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Abstract. The scientific method emphasizes that repeatable experi-
mentation is critical for several reasons; to facilitate comparative anal-
ysis, to recreate experiments, to re-validate reported results, to critique
and propose improvements, and to augment the work. In the field of
cybersecurity moving target defense, where assets are shuffled to thwart
attackers, it is critical to know what strategies work best, the success fac-
tors, and how these strategies may impact system performance. While
some researchers make their algorithms, models, and tools available as
open source, it is difficult and, in some cases, impossible to recreate stud-
ies due to the lack of the original operating environment or no support
for software components used within that environment.

In this paper, we present the repeatable experimentation system
(RES), which aids in creating and recreating networked virtual envi-
ronments to conduct comparative network studies. Experiments are com-
posed of virtual machines, containers, automation scripts, and other arti-
facts that are needed to recreate and re-run a study. This includes data
collection and analysis. We provide a case study where we incorporate
two publicly available moving target defense implementations that use
different underlying software components. We present how RES can be
used for fully automated experimentation along with an analysis on the
results obtained from parallel and sequential executions. We have pack-
aged the case study into a RES file that can be used by other researchers
to repeat, modify, and improve on these and other works.

Keywords: Cybersecurity · Repeatable experimentation · Dynamic
defense · Moving target defense

1 Introduction

Moving target defense (MTD) is a technique that holds much promise; it reduces
the attack surface by making changes to system configurations when certain con-
ditions are met. Network MTD approaches may change IP addresses at certain
time intervals or based on observed throughput [6]. At the operating system
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level, a prominent technique in wide use is address space layout randomiza-
tion (ASLR), where the mapping of memory for processes is meant to be ever-
changing and unpredictable [11]. Application-level MTD algorithms may, for
example, attempt to randomize the code execution paths of a binary [23].

Attackers, especially those that are experienced or members of an organiza-
tions, follow certain tactics, techniques, and procedures (TTPs) depending on
their objectives [22]. MITRE and others [27] have documented some of these
attack scenarios through analyses of breaches and other incidents. TTPs consist
of steps that include the gathering of information, such as the network devices
and addresses on an internal network. An attacker that gains access will be more
prepared, and likely need to reveal less (for example, eliminating the need for a
noisy port scan) based on what they know beforehand. Using the IP Shuffling
technique [3], a defender can attempt to eliminate this overmatch by dynamically
changing the addresses of network nodes.

There are many considerations that must be addressed before claiming secu-
rity measures as successful. Rigorous investigations are required to study the
impact of a security measure in concrete scenarios and their effectiveness against
the adversary’s intentions. Additionally, a single solution will not likely work in
all circumstances. For example, in a network where situational awareness is occa-
sionally transmitted using short messages in a small network, high-frequency
shuffling may not be an issue. This solution may not be suitable in scenarios
where there is high-latency and high throughput. In short, a characterization
of the impact of the algorithm in a relevant scenario must be performed. These
results must be compared and analyzed against other relevant studies in relevant
domains.

In this paper, we present the repeatable experimentation system (RES)1 with
the objective of enabling widely-accessible and shareable MTD experimentation.
In summary, our contributions are the following.

– An open source and extensible tool, RES, along with demonstrations showing
how it can be used to package experiments to facilitate repeatability.

– A case study in which we incorporate a MTD implementation2 that uses
software-defined networking and a randomized IP shuffling technique (similar
to those reported in [5]).

– An analysis that shows that using RES and its parallel execution does not
impact execution results and a characterization of the MTD implementation
when used against port scans.

Section 2 outlines the literature relevant to this paper. We explain our
Repeatable Experimentation System (RES) in Sect. 3. Section 4 provides the
design of the case study we conducted in this paper. We provide experimental
analyses with MTD characterization in Section 5. Section 6 concludes the paper
with a brief discussion on future directions of the work.

1 Available at: https://github.com/ARL-UTEP-OC/res.
2 Available at: https://github.com/ARL-UTEP-OC/res-ryu-mtd.

https://github.com/ARL-UTEP-OC/res
https://github.com/ARL-UTEP-OC/res-ryu-mtd
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2 Related Work

Many approaches have been proposed to create variability for achieving moving
target defense. Some of these approaches work on reducing attack surfaces [15,21,
33], some focus on randomizing the network components [16,24], others propose
randomizing types of services [28], or switching operating systems [4]. Among
these, the software-defined network (SDN) has gained attention in randomizing
network components by programmatically changing network configurations [2,
20,32].

