher the chance of receiving intricate security issues
in the contract. For example, understanding of some vulnerabilities such as Re-
Entrancy might require a better comprehension of the Ethereum architecture,
which is naturally less likely among junior developers. Consequently, this issue
is one of the most common safety flaws in commercial smart contracts.

5 Exploit Generation Precision

In Table5, we present the breakdown of exploit generation results. While we
identified the majority of exploitable paths comprising CALL and SELFDE-
STRUCT critical instructions, only a small number of our generated exploits
are based on CALLCODE and DELEGATECALL opcodes.
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Exploit Verification. Considering that every contract account has its own stor-
age that can alter the execution, we checked each exploit upon each concerned
account separately. Accordingly, we built a new test Ethereum network includ-
ing three contracts: a contract under analysis, a normal contract to represent an
attacker, and a third contract to play the rule of a proxy for running specific
exploits associated with CALLCODE and DELEGATECALL instructions.
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Fig. 5. Distribution of true positives and false positives in each vulnerability class.

Table 5. Showing the break down of the critical paths in the generated exploits (left)
and the precision of the generated exploits (right).

#Path type #Contracts #Exploits | Precision
Exploitable paths 207,412 TP Exploits | 25,703 99%
Non-exploitable paths | 701,924 FP. Exploits | 312 1%
Generated exploits 26,015 Total 26,015

Note CALL is involved in a value transfer, SELFDESTRUCT is involved in
contract termination. Moreover, DELEGATECALL and CALLCODE can allow
for code injection

We also provided 100 Ether for the attacker account and 10 Ether for each
target contract account. Then, we ran the test network in our simulation on top of
the Ethereum Parity client [8], which enabled us to submit the generated exploit
transactions to the test network. So, when an exploit succeeded, we submitted
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its transaction to our test network. In order to avoid transaction reordering, we
paused our testing for the miner to process each transaction before yielding the
next one.

6 Comparison with Related Work

Security analysis for the smart contract ecosystem is continuously gaining atten-
tion of cybersecurity researchers [12,15,18]. In this respect, Oyente [4] is one of
the pioneers in performing vulnerability detection that leverages symbolic exe-
cution testing for identifying bugs in the Ethereum smart contracts. Similarly,
ZEUS [17] works based on a formal verification method to build and verify the
correctness of security policies in the contracts.

S-gram [21] and Regaurd [20] both take smart contracts in solidity source
code and report potential issues based on static predefined patterns. Securify
(vl and v2) [30] is another static analyzer that takes both source code and the
EVM bytecode for performing analysis. Securify v2.0 has also provided Datalog
interface to specify new vulnerabilities for the end users. However, both versions
are unable to generate exploits.

Although our work was initially inspired by the tools mentioned above, our
approach has multiple advantages over previous tools. In this regard, we con-
ducted a comparison measure based on detection efficiency for real-world security
analysis, the outcomes of the measurement are shown in Tables6 and 7.

Table 6. A summary of 100k smart contract analyzed with different tools presented
in related work. DSE means “dynamic symbolic execution”, the full explanation of
various attacks can be found in [26].

Tool Attack classes | Analysis technique Source/Bytecode
EthFuzz 20 Hybrid Analysis + DSE | Source + Bytecode
Remix-IDE |7 Static Analysis Source

SmartCheck | 14 Static Analysis Source

Slither 15 Static Analysis Source

Oyente 5 Symbolic Execution Source +Bytecode
Securify 8 Symbolic Execution Source +Bytecode
Mythril 10 Symbolic Execution Source +Bytecode

Attack Specification. Because the previous tools detect security problems
based on static collection patterns, they are often ineffective in identifying new
vulnerabilities and zero-day attacks. EthFuzz, on the other hand, not only sup-
ports a wide range of attack patterns but also enables users to easily specify
different patterns in the Datalog format.
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AEG and Path Explosion. The previous tools do not support automatic
exploit generation (AEG). This feature allows developers and contract owners
to investigate the safety level of target contracts faster, and therefore, get better
prepared to deal with future attacks (e.g., withdrawing their crypto assets). Eth-
Fuzz also identifies and prunes non-exploitable paths in the call graphs, thereby
reducing analysis overhead and false-positive reports as well as minimizing the
risk of a path/state explosion problem occuring during symbolic execution [9].