Given the rise in MTD research, there are usually multiple different MTDs
to choose from under any given threat scenario. However, there is no standard
metric for evaluating MTDs, which makes it difficult to estimate the cost or
assess the effectiveness of MTDs when deciding the best or most suitable MTD.
Several projects used attack surface [7,21] and attack graphs [13] to evaluate
MTDs. Others used security [18], performance [8], and various network and
system properties [14,29] to assess MTDs.

When it comes to measuring the effectiveness or evaluating the performance
of an MTD, most MTDs present a customized approach. There are a few ongo-
ing efforts towards building theoretical assessment frameworks for MTDs [6,31].
However, much of these efforts are geared towards specific types of attacks or
MTDs. There are no standard mechanisms for analyzing different MTDs and
evaluating and comparing their effectiveness, to the best of our knowledge.

3 Repeatable Experimentation System

The development of RES is based on several interactions with cybersecurity pro-
fessionals and previous experience in developing cybersecurity-inclusive moving
target defense network scenarios. Even when moving target defense algorithms
are made available, it still takes a significant amount of work to replicate the
experiments described in scientific papers — to allow building upon the work.
This is primarily due to software dependencies or software being inoperable;
where newer versions of packages are incompatible with other software, including
the operating system. Other reasons include gaps in the intricate details related
to set up and configuration that are omitted, possibly due to paper length con-
straints. We developed a novel software tool – RES – to mitigate these issues
and to facilitate the scientific experimentation process.

3.1 Capabilities

RES is available as open source software to encourage its wide use and to allow
analysts to share their experiments without having to purchase software licenses.
It is extensible and it leverages several other tools including Oracle VirtualBox
[30], Apache Guacamole [10], and, optionally, HashiCorp Vagrant [12]. Python
3 is the primary implementation language and we use the PyQt5 module for the
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graphical frontend. RES runs on Linux, Mac, and Windows with only minimal
graphical differences. The underlying base code is the same.

Expansion and flexibility are critical for repeatable MTD experiments, espe-
cially due to the ever-changing and ever-improving underlying virtualization
technologies. To support expansion and flexibility of existing virtual environ-
ments, we used a plugin design to allow analysts to add, swap, and improve
interfaces to underlying components such as the hypervisor, remote desktop
provider, and packaging system.

To ease the process of replicating experiments – including those developed
by other analysts – RES allows analysts to import a single all-inclusive file that
contains all the required artifacts necessary for an experiment. This includes
the virtual machines (VMs), which are automatically loaded into the hyper-
visor, as well as any other instructional materials associated with the exper-
iment. After import, the number of steps required to repeat the experiment
are minimal. Exporting of experiments is trivial. Users are able to specify vir-
tual machines, materials, and also their experiment configurations (number of
experiments, scripts, remote display information) and then create an all-inclusive
package.

Fig. 1. RES architecture

Experiments may be cloned to enable the parallel or sequential execution of
multiple runs. An analyst may include specific commands that run on start. As
an example, a user may have an experiment that requires Mininet [17] to run
with certain arguments; pointing to the scenario that will execute. The scenario
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needs to run for a certain length of time, then quit and copy the resulting data
to a network attached storage device. All of these commands can be added to
the experiment during configuration. All of the hypervisor invocations are multi-
threaded, including calls to start, stop, pause, snapshot, and delete clones; this
is done to improve performance.

Lastly, we focused on giving analysts the ability to interact with RES using
different modes of operation. The system can be invoked through a graphical
interface, but also through Python scripting that communicates directly with
the backend as shown in Fig. 1.

3.2 Design

The system, shown in Fig. 1, consists of a segregated frontend and backend. The
frontend is a way to abstract and facilitate access to backend capabilities. Users
of the graphical application can run an experiment using the point-and-click
interface; the developer of an experiment can create a script that automates
all of the actions required to execute and collect data; an interactive shell pro-
vides a user with an interactive terminal-session to conduct the same actions
available through the graphical interface. Communication between the frontend
and backend occurs through either a Python application programming interface,
essentially function calls with results provided through return values, or by exe-
cuting a companion application that makes calls to the engine and writes results
to standard output. Examples are provided with the application; including unit
tests and a fully working graphical user interface that implements the system
capabilities.

The graphical interface (shown in Fig. 2) contains a mechanism to create and
modify experiment configurations (each is stored as a XML file). When started,
RES displays the Configuration tab (shown in the left window) where a user may
select, import, and export experiments. They can also specify a server IP address
(used for remote display), group name, number of clones (or instantiations of the
experiment), among several others. It is also possible to add virtual machines and
any additional files that should belong to the experiment from this view. Select-
ing a virtual machine (shown in the bottom window) will display additional con-
figuration options, including whether remote display should be enabled for the
machine, commands that should be run on the machine when it first starts, and
the interfaces on the machine. Specifying network interface names that match
across other virtual machines will connect the machines together (similar to them
being on a shared network switch). In Fig. 2, the Ubuntu18-core-cdes machine
has 8 different interfaces; the first is intnet1. The ATTACKER 10.0.0.2 machine
has only a single interface called intnet1. These two machines, when cloned, will
share a common interface and can therefore communicate directly. This function-
ality is preserved across clones so that each set will only be able to communicate
amongst themselves. This allows for building larger, complex networks when
combined with network emulation software such as the Common Open Research
Emulator [1] or Mininet. In this case, machine’s traffic can be forced to traverse
through the emulated network, which can be e.g., an SDN, before reaching a
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Fig. 2. RES graphical interface

recipient. The second GUI tab (shown in the top window) invokes various func-
tions of the Experiment Manager. It is worth noting that these XML files can
be manually created and modified; the GUI is merely a convenient way to do so.
The backend modules are included in Fig. 1.

The Configuration module reads and parses the XML experiment files and
then makes data structures available to the Managers. The Configuration module
also reads and writes information related to specific plugins (e.g., the concrete
VirtualBox implementation), paths to external programs (such as the path to
VBoxManage), and values representative of specific versions of packages associ-
ated with the system.

The Managers module uses a plugin design to enable flexible integration
with external components. The VMManage interface module consists of all of
the tasks associated with virtualization components at the virtual machine level;
including starting, pausing, stopping, snapshot, and restoring of individual vir-
tual machines. The software currently implements these functions with Virtual-
Box plugins, but it can easily be extended to support others, such as VMWare,
ESX, XenServer, and Proxmox; as these all have mechanisms for controlling vir-
tual machines as well as several interfaces and concrete implementation classes
to handle remote desktop functions. We also chose to implement VMManage
at this granularity to enable concurrent execution; e.g., to allow several virtual
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machines to snapshot, clone, start, stop, etc. simultaneously; many of which are
not concurrent through the standard VirtualBox GUI.

The Package interface module primarily handles importing and exporting.
Using the information associated with the experiment, provided by the Exper-
iment Configuration, it calls the VMManage module to trigger the backend
hypervisor to execute its specific import/export functions. In the case of Vir-
tualBox, open virtual appliances (OVAs) are created for virtual machines. In
addition to this, any material files that are part of the experiment are included
in the exported file. The result is a compressed file with the RES file extension.
This module is also extensible; we provide the behavior described above as the
fundamental and basic, however, developers are able to extend this module and
provide additional functionality, e.g., to import and export remotely, implement
authentication, secure with encryption, and others.

Behaviors related to experiments, such as cloning, starting, and stopping
occur through the Experiment interface module. As with the other modules,
experiment information is read from the Configuration and then batch oper-
ations are executed through this component. Specifically with our VirtualBox
implementation, we use the guest control feature; which requires that the vir-
tual machines are running the same version of guest additions as the host. We
provided basic functionality, but as with the Package interface, developers may
choose to extend functionality to include additional scripting, such as integration
with other provisioning software including Vagrant and Ansible.

During the execution and setup of experiments, it’s important to allow users
to see the running systems. We developed the Connection interface module for
this reason. Currently, it uses Apache Guacamole to broker remote desktop
connections that are accessible using HTML5 with any modern web browser.
User creation is also automated, using the guacapy REST API Python module.3

Developers may write extensions to connect to virtual machines instead through
VNC, add capabilities such as key-based authentication, or even swap out the
guacamole module entirely with another remote desktop broker.

4 Case Study Design

To demonstrate and test the utility of RES, we developed a case study with the
following process.

1. Recreate the execution environment for a network MTD algorithm and modify
for use in a set of experiments (Sects. 4.1 and 4.2).

2. Construct and execute experiments several times in parallel using RES. After-
wards, the experiments and results are packaged into self-contained, archives
that can be redistributed (Sects. 4.2 and 4.3).

3. Analyze the differences in the results when using RES versus manual exe-
cution. Characterize the scanning success rate when using different MTD
shuffling time intervals (Sect. 5).