Table 7. Security issues checked by available tools
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Compared to AEGs. Since EthFuzz is also an AEG tool for smart contracts,
we selected MATAN [24] and Teether [18] because they are the only available
AEGs for smart contracts. Hence, we chose these tools as our baseline and com-
pared the result of EthFuzz with them.

We applied MATAN and Teether to 100,000 of the most popular contracts
in our corpus with a timeout of 5min for each contract. However, Teether and
MATAN could not analyze 11071 and 632 contracts, respectively. This is because
of program crashes or timeout. As Table1 shows, they generated 803 and 497
valid smart contract exploits, respectively. EthFuzz covers 1198 more exploits
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than Teether and MATAN in total. It seems that Teether and MAIAN cannot
generate valid exploits for contracts.

Moreover, MATAN is not designed for Code Injection attack; therefore, it
missed that type of exploits. Furthermore, in MATAN’s attack model, attackers
are not allowed to submit funds into the contracts when trying to find Balance
Increment, which causes a loss of coverage. Teether also generates 81 false pos-
itives. When Teether tries to solve hash checks, it generates unmatched hash
input and output, making the exploits invalid for 81 contracts. Second, different
from our definition of Balance In-Crement exploitation, Teether reports exploits
once a currency transfer is triggered. However, another 81 false-positive con-
tracts set explicit checks to ensure the in-going fund is larger than the out-going
funds. Although the attackers can trigger an outgoing currency transfer, their
cost is more than the profit, which is not successful exploitation. Additionally,
Teether crashes many times when proceeding contracts, which damage the over-
all performance as well. Even though EthFuzz produced only 29 false-positives
cases in 100,000 contracts, in future work, we plan to extend the attack model to
address the false positives. As for time consumption, EthFuzz generates about 25
test cases per second. For generated exploits in this experiment, EthFuzz spends
52 test cases on average, taking several seconds. However, Teether and MATAN
take several minutes to identify an exploit on average.

7 Challenges and Future Work

Since smart contract code is expected to be immutable after deployment and con-
tract owners are anonymous, responsible disclosure is usually infeasible. Hence,
dealing with vulnerable contracts seems to be tricky, and there appears to be no
way of addressing the errors detected in already deployed contracts [26]. There-
fore, the contract owners can only deprecate the vulnerable contract, move all
funds out of the contract, use a new contract, and move the funds to the new
contract, which is cumbersome since other contracts might reference the address
of the vulnerable contract.

However, it seems that designing a runtime shield module in EthFuzz can
help not protect in protecting contracts against various runtime attacks and vul-
nerabilities but also providing a layer of protection for the vulnerable contracts
until the contract owners can preserve the funds and the contract developers
find a way to fix the issues in the future forks.

8 Conclusion

In this paper, we introduced EthFuzz as a practical and portable security analysis
and automatic exploit generation framework for the smart contracts ecosystem.
Our approach takes into consideration the complexities of analyzing real-world
commercial smart contracts and effectively addresses them. The novelty of the
paper is to use an efficient analysis system that identifies zero-day vulnerabili-
ties, unseen attacks, and generates reliable exploits the identified bugs without
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human intervention by combining a hybrid approach based on “static call graph
analysis”, “dynamic execution”, and symbolic execution in order to gain accurate
results with maximum coverage.

Appendix A

Re-Entrancy Attack

Ethereum Virtual Machine (EVM) establishes a machine language called EVM
bytecode, which includes approximately 150 opcodes [13]. Unlike memory, stor-
age perseveres beyond the execution history of a contract. Indeed it is stored as
a part of the global blockchain state. The EVM also states specific instructions
to access transactions’ fields, modify the contract’s private storage, examine the
current blockchain state, and even create additional transactions. It should be
highlighted that the original Ethereum paper [28] differentiates between trans-
actions, which are signed by regular accounts, and messages, which are not. Note
that the EVM only implements integer arithmetic and cannot handle floating-
point values.

In addition to the persistent storage and 256-bit word stack, the EVM also
executes a byte-addressable memory, which serves as an input and output buffer
to different instructions. For instance, the SHA S8 instruction, which calculates a
Keccak-256 hash over variable-length data, reads its input from memory, where
two stack arguments present both the memory location and length of the input.
The memory content is not endured between contract executions, and it is invari-
ably set to “zero” at the opening of each execution.
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