3 Available at https://github.com/pschmitt/guacapy.

https://github.com/pschmitt/guacapy
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4.1 MTD Algorithm Implementation

We started by looking for free and open-source implementations of network
MTD algorithms. We selected a Ryu controller-based SDN implementation [9]
because it shared similarities with more sophisticated algorithms such as the
Flexible Random Virtual IP Multiplexing [26]. The Ryu controller is written in
the Python language, it provides access to its backend processes using an API,
and it runs on Linux. Ryu is prominently used today and supports newer versions
of the OpenFlow protocol. Rohitaksha and Rajendra [25] provide an in-depth
study of the advantages and disadvantages of Ryu and other controllers such as
Pox.

The Ryu implementation uses Python dictionaries to keep track of current
mappings between real and virtual IPs and uses rules and flow tables to restrict
communication to and from virtual IPs. The Ryu implementation was developed
as a homework assignment for a course that teaches software-defined networking
concepts. We made several modifications to the original code and introduced
features that make it usable in our experiments. We refer to this modified imple-
mentation as mtd-ryu. Figure 3 shows the high-level processes that compose
mtd-ryu.

Mtd-ryu inherits it’s dependencies from the original implementation. It runs
on an Ubuntu 16 VM, and it works with the latest version of Mininet (2.3.0d4).
It requires Python2 (which is deprecated) and Ryu-manager version 4.3.2. The
controller uses OpenFlow 1.3 to communicate with the switches, which run Open
vSwitch version 2.5.5. Address resolutions are stored as flow entries on each
switch and packet header field values are modified to use virtual IPs instead of
real IPs.

Many MTD scenarios in the literature shuffle IP mappings in such a way
that all established connections, even seemingly legitimate ones, are dropped
indiscriminately. This seems impractical for a realistic scenario; important ser-
vices would be interrupted and the stateful connections would constantly be
restoring address resolutions and re-establishing connections after every shuffle.
Non-stateful connections would at a minimum have to constantly resolve node
addresses. These could cause significant delays in communications.

Rather than having flow tables simply cleared every specified number of
seconds and dropping all connections, we used the concept of authorized and
unauthorized entities. Connections that originate and are destined for authorized
entities (based on IP Addresses) are considered legitimate connections. These are
ignored during shuffling which eliminates disruptions. Connections that are not
considered legitimate are dropped and must be re-established after every shuffle.
In the code, we implement this behavior by having two separate flow tables
on each switch; managed by the controller. The authorized flow tables contains
legitimate connections and they are never cleared. Both tables use only virtual IP
addresses. This does not affect the legitimate connections because ARP entries
are persistent and domain name resolution only happens once; when the nodes
communicate for the first time. Lastly, we added a throughput monitor that can
be used in future work to base shuffles on anomalous traffic load.
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Fig. 3. Mtd-ryu high-level process

4.2 Scenario

The following is the scenario that we constructed for the case study. The network
consists of two switches, four host nodes and one controller (as shown in Fig. 4.)

Each switch is running Open vSwitch and gets flow updates through the
controller. The four nodes are segregated into two subnets (h1 and h2; h3 and
h4). Nodes can communicate across the subnetworks through the switch nodes.
Subnet s1 and s2 are using a moving target defense algorithm for all traffic; nodes
that reside within the s1 subnetwork are considered trusted entities and all others
are untrusted. The moving target defense algorithm is configured to change all
node virtual IP addresses shuffle at some given interval (ranging from 20 s to
230 s). The algorithm uses a pre-defined set of virtual IP addresses, all within
a /24 subnetwork, (resulting in 255 possible IP addresses) for assignment. It is
possible that a node receives a previously used virtual IP multiple times during
execution. Any traffic across trusted entities is never interrupted by shuffles.

At the start of the scenario, h1 runs a script that opens 20 disperse ports
from 22–9999 using the netcat software. Nodes h3 and h2 both run an Nmap
scan against node h1, particularly looking for any open ports in the range 0–
9999. Nodes use Nmap’s template level 4, which ranges from 0–5, where 0 is
the slowest and 5 is the fastest. This template is suggested for use on ethernet-
connected networks [19]. All nodes write observed traffic to a network packet
capture file (pcap) and scanning nodes write nmap results to text files; h2 and
h3 write unauth scan output and auth scan output respectively.
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Fig. 4. Experiment scenario

To run mtd-ryu, we used Mininet [17], a virtual networking Linux-based
emulator that uses process isolation to enable analysts to create multi-node
scenarios on a single system. Mininet scales very well (demonstrating more than
4096 individual nodes on a single Linux Kernel) and its main purpose is to create
OpenFlow applications [17]. While not perfect (e.g., in practice, it can only be
used on systems running Linux) it is a useful tool for testing and experimentation
of SDNs, such as those used for MTD. Mininet also allows analysts to specify
technologies to use for switches and controllers. We used Miniedit, Mininet’s
graphical user interface, to construct the scenario as shown in Fig. 4.

We set up the entire scenario in a Virtual Machine and then automated the
execution and data transfer with RES.

4.3 Experiment Construction with RES

We used the RES graphical interface to create a new experiment and added the
Ubuntu VM along and a README file that documents the steps required to run
the experiment manually. We configured the VM to allow remote connections
and specified the localhost as the address. We configured the system to create
10 clones and to use the link-cloned option for speed.

In order to fully automate the experiment, we iteratively added 6 commands
to be executed 60 s after the machines are instantiated. This process required
some fine-tuning through trial during which time we used VBoxManage. The
commands are as follows.

1. Start the controller
2. Sleep for 10 s to allow time for the controller to start and the virtual IPs to

be generated and mapped
3. Start the topology; including all scripts for packet capture, opening ports,

and nmap scans
4. Sleep for 3600 s to allow the scans to complete
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5. Stop the scenario by killing all associated processes (python2 in this case)
6. Copy all data collected from the scenario to a unique path on the host.

A special construct, {{RES CloneNumber}}, is used to specify a unique num-
ber associated with experiment instances. This is useful especially when specify-
ing the directory where data should be copied from the instances to the host (step
6 above). For example specifying ryu-out30s {{RES CloneNumber}} denotes the
directory ryu-out30s 1 for the first instance.

At first, a Dell 7700 Laptop with 8 processors running Windows 10 was used
as our testing platform, but this was not well-suited for running the 10 simultane-
ous experiments. The CPU utilization consistently stayed at 100% throughout
the executions and after a short while, the system was unusable. To alleviate
this issue, we created a RES file using the export feature and then imported and
re-ran the experiments on a Rack Mounted Desktop Server with two 1.80 GHz
Eight Core Intel Xeon Silver 4108 Processors - 11 MB Cache processors and
128 GB RAM. This system was running Linux. Performance is shown later in
Fig. 5 and Fig. 6. VirtualBox and RES were installed on the remote system; no
modifications to the experiment were needed. Using the remote display features
allowed us to use a Remote Desktop Client to occasionally and remotely connect
to the virtual machines.

5 Ryu Experiment Analysis

5.1 Impact of RES Parallel Execution

We first wanted to test if executing several instances of virtual machines, running
the individual scenarios, had any impact on the results. We proceeded with
two paths; first we executed the network scans without shuffling manually and
sequentially 10 times. Afterwards, we used RES to run a 10-set simultaneous
execution. We recorded the times required to complete the scans of all 20 open
ports. When using no shuffling, in every case, all 20 ports were identified. Table 1
shows the results.

Overall, the timings observed between the manual and automated scans are
relatively close, considering the inherent variability associated with networking
scanning in general. It is worth noting, that while the results vary across the
runs, they consistently fall within a general range. The average, min, and max
values between the manual and automated runs are all close, within 5.25 s. The
behavior can, therefore, be characterized and used when making decisions about
defenses. Running these in sequence is time consuming, but the parallelization
of RES alleviates this issue.
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Table 1. Manual vs. automated timings without shuffles (in seconds)

Intra-Subnet Inter-Subnet

Run Manual Auto Manual Auto

1 29.34 29.5 204.81 196.31

2 56.5 18.25 131.33 105.56

3 49.43 30.72 198.7 126.13

4 21.16 27.78 198.89 208.03

5 19.58 16.51 150.86 100.16

6 75.21 62.52 136.63 216.65

7 69.59 40.01 201.62 138.41

8 35.04 35.97 102.62 202.70

9 30.34 22.91 159.08 123.85

10 27.15 76.61 119.4 225.90

Avg 41.33 36.08 160.39 164.37

Std. Dev. 19.05 18.36 36.25 47.20

Min 19.58 16.51 102.62 100.16

Max 75.21 76.61 204.81 225.9

The somewhat high standard deviation is due to some of Nmap’s non-
deterministic scanning behavior as well as complexities in the underlying network
stack. This exemplifies the need for experimentation that emphasizes charac-
terization of behaviors across several executions versus assumptions based on
limited-samples.

Nmap completion time was on average four times greater when the scans
originated from a remote node (inter-subnet scans) than from an intra-subnet
node. This is due to the additional network device between the nodes: the switch.
The switch may also cause delays e.g., when it queries the controller for a flow
table addition, removal, or modification.

With respect to execution performance (as shown in Fig. 5), the total CPU
load was stable at 4–6% at rest. In the case of a single experiment (with a single
virtual machine), load spiked to roughly 12%; when the virtual machines were
first instantiated by RES. This subsided when the VMs finish booting (when
the VMs reached their login screens). When the scenarios and scans started,
the load stayed between 10 and 16% (averaging 13%) and when scans complete,
at roughly 240 s, the load decreased until the data transfer (pulling the results
from the VMs to the host) and then VM shutdown. Very similar behavior was
observed during the parallel executions, except at a higher magnitude. Memory
utilization was stable at 8 GB for the single run and 26 GB for the parallel run
throughout execution; this is because each VM was allocated 2 GB of memory
and the host used roughly 6 GB.
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Fig. 5. CPU load on host without MTD

5.2 MTD Characterization

To demonstrate the utility of RES in characterizing behaviors of scanning and
defense technologies, we tested the impact of the Ryu-MTD algorithm against
Nmap completion times and accuracy in the inter-subnet case. More specifically,
we observed the time it would take for a scan to complete as well as the number of
ports correctly identified as open when IPs are shuffled at different time intervals.
The algorithm is not suited for the intra-subnet case due to the short completion
times (as shown in Table 1). Every scan was executed using RES, configured to
run 10 instances simultaneously. We report the statistics for these runs in Table 2.



Repeatable Experimentation for Cybersecurity Moving Target Defense 95

Table 2. Scan times (t) and port identification accuracy (p) with varying shuffle times

Shuffle Avg Std. Dev. Min Max

Time(s) t p t p t p t p

20 1459.49 10 583.52 4.69 450.63 4 2200.48 20

50 1676.81 12.5 794.10 5.12 98.64 4 2464.63 20

80 1553.80 12.1 809.00 2.70 687.95 9 3244.14 18

110 762.067 15.6 328.51 2.11 250.43 13 1249.41 20

140 777.35 15 597.84 2.24 227.36 12 2242.52 20

170 556.182 17 243.14 1.90 214.25 14 951.03 20

200 353.29 18.9 320.07 1.64 155.65 15 1050.85 20

230 164.37 20 47.20 0 100.16 20 225.9 20

The 230 s shuffle time is a duplicate of the case with no shuffling (the last
column in Table 1), since all scans were completed before the shuffle occurred.
All other scan time averages are at least twice as long, and as much as 10 times
as long (50 s shuffle), compared to when no shuffling is used. The trend is for
time to complete the shuffle to decrease and for the accuracy of port identifi-
cation to rise as shuffle times increase. Additionally, the standard deviation for
completion times and port identifications decrease as the shuffle times increase.
An interesting outcome of these results is that in all cases except 1 (80 s) the
maximum number of correctly identified ports found is 20 of the possible 20. This
means that there is always a risk, even when using the mtd-ryu implementation
that a port scan will succeed in identifying all open ports correctly. However,
the time taken to do so will very likely be higher, giving a defender more time
to detect and react, than without MTD.

The CPU execution load during the shuffle experiments is shown in Fig. 6.
As with the observations without MTD, the load times during the single and
parallel runs are very similar, except at different scales. The experiments were
run for one hour using 20 s shuffles. The same spikes were observed during boot.
During the single run, the CPU load averaged 7%; this is less than the case
with no MTD. The reason is because Nmap scans are slowed due to the shuffles.
When a host is identified, a probe is sent and a reply is awaited; this delay causes
a decreased load on the system. Memory usage did not change: 8 GB for the
single run and 26 GB for the parallel run.

As mentioned previously, the experiment file containing all assets required
to recreate the experiment executions is available for download.
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Fig. 6. CPU load on host with MTD

6 Future Work

We plan to make incremental improvements to RES based on community feed-
back. More importantly, we plan to use this tool to conduct comparative analysis
on different defense techniques. The data generated from the executions of differ-
ent defense mechanisms will become inputs to an autonomous decision support
system that will provide insights into which mechanisms may work better under
different conditions.

We built RES and we provide it to the community with hope that it will
encourage distribution of, not only of written scientific results, but of entire
studies; including materials, results, and mechanisms required to reconstruct
and improve on the research.
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